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Abstract: A new and facile synthetic method for urea derivatives
was developed under mild conditions, and contrasts with conven-
tional preparation methods that need highly toxic reagents (phos-
gene) or severe reaction conditions. In our reaction system, N,N-
dimethylformamide or dimethyl sulfoxide as solvent strongly accel-
erated the carbonylation of primary amines with sulfur under carbon
monoxide (1 atm) at 20 °C to give the corresponding thiocarbamate
salts. These salts were readily oxidized by molecular oxygen under
similarly mild conditions to afford urea derivatives in good to excel-
lent yields. This urea synthesis could also be applied to a new syn-
thesis of aromatic ureas by use of 1,8-diazabicyclo[5.4.0]undec-7-
ene in N,N-dimethylformamide.

Key words: amines, amides, sulfur, carbonylations, oxidations

Urea derivatives 1 (Schemes 1 and 2) are important mate-
rials as fertilizers, agricultural chemicals, medicines, and
polar solvents. Therefore, a variety of synthetic methods
for 1 have been developed, based on the carbonylation of
amines 2. For example, a general synthetic method for the
preparation of urea derivatives 1 includes the carbonyla-
tion of amines 2 with toxic phosgene as the carbonyl
source.1–3 Because of the toxicity of phosgene, the much
safer diphosgene,4 triphosgene,5 and 1,1¢-carbonyl-
diimidazole6,7 have also been used in its place. Urea has
also been recognized as a carbonyl source for the synthe-
sis of 1,8,9 but then the synthesis of urea derivatives 1 from
amines 2 and urea needs to be carried out at high temper-
atures. Carbonates have been similarly effective for the
preparation of urea derivatives 1 from amines 2.10,11 The
industrial method for the production of urea consists of
the reaction of ammonia with carbon dioxide under severe
reaction conditions.12 N,N¢-Dicyclohexylcarbodiimide,13

1,8-diazabicyclo[5.4.0]undec-7-ene,14 and transition-met-
al catalysts15,16 have also been used for the synthesis of
urea derivatives 1 from carbon dioxide. Urea derivatives
1 have also been prepared from the reactions of amines 2
with carbonyl sulfide.17

Carbon monoxide has been a useful raw material for the
preparation of ureas 1 from amines 2. Various urea deriv-
atives 1 have been prepared from amines 2 and carbon
monoxide in the presence of transition-metal catalysts.18–20

In 1961, the Monsanto group introduced sulfur-assisted
carbonylation of primary amines 2 by carbon monoxide to

give urea derivatives 1.21–23 However, this reaction re-
quires high temperatures and pressurized carbon monox-
ide. Also, in 1971, Sonoda et al. found that selenium
exhibits excellent catalytic activity toward the carbonyla-
tion of amines by carbon monoxide.24,25 The selenium-
catalyzed carbonylation of amines 2 and oxidation of am-
monium salts of selenocarbamates are performed under
mild conditions (1 atm, r.t.) to give urea derivatives 1 in
good yields. However, the toxicity of selenium com-
pounds has considerably limited the use of this prepara-
tive method for large-scale production of ureas 1.

In 1993, we published a preliminary report on the carbon-
ylation of amines 2 in tetrahydrofuran by carbon monox-
ide and sulfur, followed by oxidation using molecular
oxygen to provide urea derivatives 1 in good yields and
under mild conditions (1 atm, 20 °C).26 However, this car-
bonylation was sluggish and long reaction times were nec-
essary. Also, the method was difficult to apply to the
synthesis of aromatic urea derivatives. Very recently, we
reported the solvent-assisted thiocarboxylation of amines
2 by carbon monoxide and sulfur, to afford S-alkyl thio-
carbamates in good yields.27 In this reaction system, the
thiocarboxylation of amines 2 by carbon monoxide and
sulfur under mild conditions (1 atm, 20 °C) was consider-
ably assisted by the use of dimethyl sulfoxide or N,N-di-
methylformamide as solvent.

Therefore, our objective has been to develop a straightfor-
ward synthetic method for urea derivatives 1, including
aromatic urea derivatives, by the carbonylation of amines
2 by carbon monoxide and sulfur, followed by oxidation
with molecular oxygen, under mild conditions (1 atm,
20 °C) in N,N-dimethylformamide or dimethyl sulfoxide.
We here report the full results of the synthesis of urea de-
rivatives 1 from amines 2, carbon monoxide, sulfur, and
oxygen by use of solvent-accelerated carbonylation under
mild conditions (1 atm, 20 °C).

Our investigation into employing N,N-dimethylform-
amide as a solvent led to the successful synthesis of urea
derivative 1a by the carbonylation of cyclohexylamine
(2a) with carbon monoxide and sulfur, followed by oxida-
tion of the intermediate salt 3a by molecular oxygen
(Scheme 1). Cyclohexylamine (2a) readily reacted with
carbon monoxide (1 atm) and sulfur (1.0 equiv) at 20 °C
for four hours in N,N-dimethylformamide as solvent. The
reaction mixture changed from a reddish-black solution to
a pale-green emulsion, and the resulting thiocarbamate
salt 3a in N,N-dimethylformamide solution was oxidized
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by molecular oxygen under ambient pressure at 20 °C for
one hour. Finally, N,N¢-dicyclohexylurea (1a) was ob-
tained as a pure white solid in 88% yield based on sulfur
(Scheme 1; Table 1, entry 1).

Scheme 1 Synthesis of N,N¢-dicyclohexylurea

To examine the influence of solvent and reaction time on
this method for the preparation of N,N¢-dicyclohexylurea
(1a), several control reactions were performed (Table 1).
When dimethyl sulfoxide was employed as the solvent, a
similar solvent effect was found after five hours of reac-
tion to give urea 1a in good yields (82%) (Table 1, entry
4). Shorter reaction times for carbonylation lowered the
yields of N,N¢-dicyclohexylurea (1a) in both N,N-dimeth-
ylformamide and dimethyl sulfoxide (Table 1, entries 2
and 5). Even when N,N¢-dicyclohexylurea (1a) was syn-
thesized on a tenfold scale, it was obtained in considerably
good yield after a longer reaction time (27 h) (Table 1, en-
try 3). In contrast, the yield of urea 1a was lower after four
hours of reaction in tetrahydrofuran (Table 1, entry 6). A
longer reaction time (Table 1, entry 7) gave urea 1a in a
yield similar to that obtained in N,N-dimethylformamide
(Table 1, entry 1). Therefore, we believe that the solvent
is a predominant factor in this urea-derivative synthesis by
the carbonylation of amines 2 with carbon monoxide and
sulfur followed by oxidation in molecular oxygen.

To demonstrate the efficiency and scope of this method,
the preparation of a variety of urea derivatives 1a–o from
the corresponding amines 2a–o was investigated at 1 atm,
20 °C, and for five hours in N,N-dimethylformamide
(Scheme 2, Table 2).

Scheme 2 Synthesis of N,N¢-dialkylureas from the corresponding
amines and carbon monoxide in N,N-dimethylformamide

Primary amines 2a–c and 2e–i were suitable for this urea-
derivative synthesis, providing N,N¢-dialkylureas 1a–c
and 1e–i in good to excellent yields under mild conditions
(1 atm, 20 °C) (Table 2, entries 1–3, 5–9). N,N¢-Di-tert-
butylurea (1d) was obtained in moderate yield (59%) de-
spite the bulkiness of the tert-butyl group (Table 2, entry
4). Also, N,N¢-diphenylureas 1j–l were successfully pre-
pared in moderate to good yields from aromatic amines
2j–l in the presence of 1,8-diazabicyclo[5.4.0]undec-7-
ene (Table 2, entries 10–12). The yields of N,N¢-diphenyl-
ureas 1j–m were strongly affected by the basicity of
anilines 2j–m. 4-Methoxyaniline (2k), a basic aniline
with an electron-donating group, gave urea 1k in good
yield (Table 2, entry 11). But 3-nitroaniline (2m), with an
electron-withdrawing group, did not form N,N¢-di(3-nitro-
phenyl)urea (1m) (Table 2, entry 13). We also examined
the synthesis of urea derivatives 1n and 1o from second-
ary amines 2n and 2o (Table 2, entries 14 and 15). Ureas
1n and 1o did not form by this method. Under similar re-
action conditions, S-alkyl N,N-dialkylthiocarbamates
were obtained by esterification of N,N-dialkylthiocarbam-
ate salts with alkyl halides.27 Therefore, the oxidation re-
action did not take place.

In this reaction system, sulfur was recovered from the re-
sulting solution. We also tried using a catalytic amount of
sulfur to prepare N,N¢-dibenzylurea (1i). Benzylamine
(2i) was mixed with 0.1 equivalents sulfur under a carbon
monoxide–oxygen atmosphere (CO–O2, 10:1) at 20 °C
for 24 hours (Scheme 3). However, N,N¢-dibenzylurea
(1i) was not obtained at all, because of insufficient oxida-
tion under a 10:1 CO–O2 atmosphere. Next, the prepara-
tion of N,N¢-dibenzylurea (1i) from benzylamine (2i) in
the presence of 0.5 equivalent sulfur and two carbonyla-
tion–oxidation cycles was examined (Scheme 4). This
gave urea 1i in less than 50% yield. Therefore, the synthe-
sis of urea derivatives 1 by this method can not be carried
out with only catalytic amounts of sulfur.

Scheme 3 Attempted synthesis of N,N¢-dibenzylurea in the
presence of a catalytic amount of sulfur

Table 1 Influence of Solvent and Reaction Time on the Synthesis 
of N,N¢-Dicyclohexylurea

Entry Solvent Reaction time (h) Isolated 
Yield (%)a

Carbonyla-
tion

Oxidation

1 DMF 4 1 88

2 DMF 1 0.5 49

3 DMF 24 3 79b

4 DMSO 4 1 82

5 DMSO 1 0.5 49

6 THF 4 1 8

7 THF 20 4 89c

a Reagents and conditions: cyclohexylamine (2.86 mL, 25 mmol), sul-
fur (321 mg, 10 mmol), solvent (20 mL), CO (1 atm), O2 (1 atm), 
20 °C.
b Cyclohexylamine (28.6 mL, 250 mmol), sulfur (3.21 g, 100 mmol), 
DMF (100 mL), CO (1 atm), O2 (1 atm), 20 °C.
c Ref.26

2 c-HexNH2 + CO + S [c-HexNH3]+[c-HexNHC(O)S]–

1 atm, 20 °C

O2

1 h

DMF

4 h

(c-HexNH)2CO

1a, 88%

2a 3a
CO S

O2

DMF
2 R1R2NH + + [R1R2NH2]+[R1R2NC(O)S]–

1 atm, 20 °C

1 h

4 h

(R1R2N)2CO

1

2 3

+ CO + O2

S (0.1 equiv), DMF

24 h, 1 atm, 20 °C
2i 1i, 0%

2 PhCH2NH2

10 : 1

(PhCH2NH)2CO
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Scheme 4 Synthesis of N,N¢-dibenzylurea in the presence of 0.5
equivalent sulfur

Schemes 5 and 6 show possible pathways for the synthe-
sis of urea derivatives 1 by the carbonylation of amines 2
followed by oxidation of thiocarbamates 3. We have
found that thiolate salts 4 readily react with carbon mon-
oxide to give thiocarbamate salts 3 (Scheme 5),28 and
therefore propose that a plausible pathway for this sol-
vent-assisted carbonylation of amines 2 with carbon mon-
oxide and sulfur is via thiolate anions 4. At the stage
where amines 2 are carbonylated, elemental sulfur under-
goes S–S bond fission by the reaction with amines, with
substantial assistance from N,N-dimethylformamide, to
form ammonium thiolates 4. The reaction of thiolate an-
ions 4 with carbon monoxide gives the carbonylated spe-
cies. Through an intramolecular rearrangement of the
carbonylated species (Scheme 5, path A) or elimination of
carbonyl sulfide from the carbonylated species

(Scheme 5, path B), thiocarbamate salts 3 are generated.
The thus formed thiocarbamate salts 3 are oxidized by
molecular oxygen (Scheme 6), giving urea derivatives 1
via carbamoyl disulfides 5 (path C) or by an alternative
pathway, via isocyanate intermediates 6 (path D). Path D
via isocyanate intermediates 6 is supported by the fact that
oxidation of secondary amines did not proceed at all.29

A useful synthetic method has been developed to provide
urea derivatives 1 in good to excellent yields, under mild
conditions (1 atm, 20 °C) in N,N-dimethylformamide, and
involves the solvent-assisted carbonylation of amines by
carbon monoxide and sulfur and the oxidation of the re-
sulting thiocarbamate salts by molecular oxygen. In view
of the application in the practical production of urea deriv-
atives 1, this method is very significant because easily
available and cheap carbon monoxide, oxygen, sulfur, and
N,N-dimethylformamide are used, and mild reaction con-
ditions (1 atm, 20 °C) are required.

Scheme 5 Proposed pathway for the synthesis of thiocarbamate
salts as intermediates in the synthesis of urea derivatives from the cor-
responding amines

Melting points were determined on a Mettler FP 5 instrument and
are uncorrected. FT-IR spectra were recorded on a JASCO FT/IR-
4100 instrument. 1H and 13C NMR spectra were obtained on a JEOL
JNM-AL300 (300 MHz, 75 MHz) instrument. Chemical shifts d are
reported in ppm relative to tetramethylsilane. Both low- and high-
resolution mass spectra were measured on a JEOL JMS-600 spec-
trometer. Amines 2a–o, DMF, DMSO, THF, DBU, sulfur (99.5%),
CO (99.9%), and O2 (99.9%) were used as purchased.

Table 2 Synthesis of Urea Derivatives from the Corresponding 
Amines

Entry R1 R2 Amine Urea Yield (%)a

1 c-Hex H 2a 1a 88

2 Bu H 2b 1b 92

3 s-Bu H 2c 1c 98

4 t-Bu H 2d 1d 59

5 (CH2)5Me H 2e 1e 88

6 (CH2)6Me H 2f 1f 78

7 (CH2)7Me H 2g 1g 91

8 (CH2)9Me H 2h 1h 89

9 Bn H 2i 1i 94

10 Ph H 2j 1j 51b

11 4-MeOC6H4 H 2k 1k 84b

12 4-i-PrC6H4 H 2l 1l 49b

13 3-O2NC6H4 H 2m 1m 0b

14 -(CH2)5- 2n 1n 0

15 Pr Pr 2o 1o 0

a Reagents and conditions: amine 2 (25 mmol), sulfur (321 mg, 10 
mmol), DMF (20 mL), CO (1 atm), O2 (1 atm), 20 °C, 5 h.
b DBU (1.50 mL, 10 mmol) was added; no reaction without DBU.

+ S

2i

1i, 35%

2 PhCH2NH2

(PhCH2NH)2CO

0.5 equiv

CO, DMF

4 h

O2

1 h

1 atm, 20 °C

19 h

O2

1 h

CO

RNH2

 DMF
+ [RNH3]+ [RNH-Sx-S]–

2 4

CO
RNH-Sx-S-C

O

[RNH3]+ [RNH-Sx-S]–

4

RNH-S

C

O

RNHCSx-S

path A

Sx

3

[RNH3]+[RNHC(O)S]–

– Sx

S8

O

RNH-Sx-1-S-S-C RNH-Sx +

path B

O

– Sx

3

[RNH3]+[RNHC(O)S]–

S=C=O

RNH3

+
–

RNH3

+

– –

-–
–

RNH3

+

RNH3

+
RNH3

+
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N,N¢-Dicyclohexylurea (1a); Typical Procedure
A dark-red soln containing cyclohexylamine (2a; 2.86 mL, 25
mmol) and powdered sulfur (321 mg, 10 mmol) in DMF (20 mL)
was vigorously stirred under CO (1 atm) at 20 °C for 4 h. Into the
resulting pale-green emulsion of thiocarbamate salt 3a, O2 (1 atm)
was charged at 20 °C (exothermic reaction). The mixture was
stirred for an additional 1 h at 20 °C. The resulting pale-yellow
emulsion was then poured into 1 M HCl (100 mL), and the deposit-
ed white solid was washed with toluene (200 mL) to give pure 1a.

Yield: 1.96 g (88%); mp 231.7 °C (Lit.22 229–230 °C).

IR (KBr): 3327, 2928, 2850, 1627, 1576, 1311, 1244, 1089 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 0.99–1.32 (m, 10 H, 5 × CH2),
1.47–1.75 (m, 10 H, 5 × CH2), 3.28–3.40 (m, 2 H, 2 × CH), 5.49 (d,
J = 8.1 Hz, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 24.2, 25.1, 33.1, 47.3, 156.5.

MS (EI, 70 eV): m/z (%) = 224 (80) [M+], 143 (46), 99 (65), 56
(100).

HRMS (EI, 70 eV): m/z calcd for C13H24ON2: 224.1889; found:
224.1886.

N,N¢-Dibutylurea (1b)
Recrystallized from hexane.

Yield: 1.58 g (92%); mp 67.8 °C (Lit.22 67–69 °C).

IR (KBr): 3330, 2958, 2933, 2871, 1620, 1577, 1460, 1233 cm–1.
1H NMR (300 MHz, CDCl3): d = 0.91 (t, J = 7.2 Hz, 6 H, 2 × CH3),
1.30–1.50 (m, 8 H, 4 × CH2), 3.14 (q, J = 6.4 Hz, 4 H, 2 × CH2), 5.56
(br s, 2 H, 2 × NH).
13C NMR (75 MHz, CDCl3): d = 13.7, 20.0, 32.5, 39.9, 159.3.

MS (EI, 70 eV): m/z (%) = 172 (100) [M+], 130 (17), 101 (16), 57
(13).

HRMS (EI, 70 eV): m/z calcd for C9H20ON2: 172.1576; found:
172.1572.

N,N¢-Di-sec-butylurea (1c)
Recrystallized from hexane.

Yield: 1.68 g (98%); mp 134.8 °C (Lit.22 135 °C).

IR (KBr): 3331, 2963, 2926, 2875, 1627, 1577, 1451, 1274 cm–1.
1H NMR (300 MHz, CDCl3): d = 0.91 (t, J = 7.3 Hz, 6 H, 2 × CH3),
1.11 (d, J = 6.6 Hz, 6 H, 2 × CH3), 1.39–1.49 (m, 4 H, 2 × CH2),
3.61–3.70 (m, 2 H, 2 × CH), 4.33 (br s, 2 H, 2 × NH).
13C NMR (75 MHz, CDCl3): d = 10.3, 21.0, 30.3, 47.3, 157.5.

MS (EI, 70 eV): m/z (%) = 172 (60) [M+], 143 (100), 72 (35), 58
(88).

HRMS (EI, 70 eV): m/z calcd for C9H20ON2: 172.1576; found:
172.1576.

N,N¢-Di-tert-butylurea (1d)
Washed with toluene.

Yield: 1.01 g (59%); mp 242.9 °C (sublimed) (Lit.22 245 °C).

IR (KBr): 3356, 2965, 1637, 1560, 1361, 1209 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 1.18 (s, 18 H, 6 × CH3), 5.31
(br s, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 29.3, 48.7, 157.0.

MS (EI, 70 eV): m/z (%) = 172 (7) [M+], 157 (13), 58 (100), 57 (22).

HRMS (EI, 70 eV): m/z calcd for C9H20ON2: 172.1576; found:
172.1574.

N,N¢-Dihexylurea (1e)
Purified by short-column chromatography (silica gel, EtOAc).

Yield: 2.00 g (88%); mp 76.1 °C (Lit.22 73–74 °C).

IR (KBr): 3332, 2957, 2931, 2856, 1617, 1577, 1478, 1462, 1251,
1222 cm–1.
1H NMR (300 MHz, CDCl3): d = 0.88 (t, J = 6.0 Hz, 6 H, 2 × CH3),
1.28–1.35 (m, 12 H, 6 × CH2), 1.43–1.50 (m, 4 H, 2 × CH2), 3.11–
3.17 (m, 4 H, 2 × CH2), 4.63 (br s, 2 H, 2 × NH).
13C NMR (75 MHz, CDCl3): d = 14.0, 22.6, 26.6, 30.3, 31.5, 40.5,
158.5.

MS (EI, 70 eV): m/z (%) = 228 (100) [M+], 199 (45), 185 (51), 158
(33).

HRMS (EI, 70 eV): m/z calcd for C13H28ON2: 228.2202; found:
228.2198.

N,N¢-Diheptylurea (1f)
Recrystallized from MeOH.

Yield: 2.00 g (78%); mp 91.2 °C.

IR (KBr): 3335, 2955, 2928, 2854, 1617, 1578, 1478, 1465 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 0.86 (t, J = 6.8 Hz, 6 H, 2 ×
CH3), 1.24–1.39 (m, 20 H, 10 × CH2), 2.95 (t, J = 6.6 Hz, 4 H, 2 ×
CH2), 5.42 (br s, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 13.6, 21.8, 26.1, 28.2, 29.8,
31.0, 39.1, 157.9.

MS (EI, 70 eV): m/z (%) = 256 (100) [M+], 213 (45), 199 (39), 172
(29).

HRMS (EI, 70 eV): m/z calcd for C15H32ON2: 256.2515; found:
256.2518.

Anal. Calcd for C15H32ON2: C, 70.26; H, 12.58; N, 10.92. Found: C,
70.34; H, 12.65; N, 11.08.

N,N¢-Dioctylurea (1g)
Recrystallized from MeOH.

Scheme 6 Proposed pathway for the synthesis of urea derivatives
from the corresponding thiocarbamate salts

3

[RNH3]+[RNHC(O)S]–

– HSSH

path C

3

[RNH3]+[RNHC(O)S]–

+

path D

– RNH2, – H2S

5

6

1

1

– RNH2, – H2O

+

O2

(RNHC(O)S)2

(RNH)2C=O

HSSH

R-N=C=O

(RNH)2C=O
RNH2

H2S
O2

H2O S

RNH2

O2
H2O S
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Yield: 2.57 g (91%); mp 91.0 °C (Lit.22 89–90 °C).

IR (KBr): 3334, 2956, 2925, 2850, 1615, 1579, 1478, 1463 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 0.85 (t, J = 6.6 Hz, 6 H, 2 ×
CH3), 1.23–1.34 (m, 24 H, 12 × CH2), 2.93 (t, J = 6.8 Hz, 4 H, 2 ×
CH2), 5.60 (br s, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 13.6, 21.8, 26.1, 28.4, 28.5,
29.8, 31.0, 39.1, 157.9.

MS (EI, 70 eV): m/z (%) = 284 (100) [M+], 241 (25), 227 (35), 213
(33), 186 (23), 57 (25).

HRMS (EI, 70 eV): m/z calcd for C17H36ON2: 284.2828; found:
284.2816.

N,N¢-Didecylurea (1h)30

Recrystallized from MeOH.

Yield: 3.03 g (89%); mp 101.1 °C (Lit.22 99–100 °C).

IR (KBr): 3336, 2956, 2924, 2849, 1612, 1578, 1476, 1466 cm–1.

MS (EI, 70 eV): m/z (%) = 340 (100) [M+], 297 (24), 283 (18), 255
(30), 241 (28), 214 (19).

HRMS (EI, 70 eV): m/z calcd for C21H44ON2: 340.3454; found:
340.3431.

N,N¢-Dibenzylurea (1i)
Washed with toluene.

Yield: 2.26 g (94%); mp 169.4 °C (Lit.22 169–171 °C).

IR (KBr): 3323, 3031, 1628, 1573, 1453, 1248, 696 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 4.23 (s, 4 H, 2 × CH2), 6.42 (br
s, 2 H, 2 × NH), 7.18–7.33 (m, 10 H, 10 × CH).
13C NMR (75 MHz, DMSO-d6): d = 42.9, 126.5, 126.9, 128.1,
140.8, 158.0.

MS (EI, 70 eV): m/z (%) = 240 (82) [M+], 149 (31), 106 (100), 91
(63).

HRMS (EI, 70 eV): m/z calcd for C15H16ON2: 240.1263; found:
240.1259.

N,N¢-Diphenylurea (1j)
Washed with toluene.

Yield: 1.08 g (51%); mp 241.0 °C (Lit.31 241–242 °C).

IR (KBr): 3327, 1649, 1595, 1556, 1233, 754, 698 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 6.95 (t, J = 7.6 Hz, 2 H, 2 ×
CH), 7.27 (t, J = 7.6 Hz, 4 H, 4 × CH), 7.44 (d, J = 7.6 Hz, 4 H, 4 ×
CH), 8.67 (s, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 118.1, 121.7, 128.7, 139.7,
152.5.

MS (EI, 70 eV): m/z (%) = 212 (36) [M+], 119 (12), 93 (100).

HRMS (EI, 70 eV): m/z calcd for C13H12ON2: 212.0950; found:
212.0903.

N,N¢-Bis(4-methoxyphenyl)urea (1k)
Washed with toluene and t-BuOMe.

Yield: 2.30 g (84%); mp 232.4 °C (Lit.23 232–234 °C).

IR (KBr): 3303, 1633, 1608, 1560, 1511, 1246, 827 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 3.70 (s, 6 H, 2 × CH3), 6.84 (d,
J = 9.0 Hz, 4 H, 4 × CH), 7.33 (d, J = 9.0 Hz, 4 H, 4 × CH), 8.41 (br
s, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 55.1, 113.9, 119.8, 132.9,
152.9, 154.3.

MS (EI, 70 eV): m/z (%) = 272 (29) [M+], 123 (58), 122 (100), 108
(62), 80 (32), 69 (39).

HRMS (EI, 70 eV): m/z calcd for C15H16O3N2: 272.1161; found:
272.1154.

N,N¢-Bis(4-isopropylphenyl)urea (1l)
Recrystallized from MeOH.

Yield: 1.46 g (49%); mp 238.4 °C.

IR (KBr): 3314, 2959, 1648, 1598, 1553, 1514, 1309, 1235 cm–1.
1H NMR (300 MHz, DMSO-d6): d = 1.17 (d, J = 7.2 Hz, 12 H, 4 ×
CH3), 2.77–2.86 (m, 2 H, 2 × CH), 7.12 (d, J = 8.2 Hz, 4 H, 4 × CH),
7.34 (d, J = 8.2 Hz, 4 H, 4 × CH), 8.53 (s, 2 H, 2 × NH).
13C NMR (75 MHz, DMSO-d6): d = 24.0, 32.7, 118.2, 126.4, 137.5,
141.7, 152.6.

MS (EI, 70 eV): m/z (%) = 296 (30) [M+], 135 (26), 120 (100), 91
(30).

HRMS (EI, 70 eV): m/z calcd for C19H24ON2: 296.1889; found:
296.1886.

Anal. Calcd for C19H24ON2: C, 76.99; H, 8.16; N, 9.45. Found: C,
76.70; H, 8.09; N, 9.55.
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