

TETRAHEDRON

Application of the β -Azidonation Reaction to the Synthesis of the Antitumor Alkaloid (+)-Pancratistatin

Philip Magnus^{*}and Iyassu K. Sebhat

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 Received 21 August 1998; accepted 13 October 1998

Abstract:- o-Vanillin 21 was converted into 24 following literature procedures. Treatment of 24 with *n*-BuLi/THF followed by addition of 25 gave 26. Dehydration (POCl₃/pyridine/DBU), hydrogenation and hydrolysis of 26 gave the ketone 29. Chirality was introduced by deprotonation of 29 with the lithium salt of (+)-bis(α -methylbenzyl)amine, followed by triisopropylsilyl trifluoromethanesulfonate to give 30 (95%). β -Azidonation of 30 with (PhIO)_n/TMSN₃ rapidly produced 31 (95%) as a mixture of *trans*- and *cis*- diastereomers in a 3.5:1 ratio. Reduction with LiAlH4 followed by methyl chloroformate/pyridine gave 32, which on treatment with MCPBA/CH₂Cl₂/imidazole resulted in 33. Hydrolysis of 33 gave 34, which when exposed to KOBu^t/HMPA at 90 °C resulted in 39. After conversion of 39 into enone 42, epoxidation with NaHCO₃/H₂O₂/MeOH gave 43. Reduction of 43 with L-selectride followed by solvolysis with sodium benzoate in water gave 46, which was immediately acetylated to give 47. Lactam formation (Tf₂O/DMAP) converted 47 into 48 and the regioisomer 49 (7:1). The mixture of 48 and 49 demethylated to give 50 and the acetate protecting groups removed to give (+)-pancratistatin 1. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: alkaloid, pancratistatin, antitumor, β -azidonation, triisopropylsilyl (TIPS) enol ethers, prochiral, desymmetrization.

Introduction

The Amaryllidaceae alkaloids have played in central role in the development of alkaloid chemistry. The elucidation of their structures, and the strategies and methodology developed for their synthesis have been motivated by their diverse and important pharmacological properties.¹ A relatively recent addition to the 100 or so Amaryllidaceae alkaloids is pancratistatin 1 (Figure 1). In 1984 Pettit and coworkers reported the structure of pancratistatin 1 isolated from the roots of the Hawaiian Pancratium littorale Jacq.² Subsequently, pancratistatine has become a significant target for total synthesis because of its increasing potential as a clinically useful antitumor agent.³ However, the supply of 1 is limited, and attempts to synthesize 1 from more abundant

alkaloids such as narciclasine 2 have to-date not been successful.⁴

The first synthesis of (\pm) -1 was first reported by Danishefsky.⁵ The key strategic elements are shown in **Scheme 1**. The Diels-Alder adduct 3 was converted through several steps into 4, which was subjected to the Overman allylic imidate rearrangement⁶ to give 5, after osmium tetroxide

dihydroxylation, Scheme 1 Treatment of the lactone 5 with $K_2CO_3/MeOH$, followed by DCC and hydrogenolysis of the benzyl groups resulted in 1. The use of the *cis*-fused lactone \rightarrow *trans*-fused amide transformation provides a highly stereocontrolled synthesis of 1.

e-mail p.magnus@mail.utexas.edu

Recently, Haseltine has described an enantioselective synthesis of (+)-1 that correlates with the advanced intermediate 4 in the Danishefsky synthesis.⁷ The enantioselectivity was obtained from the enzymatic desymmetrization of the diacetate precursor to 6. Subsequent conversion of 6 into 7, and oxidative transformations of 7 lead to 8, which on protection, *O*-benzylation, and deprotection provided 4 as a single enantiomer.

Scheme 1, Summary of Current Strategies

The Trost⁸ synthesis of 1 introduces the chirality by desymmetrization of the symmetrical dicarbonate precursor to 9 with a palladium-catalyzed displacement by azide anion in the presence of a chiral ligand. Subsequent conversion of 9 into 10, *cis*-dihydroxylation of 10 and formation of the lactam ring gave 11, which required inversion at C-1 and deprotection to give 1. Hudlicky⁹ has employed the aziridine 12 (derived from dihydroxylation of bromobenzene) which was converted into 13. The key steps involved subsequent conversion of 13 into the epoxide 14 which on treatment with sodium benzoate in water at 100 °C for six days gave 1 (51%). This crucial reaction offer the best solution to the introduction of the *trans*-1,2-diol functionality. Also, as commented upon by Hudlicky, the epoxide of opposite stereochemistry (14, with 1,2- α) should, through

diaxial opening, give the same product as 14 $(1,2-\beta)$. There are also several reported syntheses of the simpler 7deoxypancratistatin.¹⁰

Retrosynthetic Analysis

The strategy that we have developed is based upon the use of the β -azidonation of triisopropylsilyl (TIPS) enol ethers, Eqn 1. We have previously shown that treatment of TIPS enol ethers 15 with iodosyl benzene in

the presence of trimethylsilyl azide produces the β -azido adduct 16 (>95%) via the enonium ion 15a.¹¹ Reduction of the azide 16 with lithium aluminum hydride gave the amine 17. In general, we have found that β amino TIPS enol ethers and their N-acyl or N-Ts derivatives are stable compounds, and will only undergo β elimination to give enones if treated with fluoride anion.^{12,13}

Based on the above methodology the retrosynthetic analysis of 1 leads to the key intermediate 18, which can be derived from 19 using the above β -azidonation reaction, Scheme 2.¹⁴ Starting with the prochiral cyclohexanone 20, formation of the TIPS enol ether using a chiral lithium dialkylamide should provide the requisite product 19 in an enantio-enriched form. Both Koga and Simpkins have reported a number of examples of desymmetrization of prochiral cyclohexanones using C₂-symmetric chiral lithium dialkylamides and trapping of the resulting lithium enolates with either TMSCl(OTf) or TBSCl(OTf) to give the corresponding silyl enol ethers in enantiomeric excesses (ee's) of 50-95%.¹⁵ Simpkins also discovered that conducting the above reactions in the presence of lithium chloride improved the *ee's*, in some cases to as high as 95%.¹⁶

Synthesis of Prochiral 4-Arylcyclohexanone

Treatment of o-vanillin 21 with Br₂/AcOH/AcONa gave 22,¹⁷ which was subjected to Dakin oxidation conditions to give 23.¹⁸ O-Methylenation of 23 gave the known arylbromide 24, Scheme 3.¹⁹ While there are many methods that could be used for the conversion of 24 and 25 into 29, the classical sequence of transformation as depicted in Scheme 4 served to be reliable and readily scaled-up.

Treatment of 24 with *n*-BuLi in tetrahydrofuran at -78 °C, followed by addition of 25 gave 26. The tertiary alcohol 26 was dehydrated (POCl₃/pyridine/DBU) to give 27 (97%). Hydrogenation of 27 over 10% Pd/C gave 28, which was hydrolyzed under acidic conditions to the ketone 29. All attempts to directly deoxygenate 26 to give 28 directly were unsuccessful, and consequently the sequence involving dehydration followed by hydrogenation was necessary. Deprotonation of 29 with the lithium salt of (+)-bis(α -methylbenzyl)amine²⁰ in the presence of lithium chloride at -78 °C followed by triisopropylsilyl trifluoromethanesulfonate gave 30 (95%), Scheme 4.²¹

Treatment of **30** with (PhIO)_n/TMSN₃ in CH₂Cl₂ at -15° C rapidly produced **31** (95%) as a mixture of *trans*- and *cis*- diastereomers in a 3.5:1 ratio, **Scheme 5**. It is important to use (PhIO)_n that has been prepared and stored in a freezer for no more than three months, otherwise the β -azidonation reaction will not work in good yields. The deterioration of iodosylbenzene is caused by disproportionation to iodoxybenzene (PhIO₂) which is inactive with respect to the β -azidonation reaction.²² Exposure of the mixture of *cis*- and *trans*- **31** to LiBPh₄/CH₂Cl₂ did not improve the ratio by equilibration *via* the putative enonium ion **15a**, Eqn 1, but led to decomposition and elimination to dienes.¹¹ The mixture of *cis*- and *trans*-**31** was reduced with lithium aluminum hydride and directly treated with methyl chloroformate/pyridine to give **32**, which after two crystallizations from cyclohexane gave the pure *trans*-isomer of **32**.

It was anticipated that epoxidation of 32 would proceed by axial addition, and eventually, after a series of intermediate steps, form $33.^{23.24}$ Indeed, treatment of 32 with MCPBA/CH₂Cl₂/imidazole resulted in 33 in excellent yield. It was difficult to assign the stereochemistry of 33 because of carbamate resonance that caused line broadening of the crucial vicinal proton signals. In order to confirm the structure of 33 and examine some further potentially applicable transformations, albeit with the wrong diastereomer, we hydrolyzed 33 to give 34 (88%). Reduction of 34 with NaBH₄/MeOH gave 35α (72%) and 35β (28%) (stereochemistry assigned from subsequent X-ray determination of 36). The major diastereomer 35α was subjected to modified Bischler-Napieralski reaction conditions (Tf₂O/DMAP)²⁵ to give the imino ether 36 (38%), 37 (26%), and the incorrect regioisomer 38 (13%). The structure and stereochemistry of 36 was confirmed by X-ray crystallography. Consequently, as suspected, the stereochemistry established at C-4 (pancratistatin numbering) in 33 was incorrect.

Since the *m*-chlorobenzoyl(oxy) substituent in 34 is axial, we expected that epimerization to the more stable equatorial isomer could be readily achieved. Indeed, during the acid catalyzed hydrolysis of 33 into 34 there was observed the formation of the epimerized compound 39 to the extent of 12%. It was eventually found that treatment of 34 with KOBu^t/HMPA at 90 °C resulted in complete conversion into 39, Scheme 6. Having established the correct C-4 stereochemistry, the functionalization of the C-1 and C-2 was now required.

Despite the numerous methods that have been developed for the conversion of saturated ketones into $\alpha\beta$ unsaturated ketones, it proved to be particularly difficult to transform **39** into **42** in an efficient manner. Eventually, it was found that treatment of **39** with Et₃N/trimethylsilyl trifluoromethanesulfonate at 0 °C gave the bis-trimethylsilyl derivative **40**. When **40** was treated with freshly prepared PhSeOCOCF₃ (PhSeCl + AgOCOCF₃) it was converted into **41**, which on oxidation with hydrogen peroxide in pyridine/CH₂Cl₂ gave the enone **42** in 85% yield from **39**. While the enone **42** was converted into the epoxide **43** by treatment with H₂O₂/NaOH/MeOH the yield was low (25%) because the product **43** was rapidly destroyed under the strongly alkaline reaction conditions. Whereas, using NaHCO₃/H₂O₂/MeOH gave **43** (75%). Reduction of **43** with Lselectride gave **44** (63%) with the required stereochemistry at C-3. The stereochemistry of **44** was unambiguously established by single crystal X-ray analysis of the derived diacetate **45**.

At this stage we were in a position to solvolyze the epoxide 44 under the Hudlicky conditions (cf. 14, Scheme 1). Exposure of 44 to sodium benzoate in water at 100 °C for 4 days gave 46, which was immediately acetylated to give 47 (60% from 44). Bischler-Napieralski reaction conditions (Tf₂O/DMAP) converted 47 into 48 and the regioisomer 49 (7:1, cf 35) which were inseparable at this stage. The mixture of 48 and 49 was treated with boron tribromide/CH₂Cl₂ at -78 ° to 0 °C to give 50 and unreacted 49, which was now readily separable. The acetate protecting groups were removed by treatment of 50 with NaOMe/MeOH to give (+)-1 (87%), which was identical to an authentic sample. The synthesis proceeds in 22 steps from commercially available *o*-vanillin in an overall yield of 1.2% (ca. 70% per step).

Experimental

5-Bromo-3-methoxysalicylaldehyde 22. To a solution of 21 (73.7 g, 0.48 mol) and sodium acetate (60 g, 0.73 mol) in acetic acid (1.8 L) was added bromine (25 mL, 0.48 mol) in acetic acid (20 mL). The resultant yellow solution was stirred at room temperature for 30 min. Acetic acid was evaporated *in vacuo*, and the residue was partitioned between CH₂Cl₂ (1 L) and H₂O (1 L). The organic phase was washed with H₂O (2 x 1 L), dried (MgSO₄) and evaporated *in vacuo* to leave a brown solid. Recrystallization from acetic acid/H₂O gave 22 (96.2 g, 0.416 mol, 86%) as yellow needles, R_f 0.53 (CH₂Cl₂/hexanes 4:1); Mp 122-124 °C (lit¹⁷ 128-129 °C); IR (Nujol) 1651, 1463 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 11.00 (1H, s), 9.84 (1H, s), 7.29 (1H, d, J = 2.1 Hz), 7.16 (1H, d, J = 2.0 Hz), 3.91 (3H, s); HRMS (CI) calcd for C₈H₈BrO₃ (MH⁺) 230.9657, found 230.9646.

3,4-Dihydroxy-5-methoxybromobenzene 23. To a solution of **22** (20 g, 86.6 mmol) in 2% NaOH (425 mL) at room temperature was added a solution of 30% H₂O₂ (54 g, 476 mmol) in H₂O (510 mL). The mixture turned a deep purple color and was left to stir for 30 min; 2M HCl (50 mL) was added and the solution lightened to a pale pink color. The aqueous solution was extracted with CH₂Cl₂ (4 x 250 mL). The combined extracts were washed with saturated aqueous Na₂SO₃ (2 x 500 mL), and dried (Na₂SO₄). Evaporation *in vacuo* gave crude **23** (16.8 g, 77 mmol, 89%) as a white solid, R_f 0.28 (hexanes/EtOAc 7:3); Mp 72-74 °C (lit¹⁸ 74-76 °C); IR (Nujol) 3478, 1621, 1503 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.77 (1H, d, *J* = 2.2 Hz), 6.61 (1H, d, *J* = 2.1 Hz), 5.35 (2H, bs), 3.86 (3H, s); HRMS (CI) calcd for C₇H₈BrO₃ (MH⁺) 218.9657, found 218.9662.

3,4-Methylenedioxy-5-methoxybromobenzene 24. To a mixture of **23** (20 g, 90.9 mmol) in DMF (230 mL) and K₂CO₃ (18.9 g, 136 mmol) was added bromochloromethane (6.6 mL, 100 mmol). The mixture was warmed to 80 °C for 2 h during which time it turned a dirty green color. A further portion of bromochloromethane (6.6 mL, 100 mmol) was added and heating continued for 1 h. The solution was allowed to cool, diluted with H₂O (230 mL) and extracted with Et₂O (3 x 250 mL). The combined ethereal layers were washed with brine (200 ml) and dried (MgSO₄). Evaporation *in vacuo* yielded crude product, which was purified by chromatography over silica gel eluting with hexanes/Et₂O (9:1). Recrystallization from Et₂O/hexanes gave **24** (17.67 g, 76.5 mmol, 85%) as white crystals, R_f 0.66 (hexanes/Et₂O 4:1); Mp 80-81 °C (lit¹⁹ 78-79 °C); IR (Nujol) 1626, 1495, 1455, 1422 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.66 (2H, m), 5.97 (2H, s), 3.88 (3H, s); HRMS (CI) calcd for C₈H₈BrO₃ (MH⁺) 230.9657, found 230.9650.

6-(Cyclohex-1-ol-4-ethyleneketal)-4-methoxy-1,3-benzodioxole 26. To a solution of 24 (2.4 g, 10 mmol) in THF (40 mL) at -78 °C was added *n*-BuLi (2.5M in hexanes) (4.4 mL, 11 mmol). The mixture turned yellow and was stirred at -78 °C for 3 h before the addition of a solution of 25 (2.0 g, 12 mmol) in THF (10 mL). The resulting solution was allowed to warm slowly to room temperature over 2 h. Saturated aqueous NH₄Cl (60 mL) and Et₂O (160 mL) were added. The ethereal layer was washed with H₂O (100 mL) and brine (100 mL), dried (Na₂SO₄) and evaporated *in vacuo*. The crude product was purified by chromatography over silica gel eluting with hexanes/EtOAc (1:1) to give 26 (2.62 g, 8.5 mmol, 85%) as a white solid, R_f 0.29 (EtOAc/hexanes 3:2); Mp 140-143 °C; IR (CHCl₃) 3484, 1634, 1514, 1455 cm⁻¹; ¹H NMR (300

MHz, CDCl₃) δ 6.74 (1H, d, J = 1.8 Hz), 6.70 (1H, d, J = 1.5 Hz), 5.95 (2H, s), 3.98 (4H, m), 3.91 (3H, s), 2.09 (4H, m), 1.73 (4H, m), 1.56 (2H, m); ¹³C NMR (75 MHz, CDCl₃) δ 148.6, 143.7, 143.1, 133.8, 108.3, 104.2, 101.3, 99.1, 72.3, 64.2, 64.1, 56.5, 36.6, 30.7; HRMS (CI) calcd for C₁₆H₂₀O₆ (M⁺) 308.1260, found 308.1270. Used directly in the next step.

6-(Cyclohex-1-ene-4-ethyleneketal)-4-methoxy-1,3-benzodioxole 27. To a solution of 26 (600 mg, 2.0 mmol) in pyridine (12 mL) at 0 °C was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.6 mL, 4.0 mmol) followed by POCl₃ (0.36 mL, 4 mmol) dropwise. The resultant orange solution was stirred at room temperature for 1 h, and at 80 °C for 30 min during which time the orange color darkened. The solution was recooled to 0 °C, and diluted carefully with EtOAc (60 mL) and H₂O (60 mL). The organic phase was washed with H₂O and brine, dried (MgSO₄) and evaporated *in vacuo*. The crude product was purified by chromatography over silica gel eluting with hexanes/EtOAc (4:1) to give 27 (0.56 g, 1.93 mmol, 97%) as a pale yellow gum, R_f 0.26 (EtOAc/hexanes 1:4); IR (CHCl₃) 1624, 1509, 1427 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.57 (1H, d, J = 1.2 Hz), 6.55 (1H, d, J = 1.1 Hz), 5.93 (2H, s), 5.86 (1H, m), 4.01 (4H, s), 3.88 (3H, s), 2.59 (2H, m), 2.43 (2H, bs), 1.89 (2H, t, J = 6.5 Hz); HRMS (CI) calcd for C₁₆H₁₉O₅ (MH⁺) 291.1232, found 291.1231.

6-(Cyclohex-4-ethyleneketal)-4-methoxy-1,3-benzodioxole 28. A suspension of Pd (10% on activated charcoal) (5 mg, 2 mol%) in a solution of **27** (150 mg, 0.5 mmol) in methanol (6 mL) was stirred under an atmosphere of hydrogen for 90 min. The mixture was filtered through a short pad of celite and evaporated *in vacuo*. Recrystallization of the crude product from methanol furnished **28** (127 mg, 0.43 mmol, 87%) as white crystals, R_f 0.39 (EtOAc/hexanes 1:4); Mp 84-86 °C; IR (CHCl₃) 1634, 1515, 1463 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.44 (1H, d, J = 1.3 Hz), 6.39 (1H, d, J = 1.2 Hz), 5.92 (2H, s), 3.98 (4H, s), 3.89 (3H, s), 2.48 (1H, m), 1.86-1.59 (8H, m); ¹³C NMR (75 MHz, CDCl₃) δ 148.5, 143.1, 141.2, 133.0, 108.1, 105.8, 100.9, 100.6, 64.0, 56.2, 43.2, 34.8, 31.5; HRMS (CI) calcd for C₁₆H₂₁O₅ (MH⁺) 293.1389, found 293.1385.

6-(Cyclohex-4-one)-4-methoxy-1,3-benzodioxole 29. To a stirred solution of 28 (0.29 g, 1.0 mmol) in dioxane (3 mL) was added H₂SO₄:H₂O (1:1) (1.5 mL). The resultant solution was left to stir at room temperature for 40 min. H₂O (6 mL) was added and the emulsion extracted with CH₂Cl₂ (3 x 6 mL). The combined extracts were washed with brine, dried (Na₂SO₄), and evaporated *in vacuo*. The crude product was purified by chromatography over silica gel eluting with pentane/EtOAc (4:1) to give 29 (221 mg, 0.89 mmol, 89%) as a white solid, R_f 0.22 (hexanes/EtOAc 4:1); Mp 73-75 °C; IR (Nujol) 1705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.43 (1H, d, J = 1.3 Hz), 6.40 (1H, d, J = 1.3 Hz), 5.94 (2H, s), 3.91 (3H, s), 2.93 (1H, m), 2.48 (4H, m), 2.19 (2H, m), 1.90 (2H, m); ¹³C NMR (75 MHz, CDCl₃) δ 210.7, 148.8, 143.3, 139.5, 133.5, 105.1, 101.1, 100.5, 56.5, 42.7, 41.1, 34.0; HRMS (CI) calcd for C₁₄H₁₇O₄ (MH⁺) 249.1127, found 249.1133.

(-)-(1S)-6-[4-Triisopropylsilyl(oxy)-cyclohex-3-ene]-4-methoxy-1,3-benzodioxole 30. To a stirred solution of (+)-bis(α -methylbenzyl)amine (8.64 g, 33 mmol) in THF (240 mL) at -78 °C was added

recooled to -78 °C, and dry LiCl (0.47 g, 11 mmol) in THF (120 mL) was added followed by a solution of 2 (5.46 g, 22 mmol) in THF (24 mL). The resultant red solution was stirred at -78 °C for 1 h, and triisopropylsilyl trifluoromethanesulfonate (30 mL, 110 mmol) was added. The red color dissipated, and the solution was allowed to warm slowly to room temperature over 2 h before quenching with saturated aqueous NH₄Cl (500 mL). The organic phase was washed with brine, dried (Na₂SO₄), and concentrated *in vacuo* to afford a pale yellow oil. The crude product was chromatographed over silica gel eluting with hexanes/Et₂O (9:1) to give **30** (8.40 g, 20.8 mmol, 95%) as a colorless oil, R_f 0.71 (hexanes/Et₂O 9:1); $[\alpha]_D^{23}$ (c = 0.95, CHCl₃) -24 ; IR (neat) 1668, 1627 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.44 (1H, d, J = 1.32 Hz), 6.40 (1H, d, J = 1.3 Hz), 5.92 (2H, s), 5.92 (1H, m), 3.90 (3H, s), 2.65 (1H, m), 2.29-2.08 (4H, m), 1.92-1.76 (2H, m), 1.18 (3H, m), 1.10 (18H, d, J = 5.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 150.5, 148.7, 143.3, 141.6, 133.2, 106.2, 102.6, 101.1, 100.8, 56.5, 40.2, 32.3, 30.5, 30.2, 18.0, 12.6; HRMS (CI) calcd for C₂₃H₃₇O₄Si (MH⁺) 405.2461, found 405.2458.

(15,2RS)-6-[2-Azido-4-triisopropylsilyl(oxy)cyclohex-3-ene]-4-methoxy-1,3-benzo dioxole 31. To a stirred solution of 30 (6.19 g, 15.3 mmol) in CH₂Cl₂ (100 mL) at -15 °C was added iodosobenzene (4.38 g, 20 mmol) followed by trimethylsilylazide (5.3 ml, 39.8 mmol). The suspension was left to stir at -15 °C for 15 min, and filtered through a short pad of celite. Evaporation *in vacuo* gave 31 as a brown oil (6.46 g, 14.5 mmol, 95%) in a ratio of 3.5:1 (*trans:cis*), R_f 0.40 (hexanes/EtOAc 9:1); IR (CHCl₃) 2094, 1652, 1627 cm⁻¹; HRMS (C⁺) calcd for C₂₃H₃₆N₃O₄Si (MH⁺) 446.2475, found 446.2471. Used immediately in the next step.

(+)-(15,2R)-6-[2-Methylcarbamoyl-4-triisopropylsilyl(oxy)cyclohex-3-ene]-4-methoxy -1,3-benzodioxole 32. To a stirred solution of crude 31 (6.46 g, 14.5 mmol) in Et₂O (80 mL) at 0 °C was slowly added LiAlH₄ (0.55 g, 14.5 mmol). The resultant suspension was stirred at 0 °C for 30 min, and then at room temperature for a further 2 h. The suspension was recooled to 0 °C, and saturated aqueous NH₄Cl (40 mL) was slowly added with stirring over 30 min. The mixture was filtered through a short pad of celite and rinsed with MeOH/EtOAc 1:20 (100 mL). The organic phase was washed with brine, dried (Na₂SO₄), and evaporated in vacuo to give a crude mixture of amines as a brown oil. A solution of the amines and pyridine (3.05 mL, 37.7 mmol) in CH₂Cl₂ (80 mL) was added via cannular to a stirred solution of methyl chloroformate (2.7 mL, 34.8 mmol) in CH₂Cl₂ (40 mL) at 0 °C. The resulting solution was stirred at 0 °C for 90 min, saturated aqueous NaHCO3 (100 mL) was added, and the organic phase was washed with saturated aqueous NH4Cl, dried (MgSO₄), and evaporated in vacuo. Filtration through silica gel eluting with EtOAc/hexanes (1:4), followed by evaporation in vacuo gave a yellow solid. Two recrystallizations from cyclohexane gave 32 (3.42 g, 7.2 mmol, 49%) as white crystals. Chromatography of the mother liquors over silica gel eluting with hexanes/EtOAc (9:1) gave a further batch of 32 (0.48 g, 1.0 mmol, 7%), $R_f 0.35$ (hexanes/Et₂O 4:1); Mp 119-120 °C; $[\alpha]_{23}^{23}$ (c = 1.02, CHCl₃) + 56; IR (CHCl₃) 3281, 1694 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.43 (1H, d, J = 1.3 Hz), 6.39 (1H, bs), 5.93 (2H, s), 4.88 (1H, bs), 4.47 (1H, bs), 3.89 (3H, s), 3.56 (3H, s), 2.47 (1H, m), 2.24 (1H, m), 2.06 (1H, dt, J = 4.3, 17.2 Hz), 1.89 (2H, m), 1.17 (3H, m), 1.08 (18H, d, J = 6.1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 156.1, 153.9, 143.1, 137.4, 133.5, 106.7, 105.2, 101.2, 101.0, 60.1, 56.3, 52.0, 51.6, 46.5, 29.2, 17.7, 12.3; HRMS (CI) calcd for C₂₅H₄₀NO₆Si (MH⁺) 478.2625, found 478.2609.

(+)-(15,2*R*,3*R*)-6-{2-Methylcarbamoyl-3-[3-chlorobenzoyl(oxy)]-4-triisopropylsilyl (oxy)cyclohex-4-ene}-4-methoxy-1,3-benzodioxole 33. To a stirred solution of 32 (2.25 g, 4.7 mmol) in CH₂Cl₂ (22 mL) at 0 °C was added a solution of *m*-chloroperoxybenzoic acid (1.14 g, 6.6 mmol) in CH₂Cl₂ (44 mL). The solution was stirred at 0 °C for 15 min, imidazole (0.7 g, 10.3 mmol) was added, and the solution was warmed to room temperature and stirred for a further 40 min. Saturated aqueous NaHCO₃ (40 mL) was added, and the organic phase was washed with saturated aqueous NH₄Cl, dried (Na₂SO₄), and concentrated to a white foam. The crude product was chromatographed over silica gel eluting with hexanes/EtOAc (7:3) to give 33 (2.47 g, 3.9 mmol, 83%) as a white foam, R_f 0.37 (hexanes/EtOAc 7:3); Mp 90-91 °C; $[\alpha]_D^{23}$ (*c* = 1.04, CHCl₃) +85; IR (CHCl₃) 3393, 1716, 1633, 1462 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (1H, s), 7.95 (1H, d, *J* = 7.7 Hz), 7.60 (1H, d, *J* = 7.8 Hz), 6.43 (1H, bs), 5.95 (2H, s), 5.38 (1H, s), 4.64-4.34 (2H, m), 3.89 (3H, s), 3.50 (4H, m), 2.73 (1H, bs), 1.87 (2H, m), 1.20 (3H, m), 1.18 (18H, d, *J* = 8.4 Hz); HRMS (CI) calcd for C₃₂H₄₂ClNO₈Si (MH⁺) 632.2446, found 632.2441. Hydrolyzed ketone **34** (0.26 g, 0.55 mmol, 12%) was also isolated.

(+)-(1*S*,2*R*,3*R*)-6-{2-Methylcarbamoyl-3-[3-chlorobenzoyl(oxy)]-cyclohex-4-one}-4methoxy-1,3-benzodioxole 34. A stirred solution of 33 (2.06 g, 3.2 mmol) in EtOH (90 mL) and 0.2 M HCl (30 mL) was heated to 90 °C for 1 h. After cooling the solution to room temperature, water (50 mL) was added, the emulsion neutralized with saturated aqueous NaHCO₃ and extracted with EtOAc (2x100 mL). The combined extracts were washed with brine, dried (Na₂SO₄), and evaporated *in vacuo* to give a colorless oil. The crude product was chromatographed over silica gel eluting with hexanes/EtOAc (2:3) to give 34 (1.33 g, 2.8 mmol, 88%) as a white foam, Rf 0.38 (hexanes/EtOAc 1:1); Mp 90-92 °C; $[\alpha]_D^{23}$ (*c* = 1.03, CHCl₃) +92; IR (CHCl₃) 3438, 1727, 1635 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (1H, t, *J* = 2.0 Hz), 7.95 (1H, d, *J* = 8.0 Hz), 7.60 (1h, dd, *J* = 7.8, 2.0 Hz), 7.44 (1H, t, *J* = 7.9 Hz), 6.54 (2H, bs), 5.97 (2H, s), 5.43 (1H, bs), 4.83 (1H, d, *J* = 8.0 Hz), 4.53 (1H, bs), 3.93 (3H, s), 3.62 (3H, s), 3.25 (1H, bs), 2.73 (1H, m), 2.59 (1H, m), 2.24 (1H, m), 2.03 (1H, bs); HRMS (CI⁺) calcd for C₂₃H₂₂CINO₈ (MH⁺) 476.1112, found 476.1091. Epimerized ketone **39** (0.21 g, 0.4 mmol, 12%) was also isolated.

(+)-(1*S*,2*R*,3*R*,4*S*)-6-{2-Methylcarbamoyl-3-[3-chlorobenzoyl(oxy)-4-hydroxy]-cyclo hexyl}-4-methoxy-1,3-benzodioxole 35 α . To a stirred solution of 34 (250 mg, 0.53 mmol) in MeOH (20 ml) at 0 °C was added NaBH₄ (20 mg, 0.53 mmol) in four portions over 2 h. The mixture effervesced and was left to stir for a further 15 min at 0 °C. Saturated aqueous NH₄Cl (20 ml) was added, and the resultant emulsion extracted with EtOAc (3 x 20 ml). The combined organic phases washed with brine, dried (Na₂SO₄) and evaporated *in vacuo*. The crude mixture of alcohols was purified by chromatography over silica gel eluting with hexanes/EtOAc (3:2) to give 35 α (182 mg, 0.38 mmol, 72%) as a white foam, R_f 0.3 (hexanes/EtOAc 1:1); Mp 94-96 °C; $[\alpha]_D^{23}$ (c = 1.25, CHCl₃) +113; IR (CHCl₃) 3595, 3442, 1724, 1635, 1513 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (1H, s), 7.97 (1H, d, J = 7.7 Hz), 7.58 (1H, d, J = 7.5 Hz), 7.43 (1H, t, J = 7.9Hz), 6.41 (1H, s), 6.37 (1H, s), 5.93 (2H, s), 5.79 (1H, s), 4.57 (1H, d, J = 8.3 Hz), 4.09 (2H, m), 3.89 (3H, s), 3.51 (3H, s), 2.76 (1H, m), 2.42 (1H, bs), 2.03 - 1.80 (3H, m), 1.60 (1H, m); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 156.1, 149.1, 143.6, 136.0, 134.6, 134.1, 133.4, 131.6, 129.9, 129.7, 127.9, 106.7, 101.4, 75.6, 70.2, 56.6, 54.2, 52.2, 43.9, 31.5, 28.4; HRMS (CI) calcd for C₂₃H₂₅ClNO₈ (MH⁺) 478.1269, found 478.1272. Epimeric alcohol **35** β (72 mg, 0.15 mmol, 28%) was also isolated.

(3S,4R,4aR,10bR)-1,3,4a,5,10b-hexahydro-3-trifluoromethylsulfonyl(oxy)-4-chloro benzoyl(oxy)-1,3-dioxolo-4,6-dimethoxy[4,5-j]phenanthridine 36. To a stirred solution of 35 α (222 mg, 0.46 mmol) and DMAP (169 mg, 1.4 mmol) in CH₂Cl₂ (7 mL) at 0 °C was added trifluoromethanesulfonic anhydride (0.39 mL, 2.3 mmol). The resultant white gel suspension was stirred at 0 °C for 2 h, and at room temperature for 1h. Saturated aqueous NaHCO₃ (10 mL) and EtOAc (15 mL) were added, and the aqueous phase was extracted with EtOAc (10 mL). The combined extracts washed with brine, dried (Na₂SO₄) and evaporated *in vacuo*. The crude product was chromatographed over silica gel eluting with hexanes/EtOAc (4:1) followed by recrystallization from CH₂Cl₂/hexanes to give **36** (103 mg, 0.175 mmol, 38%) as white crystals, R_f 0.8 (hexanes/EtOAc 1:1); IR (CHCl₃) 1735, 1642, 1484, 1417 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (1H, t, *J* = 1.6 Hz), 7.95 (1H, dt, *J* = 7.9, 1.3 Hz), 7.55 (1H, dt, *J* = 7.7, 1.7 Hz), 7.39 (1H, t, *J* = 7.9 Hz), 6.55 (1H, s), 6.17 (1H, s), 6.02 (1H, d, *J* = 1.2 Hz), 5.98 (1H, d, *J* = 1.4 Hz), 5.06 (1H, m), 3.92 (3H, s), 3.62 (3H, s), 3.27 (1H, dd, *J* = 13.8, 2.4 Hz), 2.75 (1H, m), 2.53 (1H, m), 2.34 (2H, m), 1.51 (1H, m); HRMS (CI) calcd for C₂4H₂₂ClF₃NO₉S (MH⁺) 592.0656, found 592.0660. Regioisomeric **38** (35 mg, 0.06 mmol, 13%) and di-triflate **37** (85 mg, 0.12 mmol, 26%) were also isolated.

(-)-(1*S*,2*R*,3*S*)-6-{2-Methylcarbamoyl-3-[3-chlorobenzoyl(oxy)]-cyclohex-4-one}-4methoxy-1,3-benzodioxole 39. To a solution of 34 (1.33 g, 2.8 mmol) in dry HMPA (17 mL) was added *t*-BuOK (1.0 M in THF) (56 µmol, 50 µl). The mixture was heated to 90 °C for 4 h, cooled to room temperature, poured into water (100 mL), and extracted with Et₂O (2 x 75 mL). The combined extracts were washed with water (30 mL), brine, and dried (Na₂SO₄). Evaporation *in vacuo* followed by chromatography over silica gel eluting with hexanes/EtOAc (3:2) gave 39 (1.21 g, 2.5 mmol, 91%) as a white solid, R_f 0.63 (hexanes/EtOAc 1:1); Mp 149-151 °C; $[\alpha]_D^{23}$ (c = 1.03, CHCl₃) -23; IR (CHCl₃) 3433, 1728, 1636 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (1H, t, J = 1.7 Hz), 7.94 (1H, dt, J = 7.5, 1.2 Hz), 7.51 (1H, dt, J = 8.3, 1.7 Hz), 7.36 (1H, t, J = 7.8 Hz), 6.38 (2H, s), 5.93 (2H, s), 5.56 (1H, d, J = 9.5 Hz), 4.70 (1H, d, J = 9.2 Hz), 4.17 (1H, q, J =9.4 Hz), 3.86 (3H, s), 3.47 (3H, bs), 3.22 (1H, bs), 2.64 (2H, m), 2.20 (1H, m), 1.83 (1H, m); ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 164.7, 156.2, 149.1, 143.7, 134.6, 134.4, 130.9, 130.0, 129.8, 128.1, 106.7, 101.5, 101.4, 79.9, 77.2, 58.2, 56.6, 52.3, 47.6, 39.3, 31.3; HRMS (CI) calcd for C₂₃H₂₂ClNO₈ 475.1034, found 475.1027.

(+)-(1R2R,3S)-6-{2-Methylcarbamoyl-3-[3-hydroxy-cyclohex-5-ene-4-one}-4methoxy-1,3-benzodioxole 42. To a stirred solution of 39 (197 mg, 0.414 mmol) in CH₂Cl₂ (12 mL) at 0 °C was added Et₃N (0.58 mL, 4.14 mmol) and trimethylsilyl trifluoromethanesulfonate (0.37 mL, 2.07 mmol). The solution was stirred at 0 °C for 30 min, then at room temperature for 90 min. Saturated aqueous NaHCO₃ (6 mL) was added and stirring continued for a further 5 min. The resulting emulsion was partitioned between 10% aqueous NaHCO₃ (100 mL) and Et_2O (100 mL). The ethereal layer was washed with water and brine, dried (Na₂SO₄) and concentrated to give 40 as a clear colorless oil.

To a suspension of silver trifluoroacetate (137 mg, 0.621 mmol) in CH₂Cl₂ (4 mL) was added phenylselenenyl chloride (111 mg, 0.58 mmol). After stirring rapidly for 15 min a bright yellow suspension formed. A solution of **40** in CH₂Cl₂ (12 mL) was added and the resultant suspension stirred for 10 min, filtered through a short pad of celite and evaporated *in vacuo* to give a deep yellow oil. The oil was dissolved in THF (16 mL) and stirred with 2M HCl (0.8 mL) at room temperature for 2 h. The solution was partitioned between EtOAc (50 mL) and water (50 mL). The organic layer was washed with brine, dried (Na₂SO₄), and concentrated to give **41** as a yellow oil.

The oil was dissolved in CH₂Cl₂ (15 mL), and pyridine (0.33 mL, 4.14 mmol) added, followed by 10% H₂O₂ (0.47 mL, 4.14 mmol). The resulting emulsion was stirred rapidly for 10 min, and then partitioned between EtOAc (150 mL) and water (150 mL). The organic phase was washed with saturated aqueous Na₂SO₃, 0.5M HCl, saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄), and evaporated to a pale yellow solid. Chromatography over silica gel eluting with hexanes/EtOAc (3:2) followed by recrystallization from Et₂O gave **42** (166 mg, 0.35 mmol, 85%) as white crystals, R_f 0.20 (hexanes/EtOAc 1:1); Mp 198-199 °C; $[\alpha]_D^{23}$ (*c* = 1.08, CHCl₃) +161; IR (CHCl₃) 3420, 1733, 1700, 1636 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.04 (1H, s), 7.96 (1H, d, *J* = 7.9 Hz), 7.54 (1H, dd, *J* = 7.4, 1.8 Hz), 7.38 (1H, t, *J* = 7.9 Hz), 6.90 (1H, dd, *J* = 10.2, 2.0 Hz), 6.39 (1H, d, *J* = 1.3 Hz), 6.36 (1H, d, *J* = 1.2 Hz), 6.24 (1H, dd, *J* = 10.2, 2.5 Hz), 5.97 (2H, s), 5.83 (1H, bd, *J* = 11.2 Hz), 5.02 (1H, bd, *J* = 9 Hz), 4.30 (1H, q, *J* = 10.6 Hz), 4.01 (1H, bs), 3.88 (3H, s), 3.48 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 191.9, 165.0, 156.3, 151.6, 149.4, 143.9, 135.0, 134.7, 133.5, 133.4, 131.0, 130.1, 129.9, 128.3, 128.0, 107.8, 102.4, 101.8, 77.0, 58.0, 56.8, 52.4, 48.7; HRMS (CI) calcd for C₂₃H₂₀ClNO₈ (MH⁺) 474.0956, found 474.0955.

(1R, 2R, 3S, 5S, 6S)-6-{2-Methylcarbamoyl-3-[3-hydroxy-5,6-oxido]-cyclo hex-4-one}-4-methoxy-1,3-benzodioxole 43. A solution of 10% NaHCO₃ (0.6 mL, 0.7 mmol) in MeOH (6 mL) and water (3 mL) was added to a stirred solution of 42 (83 mg, 0.175 mmol) and 10% H₂O₂ (0.3 mL) in THF (3 mL). The resultant suspension was stirred at room temperature for 90 min. Saturated aqueous NH₄Cl (20 mL) was added and the mixture extracted with EtOAc (2x30 mL). The combined extracts were washed with saturated aqueous Na₂SO₃, saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated *in vacuo* to give 43 as an off-white solid. Used immediately in the next step.

(+)-(1*R*,2*R*,3*S*,4*S*,5*S*,6*S*)-6-{2-Methylcarbamoyl-3-[3,4-dihydroxy-5,6-oxido]-cyclo hexyl}-4-methoxy-1,3-benzodioxole 44. To a stirred solution of 43 in THF (2 mL) at -78 °C was added L-selectride (1.0 M in THF) (0.29 mL, 0.29 mmol). The mixture was stirred at -78 °C for 15 min, and saturated aqueous NH₄Cl (3 mL) was added. The mixture allowed to warm to room temperature and stirred for a further 2 h. The organic phase was diluted with EtOAc (10 mL), washed with brine, dried (Na₂SO₄), and concentrated to give an off-white solid. The crude product was purified by chromatography over silica gel eluting with EtOAc to give 44 (40 mg, 0.11 mmol, 63%) as a white solid, R_f 0.36 (EtOAc); Mp 136-137 °C; $[\alpha]_D^{23}$ (c = 0.6, CHCl₃) +33; IR (CHCl₃) 3432, 1719, 1636, 1513, 1453 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.48 (1H, s), 6.44 (1H, s), 5.94 (2H, m), 5.58 (1H, bd, J = 9.1 Hz), 4.87 (1H, d, J = 8.1 Hz), 4.30 (2H, m), 3.91 (3H, m), 3.68 (3H, s), 3.55 (3H, m); HRMS (CI) calcd for $C_{16}H_{19}NO_8$ (MH⁺) 354.1190, found 354.1189.

(1R,2R,3S,4S,5S,6S)-6-{2-Methylcarbamoyl-3-[3,4-diacetoxy-5,6-oxido]-cyclo

hexyl}-4-methoxy-1,3-benzodioxole 45. To a stirred solution of 44 (4 mg, 11.3 μ mol) and triethylamine (80 μ L, 0.57 mmol) in CH₂Cl₂ (1.5 mL) at 0 °C was added acetic anhydride (21 μ L, 0.23 mmol). The resultant solution was stirred at room temperature for 90 min, and the mixture was poured into saturated aqueous NaHCO₃ (2 mL) and EtOAc (5 mL). The aqueous phase was extracted with EtOAc (3 mL), the combined extracts were washed with brine, dried (Na₂SO₄), and evaporated *in vacuo*. The crude product was chromatographed over silica gel eluting with EtOAc/hexanes (3:2) followed by recrystallization from CH₂Cl₂/hexanes to give 45 (3.5 mg, 8 μ mol, 71%) as white crystals, R_f 0.6 (EtOAc/hexanes 4:1); ¹H NMR (300 MHz, CDCl₃) δ 6.46 (1H, d, J = 1.2 Hz), 6.41 (1H, d, J = 1.1 Hz), 5.95 (2H, s), 5.78 (1H, t, J = 3.0 Hz), 5.13 (1H, dd, J = 11.5, 3.5 Hz), 4.43 (1H, bm), 4.20 (1H, bm), 3.67 (3H, s), 3.50 (3H, s), 3.36 (1H, d, J = 9.9 Hz), 1.96 (3H, s), 1.22 (3H, s); HRMS (CI) calcd for C₂₀H₂₄NO₁₀ (MH⁺) 438.1400, found 438.1389.

(1*R*,2*R*,3*S*,4*S*,5*S*,6*S*)-6-{2-Methylcarbamoyl-3-[3,4,5,6-tetrahydroxy]-cyclohexyl}-4-methoxy-1,3-benzodioxole 46, and (+)-(1*R*,2*R*,3*S*,4*S*,5*S*,6*S*)-6-{2-Methylcarbamoyl-3-[3,4,5,6-tetraacetoxy]-cyclohexyl}-4-methoxy-1,3-benzo dioxole 47. A suspension of 44 (70 mg, 0.2 mmol) in water (8.5 mL) containing sodium benzoate (6.5 mg, 40 µmol) was heated at 100 °C for 4 days. After cooling, water was removed *in vacuo* to furnish the crude 46 as a brown solid. Crude 46 was dissolved in pyridine (2 mL) and acetic anhydride (2 mL) and stirred at room temperature for 20 h. The volatile components of the reaction mixture were removed *in vacuo*, and the residue chromatographed over silica gel eluting with hexanes/EtOAc (1:1) to give 47 (66.5 mg, 0.12 mmol, 60%) as a white solid, R_f 0.22 (hexanes/EtOAc 2:3); Mp 92-94 °C; $[α]_D^{23}$ (*c* = 0.89, CHCl₃) +11; IR (CHCl₃) 3431, 1746, 1637, 1516 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.45 (2H, m), 5.94 (2H, m), 5.34 (1H, t, *J* = 2.4 Hz), 5.21 (1H, dd, *J* = 10.6, 3.5 Hz), 5.10 (1H, t, *J* = 2.8 Hz), 5.01 (1H, bs), 4.70 (1H, q, *J* = 10.8 Hz), 4.40 (1H, d, *J* = 10.1 Hz), 3.87 (3H, s), 3.53 (1H, s), 3.20 (1H, dd, *J* = 12.3, 1.9 Hz), 2.17 (3H, s), 2.17 (3H, s), 2.01 (3H, s), 1.99 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 169.3, 168.7, 168.2, 156.6, 148.7, 143.3, 134.5, 130.2, 130.0, 128.3, 108.2, 102.9, 101.4, 72.0, 70.9, 68.6, 68.0, 56.5, 52.2, 47.9, 47.3, 20.8, 20.6; HRMS (CI) calcd for C₂₄H₂₉NO₁₃ (MH⁺) 540.1717, found 540.1709.

(1R,2S,3S,4S,4aR,10bR)-1,2,3,4-Tetraacetoxy-1,3,4a,5,10b-hexahydro-1,3-dioxolo-4-methoxy[4,5-j]phenanthridin-6-(2H)-one 48. To a stirred solution of 47 (55 mg, 0.1 mmol) and 4-N,N-dimethylaminopyridine (37 mg, 0.3 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added trifluoromethanesulfonic anhydride (90 µL. 0.51 mmol). The resultant yellow gel suspension was warmed to 5 °C and stirred for 24 h. Saturated aqueous NaHCO₃ (4 mL) and EtOAc (6 mL) were added. The aqueous phase was extracted with EtOAc (6 mL), and the combined extracts washed with 0.5 M HCl (2 mL), brine, dried (Na₂SO₄), and evaporated *in vacuo*. The residue was taken up in dioxane (6 mL), 2 M HCl (0.6 mL) was added and the solution stirred at room temperature for 20 h. The reaction mixture was partitioned between saturated aqueous NaHCO₃ (6 mL) and EtOAc (6 mL). The aqueous phase was extracted with EtOAc (6 mL), the combined organic phases were washed with brine, dried (Na₂SO₄), and evaporated to dryness. The crude product was chromatographed over silica gel eluting with EtOAc to give an inseparable mixture of isomers **48** and **49** (34.5 mg, 68 µmol, 68%, 7:1) of which **48** was the major compound (86%, by nmr), R_f 0.10 (hexanes/EtOAc 1:9); IR (CHCl₃) 3408, 1754, 1667 cm⁻¹; ¹H NMR (major isomer) (300 MHz, CDCl₃) δ 6.30 (1H, s), 6.01 (2H, m), 5.93 (1H, s), 5.52 (1H, t, J = 2.6 Hz), 5.44 (1H, t, J = 6.2 Hz), 5.21 (1H, t, J = 2.9 Hz), 5.13 (1H, dd, J = 10.8, 3.4 Hz), 4.18 (1H, t, J = 11.7 Hz), 4.07 (3H, s), 3.37 (1H, dd, J = 12.7, 2.5 Hz), 2.16 (3H, s), 2.07 (6H, s), 2.03 (3H, s); HRMS (CI⁺) calcd for C₂₄H₂₉NO₁₃ (MH⁺) 508.1455, found 508.1449.

(+)-(1R,2S,3S,4S,4aR,10bR)-1,2,3,4-Tetraacetoxy-1,3,4a,5,10b-hexahydro-1,3-

dioxolo-4-hydroxy[4,5-j]phenanthridin-6-(2H)-one 50. To a stirred solution of **48/49** (34.5 mg, 68 μ mol) in CH₂Cl₂ (4 mL) at -78 °C was added BBr₃ (60 μ L, 61 μ mol, 1.0 M in CH₂Cl₂). The cloudy solution was allowed to warm slowly to 0 °C for 90 min, and 10% NH₄OH (4 mL)was added dropwise. A yellow emulsion formed, and was stirred at 0 °C for 15 min. The mixture was poured into EtOAc (15 mL), and the aqueous phase was extracted with EtOAc (10 mL). The combined extracts were washed with brine, dried (Na₂SO₄), and evaporated *in vacuo*. The crude product was purified by chromatography over silica gel eluting with hexanes/EtOAc (1:1) to give **50** (24.5 mg, 49 μ mol, 73%) as a white solid, R_f 0.22 (hexanes/EtOAc 2:3); Mp 245 °C (dec).; $[\alpha]_D^{23}$ (c = 1.23, CHCl₃) +29; IR (CHCl₃) 3400, 1756, 1674 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 12.39 (1H, s, 6.18 (1H, s), 6.04 (2H, s), 5.90 (1H, bs), 5.55 (1H, bs), 5.46 (1H, t, J = 2.9 Hz), 5.21 (1H, t, J = 2.8 Hz), 5.17 (1H, dd, J = 10.8, 3.4 Hz), 4.28 (1H, dd, J = 13.1, 10.8 Hz), 3.43 (1H, dd, J = 13.2, 1.9 Hz), 2.16 (3H, s), 2.08 (6H, s), 2.04 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 169.8, 169.5, 169.0, 168.2, 153.2, 146.8, 133.5, 131.6, 107.3, 102.4, 96.6, 71.7, 67.6, 66.8, 66.2, 48.2, 39.3, 29.7, 20.8, 20.7, 20.6; HRMS (CI) calcd for C₂₂H₂₃NO₁₂ (MH⁺) 494.1299, found 494.1298.

(+)-Pancratistatin 1. To a solution of 50 (24.5 mg, 49 μmol) in THF (4.5 mL) was added NaOMe (0.5 M in MeOH, 1.0 mL, 0.49 mmol). The mixture was stirred at room temperature for 18 h. Saturated aqueous NH₄Cl (4.5 mL) was added, and the aqueous phase extracted with EtOAc (20 x 15 mL). The crude product was adsorbed directly on to silica gel and eluted with EtOAc/MeOH 9:1) to give 1 (13.8 mg, 42.4 μmol, 87%) as a white solid, R_f 0.14 (EtOAc/MeOH 9:1); Mp 233 °C (dec).; $[\alpha]_D^{23}$ (c = 1.08 DMSO-d₆) +38 (lit values of +40.9, +48 and +44 see refs 9, 2 and 8 respectively).; IR (DMSO-d₆) 3447 and 1667 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 13.05 (1H, s), 7.53 (1H, s), 6.47 (1H, s), 6.02 and 6.04 (2H, two singlets), 5.37 (1H, d, J = 4.0 Hz), 5.10 (2H, m), 4.84 (1H, d, J = 7.5 Hz), 4.27 (1H, m), 3.96 (1H, m), 3.84 (1H, bs), 3.70 (2H, m), 2.95 (1H, d, J = 11.2 Hz).; ¹³C NMR (75 MHz, DMSO-d₆) δ 169.9, 152.5, 145.8, 136.1, 132.1, 107.9, 102.2, 98.1, 73.7, 70.6, 70.4, 68.9, 50.9, 29.4.; HRMS (CI) calcd for C₁₄H₁₆NO₈ (MH⁺) 326.0876, found 326.0860.

Acknowledgment. The National Institutes of Health (GM 32718), The Robert A. Welch Foundation and Merck Research Laboratories are thanked for their support of this research. Dr Tomas Hudlicky is thanked for an authentic sample of pancratistatin for comparison.

- Martin, S. F. "The Alkaloids", ed, Brossi, A. Academic Press, New York, 1987, Vol 30, 251.
 Wildman, W. C. "The Alkaloids", ed, Manske, R. H. F. Academic Press, New York, 1968, Vol 11, 308.
- (2) Pettit, G. R.; Gaddamidi, V.; Cragg, G. M.; Herald, D. L.; Sagawa, Y. J. Chem. Soc., Chem. Commun. 1984, 1693.
- Pettit, G. R.; Gaddamidi, V.; Herald, D. L.; Singh, S. B.; Cragg, G. M.; Schmidt, J. M. J. Nat. Prodt. 1986, 46, 995. Gabrielson, B.; Monath, T. P.; Huggins, J. W.; Kirsi, J. J.; Hollingshead, M.; Shannon, W. M.; Pettit, G. R. "Natural Products as Antiviral Angents", ed. Chu, C. K.; Cutler, H. G. Plenum, New York, 1992, 121.
- (4) Pettit, G. R.; Melody, N.; O'Sullivan, M.; Thompson, M. A.; Herald, D. L.; Coates, B. J. Chem. Soc., Chem. Commun. 1994, 2725.
- (5) S. Danishefsky, S.; Lee, J. Y. J. Am. Chem. Soc., 1989, 111, 4829.
- (6) Overman, L. E. Acc. Chem. Res. 1980, 13, 218.
- (7) Doyle, T. J.; Hendrix, M.; VanDerveer, D.; Javanmard, S.; Haseltine, J. *Tetrahedron* 1997, 53, 11153-11170.
- (8) Trost, B. M.; Pulley, S. R. J. Am. Chem. Soc. 1995, 117, 10143.
- Hudlicky, T.; Tian, X.; Königsberger, K.; Maurya, R.; Rouden, J.; Fan, B. J. Am. Chem. Soc. 1996, 118, 10752. Polt, R. "Organic Synthesis: Theory and Applications", ed. Hudlicky, T., JAI Press, Greenwich, CT, 1996, Vol 3, 109. Tian, X.; Hudlicky, T.; Königsberger, K. J. Am. Chem. Soc. 1995, 117, 3643.
- (10) The synthesis of 7-deoxypancratistatine has been achieved by several groups. Tian, X.; Maurya, R.;
 Königsberger, K.; Hudlicky, T. Synlett, 1995, 1125. Keck, G. E.; McHardy, S. F.; Murry, J. A. J. Am. Chem. Soc. 1995, 117, 7289. Chida, N.; Iitsuoka, M.; Yamamoto, Y.; Ohtsuka, M.; Ogawa, S. Heterocycles, 1996, 43, 1385. Paulsen, H.; Stubbe, M. Liebigs Ann. Chem. 1983, 535. Ohta, S.; Kimoto, S. Chem. Pharm. Bull. 1976, 24, 2977.
- Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. J. Am. Chem. Soc. 1996, 118, 3406.
 Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.
- (12) Magnus, P.; Rigollier, P.; Lacour, J.; Tobler, H. J. Am. Chem. Soc. 1993, 115, 1262.
- (13) Magnus, P.; Evans, A. P.; Lacour, J. Tetrahedron Lett. 1992, 33, 2933.
- (14) Preliminary communication:- Magnus, P.; Sebhat, I. K. J. Am. Chem. Soc. 1998, 120, 5341.
- (15) Simpkins, N. S. Pure & Appl. Chem. 1996, 68, 691. Cox, P. J.; Simpkins, N. S. Tetrahedron Asymm. 1991, 2, 1. Yamashita, T.; Sato, D.; Kiyoto, T.; Kumar, A.; Koga, K. Tetrahedron Lett. 1996, 37, 8195.
- (16) Bunn, B. J.; Simpkins, N. S. J. Org. Chem. 1993, 58, 533.
- (17) Fuson, R. C.; Gaertner, R.; Chadwick, D. H. J. Org. Chem. 1948, 13, 489.
- (18) Larsson, S.; Miksche, G. E. Acta. Chem. Scand. B. 1972, 26, 2031.
- (19) Shirasaka, T.; Takuma, Y.; Imaki, N. Syn. Comm. 1990, 20, 1223
- (20) Overberger, C. G.; Marullo, N. P.; Hiskey, R. G. J. Am. Chem. Soc. 1961, 83, 1374.

(21) The ee of 30 was estimated to be approximately 85%. This is on the conservative side, since we could not make measurements directly, but rather converted 30 into 32, which was reduced to the -NMe derivative, and the R-(-)-α-methoxyphenylacetic acid salt 32a analyzed by ¹H NMR.

- (22) Varvoglis, A. "The Organic Chemistry of Polycoordinated Iodine"; VCH: New York, 1992, p. 134.
- Magnus, P.; Mugrage, B. J. Am. Chem. Soc. 1990, 112, 462. Magnus, P.; Lacour, J.; Coldham, I.; Mugrage, B.; Bauta, B. Tetrahedron 1995, 51, 11087.
- (24) The mechanism for the formation of 33 involves initial epoxide 32a, which can reversibly open to give 32b. Interception of 32b by m-chlorobenzoate leads to 32c, which through the ortho ester 32d can transfer the benzoate resulting in 32f. Proton loss from 32f gives 33.

(25) Banwell, M. G.; Cowden, C. J.; Gable, R. W. J. Chem. Soc. Perkin Trans 1. 1994, 3515.