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The reaction of primary 1,3-dinitroalkanes with 2-ene-1,4-dione

or 2-ene-4-oxo ester derivatives in acetonitrile with DBU as

base, allow the one pot synthesis of 3,5-alkylated acetophe-

nones and methyl benzoate derivatives respectively via an

anionic domino process.

The synthesis of complex molecules is traditionally performed by a

chain of separate steps, each of which requires its own conditions,

reagents, solvent and catalyst. After each reaction is complete, the

solvent and the waste products are removed and discarded, and

the intermediate product is separated and purified. Environmental

and economic pressures are now forcing the chemical community

to search for more efficient ways of performing chemical

transformations.1 These issues can be addressed by the develop-

ment of new synthetic methods that, by bringing together simple

components, can generate complex structures in one pot, in much

the same way as occurs in nature. In this context the anionic

domino transformations are of great interest.2

Aromatic compounds are important reagents in organic

synthesis.3,4 In particular, 3,5-alkylated acetophenones and methyl

benzoate derivatives are key building blocks in the synthesis of

retinoic acids, which have potent anti-proliferative activity in

cervical cancer cells,4a HIV-protease activity inhibitors,4b tyrosine

kinase inhibitors,4c HIV-1 integrase inhibitors,4d NMDA receptor

antagonists,4e and a variety of other important targets.4f,g

Aromatization of acyclic precursors is undoubtedly a useful

reaction in the synthesis of highly substituted aromatic rings,5 and

several methods are known for this purpose.6 We now wish to

report an unprecedented, one pot aromatization of 1,3-dinitroalk-

anes through their reaction with enediones. In fact, the

nucleophilicity of nitroalkanes and the ability of the nitro

functionality to act as a leaving group7 makes it possible to

usefully synthesise a variety of acetophenone and methyl benzoate

derivatives using an anionic domino process.

In the last few years we have reported the direct formation of

carbon–carbon double bonds under basic conditions (1,8-diazabi-

cyclo[5.4.0]undec-7-ene, DBU) through the conjugate addition of

primary or secondary nitroalkanes leading to electron-poor

alkenes bearing two electron withdrawing groups in the a- and

b-positions.8 The application of this strategy to the reaction of 1,3-

dinitroalkanes 1,9 with conjugate enediones 2, allows the one pot

preparation of the title compounds. In fact, the reaction in

acetonitrile of 1 with 2 (Scheme 1) using DBU as base, proceeds as

a tandem process in which a regioselective Michael addition

(yielding 3) is presumably followed by the elimination of nitrous

acid, to give the corresponding nitro-enone derivatives 4.

The latter compounds are prone to an intramolecular nitroaldol

(Henry) reaction, yielding the nitrocyclohexenols 5 in less than 1 h.

The formation of 5 can be easily observed in situ by TLC.

Treatment of 5 with 4M hydrochloric acid favours the elimination

of water and a further molecule of nitrous acid, thus allowing the

one pot synthesis of target molecules 6 in 42–77% yield (Table 1).

When 1-phenyl-2-penten-1,4-dione was used as the Michael

acceptor (Table 1, Entries b, e and i), only the listed regioisomers

were formed, the structures of which were determined from their

MS spectra (CH3CO+ at m/z 5 43).

Our procedure for the one pot preparation of aromatic systems

from open chain compounds therefore formally includes five

different transformations: (i) Michael addition, (ii) nitrous acid

elimination, (iii) intramolecular nitroaldol reaction, (iv) water

elimination, and (v) elimination of a further molecule of nitrous

acid.

It is important to note the key role of the dinitro compounds 1,

whereby their nitro functionalities act both as good electron-

withdrawing groups and good leaving groups. This makes it

possible to generate two carbon–carbon double bonds, and so

strongly promote the drive to aromatize the ring system. Several
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advantages can be seen in our approach, such as the avoidance of

ortho–meta–para mixture formation, common in conventional

aromatic synthesis. In fact, our regiodefined preparation method

for acetophenone and benzoate derivatives is very difficult to

undertake by the electrophilic substitution of benzenes. In this

context, a significant example is our synthesis of compound 6n (i.e.

Table 1, Entry n), a key building block in the preparation of a

farnesyl-protein tranferase inhibitor. This has previously been

prepared in eight steps from orcinol in only 3% overall yield

(Scheme 2),10 while we obtained the same compound via our one

pot method in 76% isolated yield, starting from 1 (R 5 Ph) and 2

(R1 5 CH3, R2 5 CH3O).

Moreover, in our method, by making an appropriate choice of

starting 1,3-dinitroalkane and/or the enedione, the opportunity is

offered to predict the relative nature and positions of the

substituents in the products. It also consents to the insertion of

several n-alkyl groups without the isomerization problems typical

of classical Friedel–Crafts alkylation. Finally, the possibility of one

pot introduction of aromatic (compounds 6h–n) and heteroaro-

matic (compound 6o) substituents avoids the need for the cross-

coupling reactions that are usually employed in the preparation of

biphenyl systems.11

In conclusion, we have developed the first one pot synthesis of

the title compounds with satisfactory to good yields by the

aromatization of simple, low cost starting materials through

an anionic domino process, promoted by highly versatile

nitroalkanes.
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Table 1 A summary of compounds of type 6 prepared

Entry R R1 R2 Yield of 6 (%)a

a CH3(CH2)4 CH3 CH3 55
b CH3(CH2)4 Ph CH3 62
c CH3(CH2)7 CH3 CH3 58
d PhCH2CH2 CH3 CH3 57
e CH3(CH2)7 Ph CH3 61
f CH3(CH2)4 CH3 CH3O 60
g PhCH2CH2 CH3 CH3O 59
h m-CF3C6H4 CH3 CH3 58
i p-MeOC6H4 Ph CH3 61
j m-CF3C6H4 CH3 CH3O 60
k p-MeOC6H4 CH3 CH3O 77
l p-MeOC6H4 CH3 CH3 66
m m-NO2C6H4 CH3 CH3O 42
n Ph CH3 CH3O 76
o 2-Py CH3 CH3O 43
a Yield of pure, isolated product.

Scheme 2
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