Compound	$m/z \ (I_{\rm rel} \ (\%))$		
	[M+SiMe ₃] ⁺	[M+SiMe ₃ -NO ₂] ⁺	[M+SiMe ₃ -XNO ₂] ⁺
1,1-Dinitroethane	193 (45.5)	147 (40.5)	146 (100)
1-Fluoro-1,1-dinitroethane	211 (99.5)	165 (61.8)	146 (100)
1-Chloro-1,1-dinitroethane	227 (67.9) 229 (24.4)	181 (100) 183 (42.7)	146 (67.5)

Table 2. CI mass spectra of 1,1-dinitroethane and 1-halo-1,1-dinitroethanes $MeCX(NO_2)_2$ (with tetramethylsilane as the reagent gas)

Other routes of fragmentation, analogous to the reactions of decomposition of the protonated molecular ions of nitroalkanes (elimination of H_2O and HNO),² were not observed in the case of ion-adducts of mononitroalkanes with the trimethylsilyl cation.

Unlike those of mononitroalkanes, the CI mass spectra of dinitroethanes contain ion-adducts of only one type, $[M+SiMe_3]^+$ (Table 2), which decompose with the loss of a stable NO₂⁻ radical similarly to the corresponding protonated molecular ions (*cf.* Ref. 1). By analogy with the $[M+H-NO_2]^+$ ions, the structure of MeC⁻XN⁺O₂ · SiMe₃ can be ascribed to the $[M+SiMe_3-NO_2]^+$ ions.

The another reaction path of fragmentation of the $[M+SiMe_3]^+$ ions of dinitroethanes, with the loss of an XNO_2 (X = H, F, or Cl) molecule, has no analogs among the fragmentation processes of their protonated molecular ions.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 96-03-33398).

References

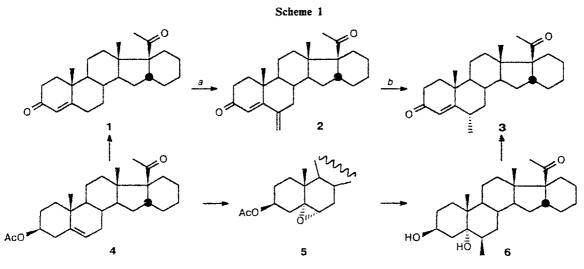
- 1. O. S. Chizhov, V. I. Kadentsev, G. G. Palmbach, K. I. Burstein, S. A. Shevelev, and A. A. Fainsilberg, *Org. Mass Spectrom.*, 1978, **13**, 611.
- O. S. Chizhov, V. I. Kadentsev, and A. A. Stomakhin, Org. Mass Spectrom., 1991, 26, 757.
- 3. N. Kornblum, Organic Reactions, 1964, 12, 130.
- 4. V. D. Emmons and A. S. Pagano, J. Am. Chem. Soc., 1955, 77, 4557.
- S. A. Shevelev, V. I. Erashko, and A. A. Fainzil'berg, Izv. Akad. Nauk SSSR. Ser. Khim., 1976, 2725 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1976, 25 (Engl. Transl.)].
- 6. M. Kamlet and H. Adolph, J. Org. Chem., 1968, 33, 3073.
- 7. L. Zeldin and H. Shechter, J. Am. Chem. Soc., 1957, 79, 4708.
- T. J. Odiorne, D. J. Harvey, and P. Vouros, J. Phys. Chem., 1972, 76, 3217.
- 9. I. A. Blair, G. Phillipou, and J. H. Bowie, Austral. J. Chem., 1979, 32, 59.

Received January 9, 1997

Synthesis of 6α -methyl- 16α , 17α -cyclohexanoprogesterone via γ -methylenation of 16α , 17α -cyclohexanopregn-4-ene-3, 20-dione

I. S. Levina^{*} and A. V. Kamernitskii

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135 5328


6-Methylene-16 α , 17 α -cyclohexanopregn-4-ene-3, 20-dione 2 has been synthesized by the reaction of Δ^4 -3-ketone 1 with CH₂(OEt)₂ and POCl₃ in the presence of AcONa in 55% yield. Reduction of the product 2 in the presence of 5% Pd/C gives 6 α -methyl-16 α , 17 α -cyclohexanoprogesterone 3 in a yield exceeding 70%.

Key words: methylenation, pentarane, progestin.

 6α -Methyl-1 6α , 17 α -cyclohexanoprogesterone (6α -methyl-D₆-pentarane) (3) (Scheme 1) is a synthetic progestin that exhibits high progestational and contraceptive activities.¹ Earlier for the synthesis of compound 3, the succession of transformations $4 \rightarrow 5 \rightarrow 6 \rightarrow 3$ (see Scheme 1) was used,^{2,3} in which the key step was the

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1234-1236, June, 1997.

1066-5285/97/4606-1185 \$18.00 © 1997 Plenum Publishing Corporation

Reagents and conditions: a. $CH_2(OEt)_2$, $CHCl_3$, $POCl_3$, NaOAc; 60–75 °C; yield 55%; b. 5% Pd/C, cyclo-C₆H₁₀, EtOH; 28 h; dilute HCl; yield 73%.

ring opening of 5α , 6α -oxide 5 with methylmagnesium iodide; in this case, the reaction gave exclusively 6β -methyldiol **6** while the sterically hindered 20-carbonyl group in molecule of 5 was not involved in the reaction.² However, this method of introducing the 6-methyl group required the preliminary protection of the 20-carbonyl group when it was used for other progestins of the D'-pentarane series, for example, 16α , 17α -cyclobutanoprogesterone.⁴

In this communication we report an alternative synthesis of 6a-methyl-16a,17a-cyclohexanoprogesterone 3. The key intermediate in this synthesis is 6-methylene derivative 2, which was obtained by γ -methylenation of Δ^4 -3-oxopentarane 1 by the Wiechert method.⁵ It should be noted that such a one-step procedure for introducing a methylene group into steroid conjugated ketones has been rather widely used for the synthesis of methylene steroids of various classes, 5-7 and the yields of the final product were 60-65%. The starting conjugated ketone 1 was obtained by Oppenauer oxidation of the corresponding 3β -hydroxy- Δ^5 -derivative.² The interaction of compound 1 with reagents $X-CH_2OR$ (X = OR, Cl, OAc, R = Me, Et) and POCl₃ in the presence of AcONa led directly to 6-methylene derivative 2. Formaldehyde diethylacetal (ethylal) proved to be the best reagent in this case. When a mixture of ketone 1 with an excess of ethylal, POCl₃, and AcONa in anhydrous $CHCl_3$ was boiled, compound 2 was obtained; the yield was 55% after chromatographic purification. When ethylal was replaced by methylal, the yield of dione 2 decreased to 20-25%; when chloromethyl methyl ether was used, the obtained compound 2 was contaminated by chlorinated unidentified by-products.

Reduction of the 6-methylene group of dione 2 to the target product 3 in the presence of 5% Pd/C and cyclohexene as a hydrogen donor proceeds via the step of isomerization of the exocyclic double bond in molecule 2 into ring *B* to give the intermediate $\Delta^{4.6}$ -6-methyl derivative.⁸ The latter is further reduced into a mixture of stereoisomeric $6\alpha,\beta-\Delta^4$ -3-ketones, which are easily transformed into 6α -methylpentarane 3 by treatment with an acid. The course of the reaction was monitored by UV spectroscopy: λ_{max} changed from 260 nm (6-methylene- Δ^4 -3-ketone) via $\lambda_{max} = 285$ nm ($\Delta^{4.6}$ -3-ketone) to $\lambda_{max} = 245$ nm (Δ^4 -3-ketone).

Thus, this communication describes a two-step method for the synthesis of 6α -methyl- 16α , 17α -cyclohexanoprogesterone from its 6-desmethyl precursor. In many cases this method can compete with the alternative methods for the introduction of a 6-methyl group into pentaranes.

Experimental

Melting points were determined on a Boetius heating plate. ¹H NMR spectra were recorded in CDCl₃ on a Bruker WM-250 spectrometer. UV spectra were obtained on a Unicam SP-700 instrument. The qualitative analysis of the mixtures was carried out by TLC on Silufol L UV-254 plates (Czech Republic). Columns with Woelm silica gel were used for preparative chromatography.

6-Methylene-16a, 17a-cyclohexanopregn-4-ene-3, 20-dione (2). A suspension of compound 1 (1 g), anhydrous AcONa (1 g), and freshly distilled POCl₃ (30 mL) in 25 mL of anhydrous CHCl₃ was stirred under argon for 45 min at 65-70 °C. A saturated aqueous solution of sodium carbonate (100 mL) was then added dropwise to the reaction mixture cooled to 18-20 °C and stirred for an additional 1.5 h. The aqueous layer was separated, and the organic layer was thoroughly washed with water until the reaction became neutral and dried with Na₂SO₄. The crystalline residue obtained after removal of the solvent was chromatographed on a column. Dienedione 2 (0.57 g, 55%), m.p. 181-185 °C (ether-hexane) was isolated by elution with a heptane—ether mixture (4 : 1). UV, λ_{max}/nm : 260 (ϵ 11200). ¹H NMR, δ : 0.72 (s, 3 H, 18-Me); 1.09 (s, 3 H, 19-Me); 2.14 (s, 3 H, 21-Me); 3.0 (m, 1 H, C(16)H); 4.94, 5.06 (2 m, 2 H, C(6)CH₂); 5.92 (s, 1 H, C(4)H). Further elution gave the starting ketone 1 (0.22 g).

 6α -Methyl-16 α , 17α -cyclohexanopregn-4-ene-3, 20-dione (3). A mixture of a solution of product 2 (0.45 g) in 25 mL of EtOH, 5% Pd/C (0.3 g), and 2.5 mL of freshly distilled cyclohexene was boiled with stirring for 28 h. During this period cyclohexane was added three times (3×1.5 mL). The catalyst was filtered off and washed with ethanol. The filtrate was acidified with dilute HCl, and most of the ethanol was removed *in vacuo*. Ice was added to the residue, and the white powder that precipitated was filtered off, washed with water on a filter, and air dried. Chromatographic purification afforded enedione 3 (0.33 g, 73%), m.p. 175-178 °C, which gave no melting point depression with an authentic sample.⁹

References

 A. V. Kamernitskii and I. S. Levina, *Khim.-Farm. Zh.*, 1991, 25, 4 [*Pharm. Chem. J.*, 1991, 25 (Engl. Transl.)].

- 2. I. S. Levina and A. V. Kamernitskii, *Khim.-Farm. Zh.*, 1990, 24, 31 [*Pharm. Chem. J.*, 1990, 24 (Engl. Transl.)].
- 3. Y. N. Ogibin, I. S. Levina, A. V. Kamernitzky, and G. I. Nikishin, Mendeleev Commun., 1995, 184.
- 4. A. V. Kamernitskii, V. N. Ignatov, I. S. Levina, and G. V. Nikitina, *Khim.-Farm. Zh.*, 1984, 18, 45 [*Pharm. Chem. J.*, 1984, 18 (Engl. Transl.)].
- 5. K. Annen, H. Hofmeister, H. Laurent, and R. Wiechert, Synthesis, 1982, 34.
- 6. Ger. Offen DE 3004508; Chem. Abstrs., 1982, 96, 6951q.
- 7. EP 250262; Chem. Abstrs., 1988, 108, 221965u. Em. Pat.
- Burn, D. N. Kirk, and V. Petrow, *Tetrahedron*, 1965, 21, 1619.
- 9. A. A. Akhrem, A. V. Kamernitskii, L. E. Kulikova, and I. S. Levina, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1978, 444 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1978, 27, 384 (Engl. Transl.)].

Received January 29, 1997

Bis-para-semiquinoid type double cyclopalladation in the series of six-membered two-nitrogen bridged annulene-dihydroannulene ligands

V. A. Nikanorov,^a* D. G. Kiktev,^a T. V. Storozhev,^a S. V. Sergeev,^a T. I. Rozhkova,^b V. S. Bogdanov,^b and V. A. Dorokhov^b

^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: 007 (095) 135 5085. E-mail: vanik@ineos.ac.ru ^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135 5328

The cyclometallation reaction known in the series of annulene heteroorganic ligands was extended to six-membered dihydroannulenes with a dinitrogen bridge. Double cyclopalladation of 4-methyl-4-trichloromethylcyclohexa-2,5-dien-1-one azine yielded the first representative of a new class of cross-conjugated diazadipalladatetracycles, viz., 5,10-bis(acetylacetonato)-2,7-dimethyl-2,7-bis(trichloromethyl)-2,7-dihydro-4b,9b-diaza-5,10-dipalladaindeno[2,1-a]indene, isolated as a diastereomer mixture of the achiral meso-form (*E*-isomer) and a racemate (*Z*-isomer). This reaction offers a method for transition metal-mediated activation of non-reactive C—H bonds at position 2 of cyclohexa-2,5-dienylidene systems and a route toward the very rare chiral polyheteroelement system with rotational symmetry.

Key words: azines of α,β -unsaturated carbonyl compounds, 2,5-cyclohexadienones, use of Pd^{II} derivatives in fine organic synthesis, double cyclopalladation, unsaturated metallaheterocycles, organometallic compounds, stereoisomerism, chirality.

The reaction of cyclometallation (also known as *ortho*-metallation) producing π,π -conjugated diazametalladi- and tetracycles (1¹, 2²; cf. also Ref. 3) was discovered at the end of the 1960s for the benzenoid compound, azobenzene 3, in which both six-membered rings are aromatic and the N atoms are linked by a π -bond (cf. the recently discovered reaction of double cyclometallation of azines of benzaldehyde⁴ and benzophenone⁵). In the present work we for the first time extended the annulene type of transformation to a series of six-membered two-nitrogen bridged dihydroannulenes, azines of 4,4-disubstituted 2,5-cyclohexadienones (4).

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1236-1239, June, 1997.

1066-5285/97/4606-1187 \$18.00 © 1997 Plenum Publishing Corporation