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β-Amino acids are of significant importance among tailor-

made amino acids; their residues are also found in small natural 

peptides.
1
 Peptides constructed from β-amino acids were shown 

to adopt a number of intrinsic secondary structures, including 

helices, hairpins and reverse turns.2 Notably, many of these 

structures were obtained by imposing conformational 

restrictions onto the residues of β-amino acids by a number of 
methods, which are widely recognized in model studies of 

peptides, proteins and other biologically relevant molecules.3 

Incorporation of a cyclopropane ring into the amino acid 

residues is one such method, which might severely alter the 

conformational behavior and electronic properties of the 

compounds by minimal structural changes to the parent 

scaffolds.
4
 This can be advantageous in medicinal chemistry in 

the search for potential drug candidates, as well as for model 

studies of conformational and biological properties in the field 

of peptides. 

Modification of β-amino acid molecules with a 

cyclopropane ring has been reported previously in the 

literature. In particular, one of the first simple representatives, 

1, was described in a patent in 1973.
5
 Bicyclic cyclopropane-

containing β-amino acids are much rarer. The preparation of a 

Boc-protected bicyclic cyclopropane-containing β-amino acid, 

3,4-methano-β-proline
 
(2), has also been documented.

6
 

In this paper, we report a scalable synthesis of a novel, 

cyclopropane-modified β-proline analogue, 2-azabicyclo-

[3.1.0]hexane-4-carboxylic acid (3) (4,5-methano-β-proline). 

Notably, derivatives of 4,5-methano(-α-)proline (4) – a close 

analogue of 3 – were used in the design and synthesis of 

saxagliptin (5), an oral anti-diabetic drug approved by the FDA 

in 2009,
7
 as well as captopril analogs.

8
 

 

Our retrosynthetic approach to 3 relied on disconnection of 

the cyclopropane ring, which led to the corresponding enamine 

derivative 6 (Scheme 1). Many synthetic methods could be 

used to implement this approach, but in this work, we relied on 

the Simmons–Smith reaction, which was recently applied by 

our group for the synthesis of a Boc-protected cyclopropane-

containing proline analogue.
9
 Compound 6 can be obtained 

from methyl 5-oxopyrrolidine-3-carboxylate (7) analogously to 
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An efficient method for the preparation of Boc-protected 4,5-methano-β-proline – a novel 

bicyclic cyclopropane-containing β-amino acid – was developed, starting from readily 

available itaconic acid. A modified Simmons–Smith reaction was used for the construction of 

the cyclopropane ring. The method allowed for the synthesis of both cis and trans isomers of 

the title compound in 49% total yield and can be employed for gram-scale preparations. An

approach to the preparation of methyl 5-oxopyrrolidine-3-carboxylate, which is one of the key 

intermediates in the synthetic scheme, on a multigram scale was also developed. 
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4,5-dehydroproline derivative 8, which was prepared from 

pyroglutamic acid.
8
 

 

Scheme 1. Retrosynthetic analysis of amino acid 3 
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Scheme 2. Selected literature syntheses of 7 

Although compound 7 was described in the literature, none 

of the methods reported for its synthesis was suitable for large 
scale preparation. In our hands, scale-up of the procedure 

employing the reaction of dimethyl itaconate and ammonia 

(Scheme 2)
10

 led to the formation of the target product with 

insufficient purity and in moderate non-reproducible yields. 

The method relying on a Michael addition of nitromethane to 

dimethyl maleate11 included another step which was 

problematic for scale-up, namely, reduction of an aliphatic 

nitro group in the Michael adduct 9. Other procedures involved 

the use of expensive organocatalysts
12

 or potentially explosive 

reagents such as azides
13

 or diazoalkanes.
14

 

Our approach to 7 relied on a transformation used since the 

1960s, namely, reaction of itaconic acid or its derivatives with 

N-nucleophiles. In order to simplify the isolation and 

purification of the intermediate products in the reaction 

sequence, we decided to increase their lipophilicity by using 

O-benzylhydroxylamine (10) as the nucleophile in the first 

step. This reagent is superior to other analogous N-nucleophiles 

(e.g., benzylamine
15

) as the benzyloxy group can be readily 

removed under mild conditions. Reaction of itaconic acid and 

10·HCl was performed by heating the starting materials in 

pyridine (Scheme 3). Owing to the low aqueous solubility of 

11, isolation of the product was very simple and involved 

evaporation of the solvent, trituration of the residue with 4 M 

HCl and filtration. This gave carboxylic acid 11 (90%), which 

was pure enough for the next step.
16

 Esterification of 11 was 

achieved by treatment of its methanolic solution with strong 

cationite, which led to the formation of ester 12 in 83% yield.
17

 

Deprotection of the nitrogen atom in 12 by catalytic 
hydrogenation using palladium on charcoal as the catalyst 

occurred at 20 atm of hydrogen. In order to increase the 

conversion rate on large scale, the reaction was carried out at 

50 atm to give ester 7 quantitatively.
18

 For both steps (11 � 12 

and 12 � 7), isolation of the product included filtration of the 

catalyst and evaporation to dryness. It should be noted that up 

to 100 g of 7 of more than 95% purity was obtained in a single 

run using this reaction sequence without any chromatographic 

separations. 

Compound 7 was transformed into the corresponding Boc 

derivative 13 in 99% yield by reaction with Boc2O and 

DMAP.19 Selective reduction of the pyrrolidone moiety in 13 

was achieved using a stoichiometric amount of DIBAL-H; 

under these conditions, cyclic hemiaminal derivative 14 was 

obtained. Compound 14 was treated with trifluoroacetic 

anhydride in toluene at –80 °C, and the in situ formed 

trifluoroacetate was subjected to elimination upon treatment 

with N,N-diisopropylethylamine (DIPEA) to give enamine 
derivative 15 (91% over 2 steps), which was purified 

chromatographically.
20

 

For the cyclopropanation of 15, we used a slightly modified 

Furukawa variation of the Simmons–Smith reaction [Et2Zn 

(2.5 mol), ClCH2I (2.55 mol), CH2Cl2, –50 °C to rt, 

overnight].
21

 The reaction showed moderate diastereoselectivity 
and led to a ca. 1:3 mixture of the corresponding methyl esters, 

which were hydrolyzed with alkali to give a mixture of the 

carboxylic acids in 94% yield (over 2 steps). Since neither the 

methyl esters nor carboxylic acids could be separated 

chromatographically, the latter were transformed into allyl 

esters 16a and 16b (in order to simplify the detection of the 
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Scheme 3. Synthesis of Boc-protected 4,5-methano-β-prolines 17a,b (relative configurations are shown) 

diastereomers during TLC analysis of the fractions). This 

approach was fruitful, and the compounds 16a and 16b were 

separated smoothly using column chromatography (19% and 

61% yields from 15, respectively).22 In the last step of the 

synthesis, deprotection of 16a and 16b with in situ generated 

Pd(PPh3)4 gave Boc-protected amino acids 17a and 17b in 87% 
and 92% yields, respectively.

23, 24
 

The relative stereochemistry of the products was established 

using NOESY experiments with Boc derivatives 17a and 17b 

(Figure 1). Thus, the cis diastereomer was formed 

predominantly upon Simmons–Smith cyclopropanation of 

alkene 15, which can be rationalized by coordination of the 
intermediate zinc species with the ester moiety of 15. 
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Figure 1. Correlations in the NOESY spectra of 17a and 17b 

In conclusion, an efficient method for the preparation of the 

novel, bicyclic, cyclopropane-containing β-amino acid 

derivative, Boc-protected 4,5-methano-β-proline, has been 

developed. The synthesis commenced from itaconic acid and 
allowed for the preparation of both the cis and trans isomers of 

the title compound in 11% and 38% total yields, respectively. 
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and 5% aq NaHCO3 (50 mL) was added. The suspension was 
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washed with CH2Cl2 (2×10 mL), the organic layer was separated, 

and the aqueous phase extracted with CH2Cl2 (20 mL). The 
combined organic extracts were dried over Na2SO4 and 

evaporated. The crude product (0.74 g) was dissolved in MeOH 

(30 mL), and a solution of NaOH (0.33 g, 8.19 mmol) in H2O 
(3 mL) was added. The mixture was stirred at rt for 2 d, after 

which the MeOH was evaporated, and the residue was quenched 

with H2O (20 mL), washed with Et2O (2×15 mL), acidified with 

1 M aq NaHSO4 to pH = 2 and extracted with CHCl3 (3×20 mL). 

The combined extracts were dried over Na2SO4 and evaporated to 

give a ca. 1:3 mixture of 17a and 17b (0.58 g). 
The mixture of acids 17 (0.56 g, 2.46 mmol) was dissolved in 

CH2Cl2 (40 mL). DIPEA (0.86 mL, 4.93 mmol) and allyl 

bromide (0.32 mL, 3.70 mmol) were added to the solution. The 
mixture was refluxed for 2 d, cooled to rt, washed with 10% aq 

citric acid (30 mL), 5% aq NaHCO3 (20 mL), and H2O (20 mL), 

dried over Na2SO4, and evaporated to give a mixture of 16a and 
16b (0.64 g). The diastereomers were separated by column 

chromatography on silica gel, using hexane – EtOAc (5:1) as 

eluent. The trans-isomer 16a was obtained as pale yellow oil 

(0.13 g, 19% from 15). Rf = 0.29 [hexane – EtOAc (5:1)]. MS 
(m/z, EI) 194 (M+–OC4H9), 167 (M+–CO2–C4H8), 126 (M+–CO2–

C4H8–С3H5), 57 (C4H9
+), 41 (С3H5

+). Anal. Calcd. for C14H21NO4 

C 62.90, H 7.92, N 5.24. Found C 63.06, H 7.69, N 5.21. 1H 
NMR (500 MHz, CDCl3) δ 6.00 – 5.85 (m, 1H), 5.34 (d, J = 17.3 

Hz, 1H), 5.26 (d, J = 10.6 Hz, 1H), 4.64 (s, 2H), 3.97 (s, 1H), 

3.65 – 3.45 (m, 1H), 3.23 – 3.06 (m, 2H), 1.92 – 1.83 (m, 1H), 
1.47 (s, 9H), 0.90 – 0.73 (m, 1H), 0.62 (s, 1H). 13C NMR (126 

MHz, CDCl3) δ 172.4, 154.5, 131.4, 118.0, 79.4, 65.2, 46.4, 44.2, 

43.3, 35.1, 28.0, 18.1, 17.4, 10.0. 

The cis-isomer 16b was obtained as a colourless oil which 

crystallized upon standing (0.43 g, 61% from 15). Rf = 0.37 

[hexane – EtOAc (5:1)]. Mp 52–53 °C. MS (m/z, EI) 194 (M+–

OC4H9), 167 (M+–CO2–C4H8), 126 (M+–CO2–C4H8–С3H5), 57 

(C4H9
+), 41 (С3H5

+). Anal. Calcd. for C14H21NO4 C 62.90, H 7.92, 

N 5.24. Found C 62.63, H 8.08, N 5.60. 1H NMR (500 MHz, 

CDCl3) δ 5.99 – 5.80 (m, 1H), 5.30 (d, J = 17.2 Hz, 1H), 5.22 (d, 
J = 10.3 Hz, 1H), 4.60 (d, J = 5.2 Hz, 2H), 3.89 – 3.63 (m, 1H), 

3.60 – 3.41 (m, 1H), 3.35 – 3.26 (m, 1H), 3.26 – 3.16 (m, 1H), 

1.89 – 1.77 (m, 1H), 1.44 (s, 9H), 0.82 (s, 1H), 0.67 (s, 1H). 13C 
NMR (126 MHz, CDCl3) δ 171.7, 154.4, 131.5, 118.0, 79.4, 65.1, 

44.7, 42.6, 42.0, 35.6, 28.0, 18.4, 17.9, 8.5. 

23. Procedure for the preparation of 17a: a solution of allyl ester 16a 

(70 mg, 0.26 mmol) in absolute THF (4 mL) was degassed by 
refluxing under an argon flow. Pd2(dba)3 (14 mg, 0.015 mmol) 

and PPh3 (8 mg, 0.03 mmol) were added to the solution 

sequentially at rt under an argon atmosphere. After 5 min, 
morpholine (0.22 ml, 2.6 mmol) was added. The mixture was 

stirred at rt for 2 d, then diluted with EtOAc (30 mL) and 

extracted with H2O (2×25 mL). The combined aqueous extracts 

were washed with EtOAc (15 mL), acidified with 1 M aq 

NaHSO4 to pH = 2, and extracted with CHCl3 (2×15 mL). The 

combined organic extracts were dried over Na2SO4 and 
evaporated to give the product 17a as a yellowish glass (52 mg, 

87%). MS (m/z, CI): 226 (M–H+). Anal. Calcd. for C11H17NO4 C 

58.14, H 7.54, N 6.16. Found C 58.51, H 7.33, N 5.89. 1H NMR 
(400 MHz, CDCl3) δ 10.11 (br s, 1H), 4.05 – 3.87 (m, 1H), 3.65 – 

3.39 (m, 1H), 3.19 – 3.00 (m, 2H), 1.91 – 1.79 (m, 1H), 1.44 (s, 

9H), 0.89 – 0.66 (m, 1H), 0.60 (s, 1H). 13C NMR (126 MHz, 
CDCl3) δ 177.5, 154.8, 79.6, 46.4, 44.3, 43.4, 35.1, 28.0, 18.2, 

17.5, 10.1. 

24. Acid 17b was prepared from 16b analogously to 17a. The 

product was obtained as a colourless viscous oil, which solidified 
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upon standing. Yield 92%. Mp 107–110 °C. MS (m/z, CI): 226 

(M–H+). Anal. Calcd. for C11H17NO4 C 58.14, H 7.54, N 6.16. 

Found C 58.03, H 7.74, N 6.35. 1H NMR (400 MHz, CDCl3) δ 

8.23 (br s, 1H), 3.85 – 3.68 (m, 1H), 3.63 – 3.42 (m, 1H), 3.38 – 
3.26 (m, 1H), 3.25 – 3.14 (m, 1H), 1.92 – 1.79 (m, 1H), 1.45 (s, 

9H), 0.90 – 0.79 (m, 1H), 0.76 – 0.66 (m, 1H). 13C NMR (126 

MHz, CDCl3) δ 176.8, 154.6, 79.8, 44.7, 42.4, 41.7, 35.6, 28.0, 
18.5, 17.8, 8.6. 


