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. : been recognized.In our recent researchy-alkenoyl
Abstract: The C-C bond-forming reaction betweerhydroxy- . . s
ketene-§9-acetals2 and active methylene compounds is de_ketene—&S)—acetaIs, as _flve—carbon 1,5—b|e_lectroph|I|c
scribed. Mediated by boron trifluoride etherate {BFEt), a series SyNthons, have been utilized to construct six-membered
of C—C bond coupling products, 2-(2-acetyl-1-methyl-3-oxobutyl)carbocycles and/or heterocycles including highly substi-
N-aryl-3,3-bis(ethylthio)acrylamide® was obtained in high to ex- tuted phenols, functionalized 2,3-dihydro-4-pyridones,
cellent yields by the reaction @f—e (R* = Ar) with acetylacetone. pyrido[2,3d]pyrimidines and 2,3-dihydrothiopyran-4-
Various N-aryl-substituted 3,4-dihydropyridon&were prepared gnes based on [5C+1€],[5C+1N]& ¢ and [5C+1S¥

in high yields fronB via a two-step procedure. Upon the reaction o

2f (R = H) with active methylene compounds, 3l4_dihydropyri_élnnulatlon strategies, respectively. On the other hand, as

dones and/or7, were obtained in a one-pot reaction with moderatBart of the Syr\thetic applications afoxoketene$5)-
to good yields. acetjclls7, a series ofu-hydroxyketene§S-acetals was
Keywords: C—C bond-forming reactionu-hydroxyketene - obtained based on the Morita—Baylis—Hillman (MBH) re-

acetals, active methylene compounds, substituted 3,4-dihydro-ab(-:tions ofa-.acetylketene&S)-acetals (!Jsed as activated
pyridones, one-pot synthesis alkenes) with carbonyl compounds in the presence of

titanium tetrachloride cataly&tit was found that the re-
sultinga-hydroxyketene-$S)-acetals, as a special type of
allylic alcohol, may further react with-acetylketene-
(pS)-acetals (activated alkene), furnishing the double
MBH adducts® This procedure provides a new entry to

carbon bond-forming reactions, the directdisplacementFﬁ'emoselecwe_ &z-Csps bond formation starting from
the hydroxyl group of an allylic or benzylic alcohol by &€ corresponding-hydroxyketene§S)-acetals. Asokan
carbon nucleophile would be quite useful since it woul@nd co-workers also presented the utilityoelfiydroxy-

be both atom-efficient and environmentally benign be€tene dithioacetals in organic synthesis. For example,
cause preparation of the reactive materials would not B reported the synthesis of substituted pyridines from
required (alcohols are generally transformed into the cofdlSmeier-Haack reactions oé-hydroxyketene$3)-
responding halides or esters prior to reactions with nggetal% and the synthesis off-unsaturated dithioesters
cleophiles due to the fact that the hydroxyl group is a poBP™ the reaction ofi-hydroxyketene$S)-acetals with

; sdgwesson’s rea_geﬁ?. Insplred_ by the abovementioned
side product. In this context, expansion of substrates foMBH reactions, in our continuing research on the synthet-
this type of reaction to a wide range of active methylerlé applications ofi-oxoketene§S)-acetals, we focused
compounds and other types of alcohols is desired and I‘?é]’:gf attention on the construction of g&Cs,;bond from
stimulated much interest in organic chemists. Recently;"YdroxyketenegS)-acetals and active methylene com-

Baba and co-workers described the direct carbon—carfnds- The application of this methodology led to the
bond forming from alcohols and active methylenej)?rm""t'On of a C—C coupling product, which in turn could
alkoxyketones, and indoles catalyzed by indium trichid?6 used for the synthesis of 3,4-dihydro-2-pyridones,
ride3 Kaneda et al. reported a Bransted acid mediatéffich Serve as valuable building blocks in the construc-
heterogeneous addition reaction of 1,3-dicarbonyl coron Of piperidines, perhydroguinolones, indolizidines,
pounds to alkenes and alcohbldence, the selection of quinolizidines and other alkaloid ring systems and have a
suitable substrates, especially the alcohol component, fide range of biological and pharmacological activities.

the carbon—carbon bond-forming reaction is of gredf'® general and common methods towards 3,4-dihydro-
significance in achieving the synthetic applicatidhs.  2-Pyridones require multistep syntheSis;'usually via a

o combination of three steps: (1) a condensation, (2) a con-
Over the past decades, the utility wbxoketene$S)-  jgate addition, and (3) an N-acylatitf Therefore, de-

acetals as versatile intermediates in organic synthesis i@k pment of simple and convenient synthetic procedures
for such nitrogen-containing heterocycles represents an

The carbon—carbon bond-fomg reaction is one of the
most fundamental approaches for the construction
molecular framework in organic chemistryn carbon-

SYNLETT 2007, No. 1, pp 0156-0160 attractive and interesting area of research in synthetic or-
Advanced online publication: 20.12.2006 ganic and medicinal chemistry. Herein, we wish to report
DOI: 10.1055/s-2006-958412; Art ID: W15306ST our experimental results.
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Initially, a variety of a-hydroxyketene$S)-acetals2 Table 3 Reactions ofi-Hydroxyketene-$9-acetal2 with
were prepared in excellent yields by reduction with sodfcetylacetone
um borohydrlge of the correspondm;gacetylkete_ne- Enty Substrate R Time Product Yield of8
(§9)-acetalsl.*” For example, upon treatment Id with (min) (%)
sodium borohydride (1.1 equiv) in methanol at 0 °C for
about 55 minutes, alcoh@h was obtained in 96% isolat- 1 30 3b 90
ed yield after workup (Table 1). Similarly, alcoh@ls—f 45 3¢ 82
were obtained in 93-97% yields under the identical
conditions. 3 50 3d 84
Table 1 Reduction Reactions ofAcetylketene-§9-acetalsl 4 50 3e 82
o o0 OH O 2|solated yields after silica gel chromatography.
)‘jf‘\NHRl NaBH, )jkaHRl
b skt MeOH | acetylacetone was first examined to optimize the reaction
EtS SEt s ..
conditions. Thus, the variation of solvents (THF, DMF,
taA 2at CH,CI, and MeCN) and temperature (0 °C to r.t.) were
Entry  Substrate R Product Time  Yield investigated (Table 2). It was found that either in dichlo-
(min) (%) romethane or imN,N-dimethylformamide, no C-C cross-
1 1a on oa - %6 co_upling products were detgcted when the reactidtaof
65 with acetylacetone (1.2 equiv) proceeded at 0 °C for three
2 1b 4-CICH, 2b 45 97 hours in the presence of BPE} (1.2 equiv) (Table 2,
entries 1 and 2). When tetrahydrofuran or acetonitrile was
8 Ic 2-MeGH, 2¢ 45 95 used as the solvent (entries 3 and 4, respectively), the re-
4 1d 2,4-Me,CgH, 2d 60 93 action afforded3a in low to moderate yields. However,
when the reaction was carried out with neat acetylacetone
5 le 2-MeOGH,  2e 50 93 (2a—acetylacetone = 1.0:15.0, molar ratio) and was cata-
6 1f H of 30 05 lyzed by BR-OEt, (1.2 equiv) at 0 °C for 40 minutes, the

2|solated yields after silica gel chromatography.

product3awas obtained in 87% yield (Table 2, entry 5).
When the reaction was performed at room tempereare,
was produced in relatively low yield (70%, Table 2, entry

With the readily available alcohoB in hand, we next 6). Under the optimized conditions as described above
turned to the study of the C—C cross-coupling reaction cfable 2, entry 5), the corresponding C-C coupling prod-
2 with active methylene compounds (Table2 anlCts3b-e (R! = Ar) were obtained in high to excellent
Table 3). A model reaction betwe@a (R! = Ph) with Yields (82-90%, Table 3, entries 1-8).

Table 2 Reaction oRa with Acetylacetone under Different Cand

tions

OH © )OJ\/[OJ\ SEt
NHPh SEt
| BF3-OEt, CONHPh
EtS SEt
2a 3a

Entry?  2a Acetylacetone Solvent  Time  Yield of
(mmol) (mmol) (h) 3a (%)

1 1.0 1.2 CHCI, 3.0 (07

2 1.0 1.2 DMF 3.0 0

3 1.0 1.2 THF 2.0 12

4 1.0 1.2 MeCN 2.0 45

5 1.0 15.0 - 0.7 87

6 1.0 15.0 - 0.5 70

aBF; (1.2 equiv) was used in all the reactions.
b|solated yields after silica gel chromatography.

¢ Complex product mixture was obtained.

Once product8a—e were obtained, their transformation
into pyridones was studied. However, direct transforma-
tion of 3 into pyridones with either BFOEY, or titanium
tetrachloride—triethylamine was unsuccessful after
several attempts. Looking for an alternative route, com-
pounds3a—e were then deacetylated by treatment with
sodium hydroxide (1.2 equiv) in ethanol at 60 °C, afford-
ing productsAa—e in 80—89% vyields (Table 4). The aza-
annulation o#a—e was tried in the presence of BEE}

(1.2 equiv) at 0 °C, but the desired products were not
obtained. To our delight, by replacing BBEt with
titanium tetrachloride—triethylamine, the cyclization
products N-aryl-substituted 3,4-dihydro-2-pyridones
5a-e were generated in 81-88% yields (Tablé’4).

Meanwhile, the reactions of alcorzfl (R = H) with ac-

tive methylene compounds were investigated under iden-
tical conditions as mentioned above. Interestingly, the
formation of a pyridone ring was achieved by a one-pot
process (Table 5). Thus, wh&hwas treated with acetyl-
acetone (15.0 equiv) and loor trifluoride, pyridonea

was obtained as the sole product (Table 5, entry 1). To ex-
tend this interesting one-paaction, other active methyl-
ene compounds such gsketoesters,p-diesters and

Synlett 2007, No. 1, 156-160 © Thieme Stuttgart - New York
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benzoylacetone were subjected to the reaction sequeneesd character ¢, = 16.4, while for acetylacetonep=
When the reaction was performed with ethyl acetylacetat8.3; for ethyl acetylacetateKp= 14.2)!° Accordingly,
(Table 5, entry 2), the structure of the resulting produet series of 5-substituted 3-[bis(ethylthio)methylene]-4,6-
could not be easily determined from the correspontting dimethyl-3,4-dihydropyridones6 and/or 3-[(difluoro-
and 13C NMR spectra and mass spectrum. Fortunatelgoryloxy)(ethylthio)methylene]-4,6-dimethyl-3,4-dihydro-
single-crystals could be grown in a mixture of petroleumyridones7 were successfully prepared in moderate to
ether and dichloromethane and the structure was estgbed yields® Indeed, this protocol provides a convenient
lished by X-ray diffraction analysis &b (Figure 1)*®In  and efficient one-pot synthesis of polysubstituted 3,4-di-
the case of using methyl acetylacetate as the carbon hydro-2-pyridones.

cleophile, the reaction furnished two produésand7c,  the possible mechanism for the formation of pyriddiies
with respective yields of 23% and 35% (Table 5, entry 3)4/0r 7 from substratef is proposed, as depicted in
For benzoylacetone subs&at5-benzoyl-3-[(difluoro- gcheme 2122 The carbon—carbon coupling depends on
boryloxy)(ethyithio)methylene]-4,6-dimethyl-3,4-dihydro- e formation of the allylic carbocation generated f@im
pyridone {d) was the main product (66% yield, Table Sirpi is then followed by the azaannulation to give pyri-
entry 4). The diesters, such as ethyl malonate were foujdhe 6. Clearly, the formation of would involve the

to be inert to the C~C bond coupling reaction under thgqolysis of6 (S,V, nucleophilic vinylic substitutior§
identical conditions, probably due to its relatively weak subsequent formation of the BBmplex?

Table 4 Synthesis oN-Aryl-Substituted 3,4-Dihydro-2-pyridones frodn

SEt
o) SEt o SEt
i =
4 SE NaOH _ - TiCly, EtzN SEt
EtOH CH,CI
o CONHAr CONHAr 2> N” 0
Ar
3a-e 4a—e Sa—e
Entry Substrate Ar Produet Yield of 4 (%) Product® Yield of 5 (%)
1 3a Ph 4a 87 5a 85
2 3b 4-CICH, 4b 89 5b 88
3 3c 2-MeGH, 4c 85 5c 85
4 3d 2,4-Me,CeH 4d 83 5d 81
5 3e 2-MeOGH, 4e 80 5e 82

2The cyclization reactions were carried out in the presence ofHEN at O °C.
b |solated yields.

Table 5 Reactions ofi-Hydroxyketene-§S)-acetal2f with Active Methylenes

OH 0 o o0 o SEt o SEt
—_— . \_F

NS

Ets” SEt N" o o B\

BF3-OEt, N F
2f 6 7
Entry Substrate R Time (h) Product Yield (%) Product7 Yield (%)?
6 7
1 2f Me 2.0 6a 89 7a b
2 2f EtO 5.0 6b b 7b 54
3 2f MeO 4.5 6¢c 23 7c 35
4 2f Ph 6.0 6d -5 7d° 66

2 |solated yields after silica gel chromatography.
b Not detected.
¢ MeCN was used as the solvent.

Synlett 2007, No. 1, 156-160 © Thieme Stuttgart - New York



LETTER

BF;-OEt-Mediated C—C Bond-Forming ReactionoeHydroxyketene-$5)-acetals 159

Figure 1 ORTEP drawing of compourith
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Scheme 1 Possible mechanism for the formationéadnd/or7

In summary, the C—C bond-forming reaction why-
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(10)
(11)

droxyketene-§9-acetals and active methylene com-(12)
pounds has been described. The utility of the C—C bond
formation products has been demonstrated in the syn-

thesis ofN-aryl-substituted 3-[bis(ethylthio)methylene]-
4,6-dimethyl-3,4-dihydropyridone$ and substituted

2,3-dihydro-3-[bis(ethylthio)methylene]-4,6-dimethyl-
3,4-dihydropyridone$ and/or 3-[(difluoroboryloxy)(eth-

ylthio)methylene]-4,6-dimethyl-3,4-dihydropyridoneg

(13)

in concise steps and good to high yields. The protocol
provides a simple, straightforward, and efficient synthesis

of polysubstituted 3,4-dihydro-2-pyridones.

Further(l4)

studies on the extension on the scope of this C—C bond-
forming reaction, as well as synthetic applications, are

ongoing.
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Preparation of 3 (3a as an example); Typical Procedure
To a well-stirred suspension 2& (1.0 mmol, 0.31 g) in
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anhyd acetylacetone (15 mmol, 1.55 mL) was added
BF;-OEt, (1.2 mmol, 0.15 mL). The mixture was stirred for
40 min at 0 °C until the reaction was complete (as indicated
by TLC) and neutralized with aq NaHG@0%). After
workup, the crude product was purified by column
chromatography (eluent: PE-EtOAc, 5:1) to gdaan 87%
yield.

Selected data for compounagts
2-(2-Acetyl-1-methyl-3-oxobutyl)N-phenyl-3,3-
bis(ethylthio)acrylamide (3a} white solid; mp 88-91 °C.

IH NMR (500 MHz, CDC)): 6 = 1.15 (dJ = 6.5 Hz, 3 H),
1.17-1.21 (m, 3 H), 1.25-1.66 (m, 3 H), 2.23 (s, 3 H), 2.24
(s, 3H),2.61-2.92 (m, 4 H), 4.06 (= 11.5 Hz, 1 H), 4.21
(m, 1 H), 7.12-7.15 (m, 1 H), 7.34 Jt= 7.5 Hz, 2 H), 7.58
(t,J=7.5Hz, 2 H), 7.75 (s, 1 H¥C NMR (125 MHz,

CDCl,): 5 = 204.0, 202.6, 164.7, 146.6, 136.7, 132.8, 128.1
(2xC), 123.6, 118.8 (2 C), 71.8, 37.4, 30.1, 28.5, 26.8,
26.5,17.0, 14.3, 13.8. IR (KBr): 3340, 2968, 2360, 1732,
1698, 1653, 1529, 760 claMS: m/z= 394.1 [M + HF.

Anal. Calcd for GH,,NO;S,: C, 61.04; H, 6.91; N, 3.56.
Found: C, 60.90; H, 6.75; N, 3.44.
2-(2-Acetyl-1-methyl-3-oxobutyl)N-o-tolyl-3,3-
bis(ethylthio)acrylamide (3c} white solid; mp 97-99 °C.

IH NMR (500 MHz, CDC)): 6 = 1.17 (dJ = 7.0 Hz, 3 H),
1.18-1.21 (m, 3 H), 1.29-1.31 (m, 3 H), 2.25 (s, 3 H), 2.26
(s, 3H), 2.35 (s, 3H), 2.63-2.92 (m, 4 H), 4.10)(d,11.0

Hz, 1 H), 4.24-4.27 (m, 1 H), 7.08 Jt= 7.5 Hz, 1 H), 7.21
(t,J=7.5Hz, 2 H), 7.62 (s, 1 H), 7.98 (5 7.5 Hz, 1 H).

BC NMR (125 MHz, CDC)): 6 = 203.6, 202.7, 164.9, 146.8,
134.6, 132.6, 129.6, 128.0, 125.8, 124.2, 121.6, 71.7, 37.3,
30.0, 28.6, 26.9, 26.5,17.2,17.0, 14.1, 13.7. IR (KBr): 3364,
2975, 2924, 2360, 2170, 1694, 1668, 1517, 1456, 769 cm
MS: m/z[M + H]* calcd for G;H,4JNO,S,: 407.2; found:
408.6. Anal. Calcd for GH,gNO;S,: C, 61.88; H, 7.17; N,
3.44. Found: C, 61.57; H, 6.81; N, 3.23.

Preparation of 5 (5a as an example); Typical Procedure

To a well-stirred suspension 8& (1.0 mmol, 0.43 g) in

EtOH (10 mL) was added NaOH (1.2 mmol, 0.05 g). The
mixture was stirred at 60 °C for 1.0 h, and then poured into
H,O (80 mL) under stirring. The precipitated solid was
collected by filtration, washed with,B® (3x 30 mL) and

then dried in vacuo to afford the proddet(0.31 g, 87%) as

a white solid. To a well-stirred suspensiortaf{1.0 mmol,
0.35 g) in anhyd CkCl, (10 mL) were added Ti¢(1.2

mmol, 0.14 mL) and EN (1.4 mmol, 0.20 mL). The mixture
was stirred for about 2 h until the reaction was complete (as
indicated by TLC) and neutralized with ag NaHG©0%).
After workup, the crude product was purified by column
chromatography (eluent: PE-EtOAc = 15:1) to diaen

85% yield.

Selected data for compounsts
3-[Bis(ethylthio)methylene]-4,6-dimethyl-1-phenyl-3,4-
dihydropyridin-2(1 H)-one (5a) yellow solid; mp 87-89
°C.H NMR (500 MHz, CDCJ): 6 = 1.16 (dJ = 6.5 Hz, 3

H), 1.25-1.30 (m, 6 H), 1.55 (s, 3 H), 2.82-2.94 (m, 4 H),
4.00-4.02 (¢J=6.5Hz,1H),5.21 (d,=6.5Hz, 1 H), 7.19
(d,J=7.5Hz,2H),7.31({=75Hz,1H),740 (=75
Hz, 2 H).13C NMR (125 MHz, CDC)): § = 162.4, 141.4,
137.6, 137.3, 133.4, 128.4, 128.0(E), 126.6, 109.0 (&

C), 33,5, 28.1, 27.8, 19.3, 19.1, 14.2, 13.4. IR (KBr): 3063,

(18)

(19)
(20)

(21)

(d,J=6.5Hz, 3 H),1.23-1.32 (m, 6 H), 1.55 (s, 3 H), 2.81-
2.95(m, 4 H), 3.99-4.02 (=6.5Hz, 1 H),5.22 (d=7.5
Hz, 1 H), 7.10 (tJ = 8.5 Hz, 2 H), 7.37 (d = 8.5 Hz, 2 H).
13C NMR (125 MHz, CDC)): § = 162.4,142.2, 136.7, 136.2,
132.9, 132.4,129.4, 128.2%X), 109.5 (% C), 33.4, 28.2,
27.7,19.3, 19.0, 14.2, 13.4. IR (KBr): 3070, 2964, 2927,
2865, 1644, 1487, 1454, 1085, 775trMS: m/z= 368.1

[M + H]*. Anal. Calcd for GH,,CINOS,: C, 58.75; H, 6.03;
N, 3.81. Found: C, 58.58; H, 5.96; N, 3.70.

X-ray diffraction data forb has been deposited at the
Cambridge Crystallographic Data Centre with
supplementary publication number CCDC 611469.
Bordwell, F. GAcc. Chem. Res. 1988 21, 456.

Preparation of 6 and 7 (6a as an example); Typical
Procedure To a well-stirred suspension 2f (1.0 mmol,
0.235g) in acetylacetone (15 mmol, 1.55 mL) was added
BF;-OEt, (1.2 mmol, 0.2 mL). The mixture was stirred at
0 °C for 2 h until the reaction was complete (as indicated by
TLC) and neutralized with aqg NaHGQL0%). After

workup, the crude product was purified by column
chromatography (eluent: PE-EtOAc = 5:1) to dbagn

89% yield.

Selected data for compoun@land?7:
5-Acetyl-3-[bis(ethylthio)methylene]-4,6-dimethyl-3,4-
dihydropyridin-2(1 H)-one (6a) yellow solid; mp 66—68
°C.H NMR (500 MHz, CDC)): § = 1.15 (dJ = 7.0 Hz, 3
H), 1.17-1.34 (m, 6 H), 2.28 (s, 3H), 2.34 (s, 3 H), 2.81-3.03
(m, 4 H), 4.60 (gJ = 7.0 Hz, 1 H), 7.98 (s, 1 H¥C NMR
(125 MHz, CDC)): § = 195.9, 162.7, 146.7, 142.6, 132.8,
117.1, 35.8, 29.0, 28.7, 28.1, 18.7, 18.5, 14.3, 13.6. IR
(KBr): 3246, 3093, 2963, 2924, 2865, 2360, 2342, 1673,
1617, 1577, 1230, 786 clnMS:m/z = 300.0 [M + HJ.

Anal. Calcd for G,H,;NO,S,: C, 56.15; H, 7.07; N, 4.68.
Found: C, 56.08; H, 6.95; N, 4.43.
3-[Bis(ethylthio)methylene]-4,6-dimethyl-5-
methyloxycarbonyl-3,4-dihydropyridin-2(1H)-one (6¢)
yellow solid; mp 115-116 °CH NMR (500 MHz, CDCJ):
8=1.12 (dJ=7.5Hz, 3H), 1.24-1.31 (m, 6 H), 2.30 (s, 3
H), 2.83-3.01 (m, 4 H), 3.77 (s, 3 H), 4.59-4.60)(¢,7.5
Hz, 1 H), 7.46 (s, 1 H}3C NMR (125 MHz, CDC)): 5 =
167.1, 163.3, 148.0, 143.8, 133.6, 109.1, 51.4, 36.2, 30.1,
29.2, 19.8, 18.8, 15.1, 14.5. IR (KBr): 3187, 3090, 2943,
2927,1709, 1673, 1629, 1525, 1486, 1345, 1217, 1182, 772
cnt, MS:m/z= 316.1 [M + Hf. Anal. Calcd for
C.HxNO;S,: C, 53.30; H, 6.71; N, 4.44. Found: C, 53.13;
H, 6.63; N, 4.29.
3-[(Difluoroboryloxy)(ethylthio)methylene]-4,6-
dimethyl-5-methyloxycarbonyl-3,4-dihydropyridin-
2(1H)-one (7c) yellow solid; mp 98-100 °GH NMR (500
MHz, CDCL): 6 =1.16 (dJ=6.5Hz,3H),1.37 (1=7.5
Hz, 3 H), 2.32 (s, 3 H), 3.12-3.17 i 7.5 Hz, 2 H), 3.78
(s, 3 H), 3.79-3.81 (4= 6.5 Hz, 1 H), 6.84 (s, 1 H}*C
NMR (125 MHz, CDCJ): 6 =185.6, 166.5, 160.8, 141.2,
110.6, 95.4, 51.8, 28.9, 24.4, 21.7, 19.0, 14.7. IR (KBr):
2927, 2284, 1786, 1758, 1731, 1592, 1491, 1383, 1028
cntt. MS:m/z=320.1 [M + HY. Anal. Calcd for
C,HBF,NO,S: C, 45.16; H, 5.05; N, 4.39. Found: C,
45.05; H, 4.99; N, 4.15.

Bisaro, F.; Prestat, G.; Vitale, M.; Poli, §nlett 2002

1823.

2962, 2921, 2867, 2360, 2170, 1648, 1595, 1539, 1489, 69922) (a) Bernasconi, C. Fetrahedron 1989 45, 4017.

cntt. MS:m/z= 334.3 [M + HY. Anal. Calcd for
CyigH23NOS;: C, 64.82; H, 6.95; N, 4.20. Found: C, 64.64; H,
6.79; N, 4.04.
3-[Bis(ethylthio)methylene]-1-(4-chlorophenyl)-4,6-
dimethyl-3,4-dihydropyridin-2(1 H)-one (5b) yellow

solid; mp 136-137 °CH NMR (500 MHz, CDC)): § =1.14
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(b) Bernasconi, C. F.; Brown, S. D.; Ali, M.; Rappoport, Z.;
Yamataka, H.; Salim, Hl. Org. Chem. 2006 71, 4795.

(23) (a) Jones, R. C. F.; Begley, M. J.; Peterson, G. E.; Sumaria,

S.J. Chem. Soc., Perkin Trans. 1 199Q 1959.
(b) Balasubramanian, S.; Ward, D. L.; Nair, M.JGChem.
Soc., Perkin Trans. 1 200Q 567.
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