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Abstract 

Heterocyclic compounds with biological and pharmacological activates like 3,4-

dihydropyrimidin-2-(1H)-ones and 1,4-dihydropyridines have attracted great interest. 

Boehmite nanoparticles functionalized with silylpropyl sulfamic acid 

(BNPs@SiO2(CH2)3NHSO3H) as a metal free and environmentally friendly catalyst has been 

found to be effective for the one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones and the 

preparation of 1,4-dihydropyridines derivatives. Some features of this protocol are low cost 

and available materials, short reaction times, convenient catalyst separation, and no need for a 

neutral atmosphere. Moreover, the catalyst can be reused for at least five times with only a 7% 

reduction in yield. This study also shows that BNPs@SiO2(CH2)3NHSO3H is a sustainable, 

recoverable and effective heterogeneous catalyst for multicomponent reactions. 

Keywords: Boehmite; Acidic heterogeneous nano-catalysts; Biginelli reaction; 1,4-Dihydropyridines. 

1. Introduction 

In recent years, one of the most important disciplines in synthetic and pharmaceutical 

chemistry is the chemistry of heterocyclic compounds [1-3]. Today, science and technology 

have changed to develop eco-friendly and cost-effective methods. To this end, the development 

of one-pot multi-component reactions under solvent-free conditions and design and synthesis 

of stable, active, cost-effective and recyclable heterogeneous nano-catalysts are increasingly 

needed. In addition, one-pot Multicomponent reactions (MCPs) are nowadays highly regarded 

in organic and medicinal chemistry not only for their time saving, reduce chemical waste, 
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pot/atom and step economy and higher yields but also, for ease of product separation and 

purification [4-9].  

In the past several years, the functionalized dihydropyrimidone compounds (DHPMs) have 

known for their multipurpose usages in nature products, chemical building blocks, pharmacy 

and therapeutic activities such as antiviral, anti-tumor, antibacterial. and anti-inflammatory 

[10-14], as mitotic kinesin inhibitors [15], antihypertensive agents [16, 17], neuropeptide Y 

(NPY) antagonists [18], calcium channel blockers [14, 19, 20], as an useful organic 

intermediates [21, 22] and as a key component in several alkaloids with marine sources. The 

batzelladine alkaloids including the DHPM structure is a strong HIVgp-120-CD4 inhibitor [13, 

23]. Some of these compounds with biological applications were presented in the Fig. 1.  

 

Fig. 1. Examples of biologically active DHPMs 

For the first time, in 1893, Italian chemist Pietro Biginelli [14] reported the simple one-pot 

three component cyclocondensation synthesis of ethyl acetoacetate, benzaldehyde and urea 

under acidic conditions [24]. In the traditional Biginelli conditions, due to the use of strong 

acid catalysts, the purification of the products was difficult and the yields were low [25]. In 

addition, high temperatures, stoichiometric use of catalysts, costly reagents, environmental 

pollution and long reaction times are the operational drawbacks of  the classical protocols [26, 

27]. Ionic liquids [28, 29], ultrasound irradiation [30], H3BO3 [31], VCl3 [32], nanomagnetic 

supported sulfonic acid [33], KAl(SO4)2-12H2O supported on silica [34], SiO2-CuCl2 [35], 
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(MWCNTs) [36, 37], boehmite nanoparticles [38], graphite [39], silica–sulfuric acid [40], 

Mn(OAC)3-2H2O,[41] Ce(NO3)3-6H2O [42], ytterbium chloride [43] and graphene oxide [44] 

are some of the different catalysts were used for modified Biginelli reactions.  

To resolve the problems of previous methods, nowadays, many approaches have been 

reported for the synthesis of DHPMs, which in most cases have been attempted to minimize 

the dangerous reaction conditions and improve the catalyst separation from the reaction 

medium.  

1,4-dihydropyridine compounds (1,4-DHPs) have gained special prominence among 

researchers due to the widespread use of these compounds in the biological and pharmaceutical 

fields, such as calcium blocker agents in heart disease, anti-tumour [45], antidiabetic agents 

[46], antihypertensive [47], antianginal [48], antimicrobial [49] and drugs to treat many other 

diseases [50] (Fig. 2). Also 1,4-dihydropyridines with optical activity used as valid precursors 

in various chiral N-heterocycles [51]. More than a century ago, 1,4-DHPs are synthesized by 

Hantszch, via cyclocondensation of aldehyde, β-ketoester, and ammonia in EtOH refluxing for 

a long time [52]. 

 

Fig. 2. Examples of biologically active 1,4-dihydropyridine compounds 

In the last decades, many researchers have attempted to expand more efficient approaches 

for the preparation of 1,4-DHPs, because the traditional methods had disadvantages such as the 

use of strong, toxic and corrosive acids, high temperatures, prolonged reaction times, toxic 

solvents, low to moderate yields, difficult to work up and tedious reaction conditions.[53, 54] 

Since in most of the reported methods in the scientific literature, catalysts have been non-

recyclable, the development of novel, inexpensive and renewable heterogeneous nano-catalysts 
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is a fundamental issue. In between, solid-phase catalysts are of particular interest because they 

have higher yields, easier product purification, catalyst recovery and easier catalytic separation 

from the environment which form an economic approach for the multi-component reactions. 

Among various supports, boehmite nanoparticles (BNPs) (‐AlOOH) is attractive solid-phase 

catalyst because boehmite has remarkable merits containing high specific surface area, ease of 

modification due to the many hydroxyl groups on the surface, mechanical, thermal and 

chemical stability, cheap and commercially available precursors, high dispersity and air and 

moisture insensibility.  

Aiming to develop green chemistry and improve the synthetic methods for the preparation 

of heterocyclic compounds, in this approach, we introduced a useful acidic metal and ligand 

free catalyst (BNPs@SiO2(CH2)3NHSO3H) for the solvent-free one-pot multicomponent 

synthesis of DHPMs from reaction of divergent aldehydes with 1,3-dicarbonyl compounds and 

urea/thiourea at 80 °C with decent yields as well as the one-pot atom-economic 

multicomponent preparation of 1,4-DHP derivatives via condensation reactions of various 

aldehydes, 1,3-dicarbonyl compounds and ammonium acetate at 70 °C in MeOH with efficient 

catalytic performance (Scheme 1). 
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Scheme 1. Synthesis of DHPMs and 1,4-DHPs using BNPs@SiO2(CH2)3NHSO3H as a catalyst 

2. Experimental 

This nano-catalyst (BNPs@SiO2(CH2)3NHSO3H) was synthesized according to 

previously reported procedure [55].  

2.1. General 

Yields refer to isolated products. The purity of the products and the progress of the reactions 

were accomplished by TLC. Melting points were determined by a Stuart Scientific SMP2 

apparatus. The FT-IR spectra were recorded on Perkin-Elmer 683 spectrometer using pressed 

KBr pellets. The materials were purchased from Merck Company and used without any 

purification. TEM and SEM recorded using a TESCAN, Model: MIRA3. X-ray powder 

diffraction (XRD) was performed on a PANalytical Company X'Pert Pro MPD diffractometer. 

Thermogravimetric analyis (TGA) was carried out using a STA PT-1000 Linseis (Germany) 

in the temperature range of 25– 800 °C at a heating rate of 10˚C min-1, under air atmosphere. 

All yields refer to isolated products after purification by EtOH. 
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2.2. General Procedure for the Preparation of 3,4-Dihydropyrimidon-2-(1H)-ones using 

BNPs@SiO2(CH2)3NHSO3H 

In a round bottom flask, a mixture of aromatic aldehyde (1 mmol), ethyl acetoacetate (1 mmol), 

urea or thiourea (1.5 mmol) and BNPs@SiO2(CH2)3NHSO3H (0.05 g, containing 0.07 mmol 

SO3H) was heated at 80 °C under solvent-free conditions for the appropriate time. When the 

reaction was complete as monitored by TLC (n-hexane/ethyl acetate: 6/4), ethanol was added 

to the mixture and it was stirred for 5 min at 80 °C. Then, the catalyst was removed by simple 

filtration. After evaporation of the solvent corresponding product was obtained and further 

purification was carried out by crystallization in hot ethanol. 

3.3. General Procedure for the Synthesis of 1,4-Dihydropyridines using 

BNPs@SiO2(CH2)3NHSO3H 

A mixture of the aldehyde (1 mmol), 1,3-dicarbonyl compounds (2 mmol) and ammonium 

acetate (1.5 mmol) in the presence of BNPs@SiO2(CH2)3NHSO3H (0.06 g, containing 0.08 

mmol SO3H) was heated at 70 °C in EtOH (7 mL) as a solvent. The progress of the reaction 

was monitored by TLC (eluent: EtOAc: n-hexane = 3/7)). After completion of the reaction, the 

mixture was cooled to room temperature and then ethanol was added to the resulting mixture 

and the catalyst was isolated by filtration. After evaporation of solvent, solid product was 

obtained and recrystallized from ethanol to give the pure products in excellent yields.  

3. Results and discussion  

3.1. Catalyst characterization 

Following the successful synthesis of the BNPs@SiO2(CH2)3NHSO3H and its use for the 

selective oxidation of sulfides in the previous work, we found this to be a stable and efficient 

nano-catalyst for the synthesis of heterocyclic compounds including DHPMs and 1,4-DHPs. 

The boehmite nanoparticles were synthesized according to the method described in the 

literature [55, 56] The schematic pathway for the preparation of sulfonic acid-modified silica-

coated BNPs are depicted in Scheme 2.  
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Scheme 2. The schematic route for synthesis of BNPs@SiO2(CH2)3NHSO3H 

Catalyst was well identified using different methods including FT‐IR, EDX, XRD, mapping, 

TEM, SEM, TGA-DTA analysis and pH analysis. 

The bonding of different groups onto the catalyst surface and catalyst synthesis were 

investigated step by step by the IR technique. FT-IR spectra of a) BNPs b) BNPs-TEOS, c) 

BNPs@SiO2(CH2)3NH2 and d) BNPs@SiO2(CH2)3NHSO3H are depicted in Fig. 3. As can be 

seen, all peaks appearing in Fig. 3a for BNPs are repeated in Fig. 3b, with a slight change in 

frequency which is due to the grafting of TEOS to the boehmite surface. In addition, in all 

spectra (Fig. 3a-d), the peaks appearing in 424, 511, 636 and 778 cm-1 are related to the Al-O 

stretching frequency and also the strong peak in 1000-1300 cm-1 is related to the hydrogen 

bond (OH…OH) between the boehmite plates and asymmetric and symmetric stretching 

vibration of the Si-O-Si band buried below this peak.[55, 57] As can be seen in Fig. 3a,b, OH 

bending adsorption and OH stretching adsorption appeared in 1605, 1625 cm-1 and 3370-3580 

cm-1 respectively. It should be noted that all Al-O peaks shift to lower frequencies after binding 
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the acidic groups to the BNPs@SiO2(CH2)3NH2 surface and OH bending frequency shift to 

higher frequency, which collaborates the successful synthesis of the catalyst. 

Also, broad adsorption in 3000–3500 cm−1 is prone to the successful attachment of the SO3-

H groups to the catalyst surface [55]. However, in the 3100 to 3500 region, in addition to the 

acidic groups, there is also the possibility of non-functionalized hydroxyl groups of boehmite. 

 

Fig. 3. FTIR spectra of a) BNPs, b) BNPs-TEOS, c) BNPs@SiO2(CH2)3NH2 and d) 

BNPs@SiO2(CH2)3NHSO3H 

TEM and SEM analyzes were used to obtain accurate information on the morphology and 

particle size of the BNPs@SiO2(CH2)3NHSO3H. According to Fig. 4a, the morphology of 

acidic boehmite is nearly orthorhombic [8] and the particles are irregularly dispersed and there 

is little accumulation which is common in bohemite nanoparticles due to hydrogen bonding 

between the plates. The average particle size of BNPs@SiO2(CH2)3NHSO3H is between 10-40 

nm. 

Also, the structure and particle size of the boehmite and BNPs@SiO2(CH2)3NHSO3H were 

investigated by SEM, the results of which are in agreement with the obtained results from TEM. 

SEM images of boehmite and BNPs@SiO2(CH2)3NHSO3H are shown in Fig. 4b-c. The 

morphology of the initial boehmite is irregular and accumulates due to the many hydroxyl 

groups on the boehmite surface (Fig. 4b). It is worth mentioning that, the particle size in the 

nano-catalyst is between 15-40 nm, which corroborates the particle size obtained from TEM 
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(Fig. 4c). It is worth noting that after the functionalization of the boehmite surface, the 

accumulation is reduced and the structure is spherical and regular. 

 

 

Fig. 4. a) TEM image of BNPs@SiO2(CH2)3NHSO3H, b) SEM image of boehmite and c) SEM image 

of the BNPs@SiO2(CH2)3NHSO3H 

Powerful technique to scrutiny the crystallinity and phase purity of the material is XRD. Fig. 5 

showed the XRD pattern of BNPs@SiO2(CH2)3NHSO3H. According to the diffraction peaks 

at the Bragg angles of 14.40° (020), 28.41° (120), 31.96° (110), 40.46° (060), 45.71° (131), 

51.94° (200), 56.02° (151), 65.04° (231) and 68.09° (171), the boehmite crystalline phase is 

orthorhombic.[55, 58] It is obvious that the boehmite crystalline phase is retained after several 

modification steps and after the increase of different groups and linkers, the XRD pattern 

changes and as can be seen in the XRD pattern, several peaks at 20-30° are typical for silica 

and not seen in the XRD pattern of Boehmitt [59, 60]. Based on the evidence the introduced 

catalyst was successfully synthesized.  
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Fig. 5. XRD pattern of BNPs@SiO2(CH2)3NHSO3H 

In the following, energy-dispersive X-ray spectrometry (EDX) analysis was used to 

corroborate the presence of all the elements in the catalyst structure and based on the EDX 

pattern, the composition of the BNPs@SiO2(CH2)3NHSO3H was affirmed by the presence of 

N (5.56%), O (76.28%), Al (6.10%), S (9.22%) and Si (2.83%) (Fig. 6). 

 

Fig. 6. EDX spectrum of the nano-catalyst 

Another useful technique used to illustrate the distribution of elements in the nano-catalyst 

structure is mapping. The mapping pattern of the BNPs@SiO2(CH2)3NHSO3H is illustrated in 

Fig. 7 and the identical distribution of all the elements in the structure of the acidic 

heterogeneous catalyst is quite evident. 
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Fig. 7. Mapping pattern of the BNPs@SiO2(CH2)3NHSO3H 

Thermogravimetric analysis (TGA) was used for the survey of the thermal behavior of the 

catalyst. Fig. 8 presents a) TGA curve and b) TGA-DTA diagram of the 

BNPs@SiO2(CH2)3NHSO3H. Based on the literature, boehmite nanoparticles are stable even 

at temperatures up to 400 °C and retains approximately 90% of its weight.[61] The first weight 

losing before 120 °C (3.58%) can be related to the water elimination. A second weight loss 

(14.54%) in the range of 130-300 °C is ascribed to the thermal decomposition of the NHSO3H 

groups and organic solvents. It is worth noting that, a third weight loss that occurred in 300-

600 °C is attributed to the APTES and TEOS removal from the boehmite surface. Finally, 

according to the TGA diagram, the last weight loss which observed between 600 to 800 °C is 

related to the boehmite crystalline phase change. In addition, based on DTA curve (Fig. 8b), 

the process of decomposition of inorganic and organic templates is an exothermic process. In 

the DTA diagram, three exothermic peaks are seen and the first peak at 130 °C might be 

attributed to the water evaporation and the second peak in 336 °C can be related to the removal 

of the organosilane and organic groups from the catalyst surface and the last peak at 490 °C is 

probably corresponding to the catalyst crystalline phase variation. 
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Fig. 8. a) TGA diagram of the catalyst and b) TGA-DTA diagram of the catalyst 

3.2. pH analysis of the catalyst 

To measure the acidity of the catalyst surface, (0.1 g) of the prepared catalyst was added to 

the aqueous solution of NaCl (1 M, 10 mL) with an initial pH of 7.62. The mixture was stirred 

continuously for 30 min during which the pH of the mixture diminished to 1.84, denoting an 

ion exchange between protons of NHSO3H groups and sodium ions, this represents 1.44 mmol 

g-1 of acidic groups on the boehmite surface [55]. In this way, the acidity was measured for the 
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catalyst surface after the fifth run (pH = 1.95), and the surface acidity of the catalyst 1.12 

mmol/g-1 was obtained. Also, the acidity of the surface was evaluated by titration with a NaOH  

(0.1 M), and the acidity was found to be 1.42 mmol per gram of catalyst, which is in good 

agreement with the value obtained with the PHM apparatus.  

3.3. Catalytic studies 

To optimize the reaction conditions, as a model, the condensation of benzaldehyde (1 

mmol), ethyl acetoacetate (1 mmol) and urea (1.5 mmol) was examined in the presence of 

different quantities of the catalyst under solvent-free conditions at different temperatures. The 

respective results are summarized in Table 1. The reaction was tested in the presence of 0.02-

0.08 g of BNPs@SiO2(CH2)3NHSO3H. The best results regarding the reaction time and yield 

were achieved in the presence of 0.05 g (0.05 g, containing 0.07 mmol SO3H) of the catalyst 

(Table 1, entry 4). Also, using a lower amount of the catalyst resulted in a lower yield, while a 

higher amount did not affect the reaction time and yield (Table 1, entries 3 and 5). To evaluate 

the temperature influence, the model reaction was performed in 70, 80 and 100 °C. It was found 

that 80 °C was the optimal reaction temperature and the reaction was incomplete at lower than 

80 °C (Table 1, entry 7). 

Table 1. Effect of the catalyst amount and temperature on the reaction between ethyl acetoacetate, urea, 

and benzaldehydea 

 

 

 

Entry BNPs@SiO2(CH2)3NHSO3H (g) Temp (°C) Yield (%)b 

1 - 80 Trace 

2 0.02 80 60 

3 0.03 80 30 

4 0.05 80 97 

5 0.08 80 98 

6 0.08 100 98 

7 0.05 70 80 
a Reaction conditions: Benzaldehyde (1 mmol), ethylacetoacetate (1 mmol) and urea 

(1.5 mmol), solvent-free. 
b Isolated yields. 

To survey the solvent effect on the time and reaction yield, we studied varied solvents, 

containing CH3CN, H2O, CH2Cl2, DMF and EtOH at 80 °C using 0.05 g (0.07 mmol SO3H) of 

the catalyst. The results of these examinations revealed that polar solvents led to a significant 

decrease in the yield of the desired product compared to solvent-free conditions (Table 2, 

entries 1–5). 
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Table 2. Effect of various solvents on the preparation of 3,4-dihydropyrimidinonesa 

 

 

 

 

Entry Solvent Yield (%)a 

1 H2O 30 

2 EtOH 65 

3 CH2Cl2 50 

4 CH3CN 60 

5 DMF 70 

6 - 97 
aReaction conditions: Benzaldehyde (1 mmol), ethylacetoacetate (1 

mmol) and urea (1.5 mmol), catalyst (05 g) (0.05 g, containing 0.07 

mmol SO3H), 30 min. 
aIsolated yields. 

With optimized conditions in hand, synthesis of 3,4-dihydropyrimidinones with variety of 

functionalized aromatic aldehydes was performed to explore the scope and the generality of 

this protocol and the corresponding results are summarized in Table 3. Aromatic aldehydes 

bearing either electron donating or electron-withdrawing substituents reacted efficiently and 

gave excellent yields (Table 3, entries 3,5,12-13). Also. furane-2-carbaldehyde and thiophene-2-

carbaldehyde as Heterocycle aldehydes, produced corresponding compounds with remarkable 

yields (Table 3, entries 6,7). It is noteworthy that, BNPs@SiO2(CH2)3NHSO3H was an efficient 

and reusable acidic heterogeneous catalyst for the preparation of the 3,4-dihydropyrimidinones. 

It is noted that the reaction time is shorter in the presence of aldehydes with electron-poor 

groups. 

In addition, to evaluate the efficiency of this approach, comparison of this procedure with 

previous methods was performed and the results are summarized in Table 4. As the Table 

demonstrates, BNPs@SiO2(CH2)3NHSO3H is superior to former methods and has indeed 

improved the synthesis of 3,4-dihydropyrimidinones. 

A plausible mechanism for the synthesis of 3,4-dihidropyrimidones using the 

BNPs@SiO2(CH2)3NHSO3H catalyst is as follows: The BNPs@SiO2(CH2)3NHSO3H as a 

Bronsted acidic catalyst participates in the reaction by activating the aldehyde (1). This is 

pursued by nucleophilic addition of urea or thiourea (2) forming the intermediate (4). Then, 

this intermediate interacts with ketoester (5) to produce an open chain intermediate (6), which 

is followed by cyclization and dehydration to produce 3,4-dihidropyrimidone (8) (Scheme 3). 
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Table 3. One pot synthesis of various 3,4-dihydropyrimidinonesa 
 

 

 

 

 

 

 

Entry Aryl aldehyde X R Time (min) Yield (%)b M.p [Ref] 

1 C6H5-CHO O Et 30 97 201-203 [61] 

2 4-ClC6H4-CHO O Et 27 96 211-213 [62] 

3 4-NO2C6H4-CHO O Et 25 95 207-209 [61] 

4 4-MeC6H4-CHO O Et 40 94 170-171 [61] 

5 4-MeOC6H4-CHO O Et 45 96 200-202 [63] 

6 2-Furyl-CHO O Et 55 95 204-206 [61] 

7 2-Thienyl-CHO O Et 60 95 207-208 [61] 

8 4-MeOC6H4-CHO S Et 70 98 150-152 [63] 

9 C6H5-CHO S Et 40 95 202-204 [63] 

10 4-MeC6H5-CHO S Et 45 96 202-204 [63] 

11 C6H5-CHO O Me 25 97 210-212 [61] 

12 4-FC6H4-CHO O Me 20 96 190-192 [63] 

13 4-NO2C6H4-CHO S Et 35 95 193-195 [63] 

14 4-ClC6H4-CHO S Et 30 96 192-193 [63] 

15 3-MeOC6H4-CHO O Et 55 97 150-152 [62] 
aReaction conditions: Aryl aldehyde (1 mmol), ethyl acetoacetate (1 mmol), urea (1.5 mmol), catalyst: 0.05 g 

(0.05 g, containing 0.07 mmol SO3H), solvent-free, 80 °C. 
bIsolated products. 

 

Table 4. Comparison of methods for the synthesis of 3,4-dihydropyrimidone compounds 

Entry Product Conditions Time/ min Yield (%)Ref 

1 

 

Fe3O4@SBA-15/ Solvent-free/85 °C 360 85 [64] 

2 PTA@MIL-101/Solvent-free/100 °C 60  90 [65] 

3 Cu@PMO-IL/Solvent-free/70 °C 50  92 [66] 

4 PTA@ZIF‐9(NH2)/Solvent-free/110 °C/ 30  85 [27] 

5 GO-PO3H2/ Solvent-free/ 80 °C 20 92 [67]  

6 BNPs@SiO2(CH2)3NHSO3H/ Solvent-free/80 °C 30  97 
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Scheme 3. Proposed mechanism for the synthesis of 3,4-dihydropyrimidones 

For practical purposes, the ability to easily recycle the catalyst is highly valuable. The 

recyclability of the BNPs@SiO2(CH2)3NHSO3H has great importance for both the economic 

and the synthetic aspects. To check this issue, the recyclability of the catalyst was tested for 

the preparation of DHPMs. Therefore, the reusability of the catalyst was investigated by 

isolation of the BNPs@SiO2(CH2)3NHSO3H from the reaction mixture with simple filtration, 

washing with ethanol and drying in a vacuum oven at 80 °C for 10 h and reuse it in subsequent 

runes. The recovered catalyst can be reused at least five times with a small loss in catalyst 

activity (Fig. 9). 
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Fig. 9. The reusability of the BNPs@SiO2(CH2)3NHSO3H in the reaction of benzaldehyde, ethyl 

acetoacetate, and urea  

Since the prepared catalyst showed excellent catalytic activity for the Biginelli reaction, we 

decided to employ it for the preparation of 1,4-dihydropyridines. For this regard, to achieve the 

best reaction conditions, BNPs@SiO2(CH2)3NHSO3H was added to a solution of aromatic 

aldehyde, 1,3-dicarbonyl compounds and ammonium acetate in EtOH at 70 °C as a model 

reaction (Table 5). First, the reaction was studied in the presence of different quantities of the 

catalyst (0.02, 0.04, 0.06 and 0.08 g). The best results were obtained in the yield and reaction 

time in the presence of 0.06 g (0.08 mmol SO3H) of BNPs@SiO2(CH2)3NHSO3H (Table 5, 

entry 7). Lower temperatures increased the reaction time and reduced yield of product (Table 

5, entries 5-6). Furthermore, increasing the amount of catalyst to 0.8 g did not lead to significant 

increase in the yield of product (Table 5, entry 8).  

Then, we focused on solvent influence and studied several solvents including CH3CN, H2O, 

DMF, CH2Cl2 and EtOH under optimum reaction conditions (Table 6). As can be seen, the 

nature of solvent has a considerable effect on the reaction rate and the yield of product and 

EtOH works better (Table 6, entry 5) and other solvents are less effective. 
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Table 5. Effect of increasing amount of BNPs@SiO2(CH2)3NHSO3H and temperature on the 

preparation of 1,4-dihydropyridinea 

 

 

Entry BNPs@SiO2(CH2)3NHSO3H (g) Temp (°C) Time (min) Yield (%)b 

1 - 25 60 - 

2 - 70 60 Trace 

3 0.02 70 60 50 

4 0.04 70 40 75 

5 0.06 25 60 60 

6 0.06 50 45 80 

7 0.06 70 30 97 

8 0.08 70 30 98 
aReaction conditions: Benzaldehyde (1 mmol), 1,3-dicarbonyl compounds (2 mmol), NH4OAc (1 mmol), 

EtOH (7 mL).  
bYields refer to pure isolated products. 

Table 6. Effect of various solvents on the synthesis of 1,4-dihydropyridine derivativesa  

 

 

Entry Solvent Yield (%)a 

1 CH3CN 85 

2 H2O 50 

3 CH2Cl2 55 

4 DMF 85 

5 EtOH 97 
aReaction conditions: Benzaldehyde (1 mmol), ethylacetoacetate (2 mmol) NH4OAc (1 

mmol), catalyst (06 g) (0.06 g, containing 0.08 mmol SO3H), solvent (7 mL). 
aIsolated yields. 

 

In order to scrutiny the activity of BNPs@SiO2(CH2)3NHSO3H as a catalyst, a range of 

aromatic aldehydes were treated with different 1,3-dicarbonyl compounds and ammonium 

acetate in the presence of BNPs@SiO2(CH2)3NHSO3H and the desired 1,4-dihydropyridines 

were formed in excellent yields (90-97 %) (Table 7). The position and nature of the substituent 

on the aromatic ring had a negligible effect on the yields of the final products. But in general, 

aldehydes with electron-withdrawing groups have shorter reaction times (Table 7, entries 4,8 

and 10). In addition, under optimized reaction conditions, heterocycle aldehydes reacted 

perfectly and generated desired products with high yields (Table 7, entries 5-7 and 12-13). 

Furthermore, cyclohexyl aldehyde (as an aliphatic aldehyde) works well in this procedure and 

produces the desired product in excellent yield (Table 7, entry 14) 
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We investigated the performance of the introduced catalyst by some of the previously 

selected protocols and the results are collected in Table 8. It should be noted that, according to 

Table, the BNPs@SiO2(CH2)3NHSO3H is a more efficient catalyst with respect to times and 

yields than these reported catalysts. 

Table 7. Direct synthesis of various 1,4-dihydropyridines with different 1,3-dicarbonyl compoundsa 

Entry Aldehyde 1,3-dicarbonyl compounds Time (min) Yield (%)b M.p [Ref] 

1 C6H5-CHO Ethylacetoacetate 30 97 159-161 [68] 

2 4-MeOC6H4-CHO Ethylacetoacetate 45 93 159-160 [68] 

3 4-MeC6H4-CHO Ethylacetoacetate 30 95 131-133 [69] 

4 4-ClC6H4-CHO Ethylacetoacetate 25 92 146-148 [68] 

5 2-Furyl-CHO Ethylacetoacetate 30 91 160-162 [68] 

6 2-Thienyl-CHO Ethylacetoacetate 25 95 154-156 [70] 

7 3-Pyridyl-CHO Ethylacetoacetate 35 92 191-192 [71] 

8 3-NO2C6H4-CHO Ethylacetoacetate 20 97 163-165 [68] 

9 C6H5-CHO Dimedone and Ethylacetoacetate 35 97 203-204 [72] 

10 3-NO2C6H4-CHO Dimedone and Ethylacetoacetate 25 90 176-178 [73] 

11 4-BrC6H4-CHO Dimedone and Ethylacetoacetate 35 95 263-265 [73] 

12 2-Furyl-CHO Dimedone and Ethylacetoacetate 40 92 246-248 [72] 

13 2-Thienyl-CHO Dimedone and Ethylacetoacetate 30 95 239-241 [72] 

14 C6H11-CHO Dimedone and Ethylacetoacetate 50 90 222-224 [73] 
a Reaction conditions: Aldehyde (1 mmol), 1,3-dicarbonyl compound (2 mmol), NH4OAc (1 mmol), EtOH (7 mL), 

70 C. 
b Isolated yields. 

Table 8. Comparison of different catalytic systems for the synthesis of 1,4-DHPs 

Entry Product Coditions 
Time 

(min) 
Yield (%) 

1 

 

PEG1000-DAIL/ Toluene/80 °C 40 91 [74]  

2 PPh3/EtOH/Reflux 300 72 [75]  

3 Fe3O4 NPs/Solvent-free/r.t: 390 73 [76]  

4 
Fe2O3@HAP@Melamine/Solvent- 

ftee/80 °C 
15 94 [77] 

5 ZnO NPs/Solvent free/80 °C 120  82 [78] 

6 Nicotinic acid/ Solvent free/80 °C 5 95 [9] 

7 BNPs@SiO2(CH2)3NHSO3H 30 97  

The suggested mechanism for the synthesis of 1,4-DHPs is shown in Scheme 4. First, 

BNPs@SiO2(CH2)3NHSO3H, which is a Bronsted acidic catalyst, activates aldehyde. Then, 

synthesis of 1,4-DHP proceeds through the formation of a Knoevenagel condensation product 

as a key intermediate (3). A second key intermediate (4) is an ester enamine, which is formed 

by condensation of the second equivalent of the 1,3-dicarbonyl compound with ammonia. 

Further condensation between these two key fragments, gives the 1,4-DHP derivatives. 

In another survey, reusability and durability of BNPs@SiO2(CH2)3NHSO3H was checked. 

For this regard, model reaction was studied in the presence of catalyst. After completion of the 
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reaction, the catalyst was isolated by filtration, washed by EtOH and dried to use for the 

subsequent run. It is noteworthy that, catalytic activity of BNPs@SiO2(CH2)3NHSO3H was 

maintained within 5 successive recycle runs (Fig. 10). To confirm the catalyst recyclability, the 

recovered catalyst by EDX and IR techniques was investigated. It should be noted that FT- IR 

of recovered catalyst after 5th run is similar to the fresh catalyst and EDX pattern of the reused 

catalyst represents the presence of the all elements in the structure of the catalyst, which affirms 

the BNPs@SiO2(CH2)3NHSO3H is recyclable (Fig. 11). 

 

Scheme 4. A possible mechanism for the synthesis of 1,4-DHPs in the presence of 

BNPs@SiO2(CH2)3NHSO3H 
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Fig. 10. The reusability of the catalyst for the reaction of benzaldehyde, ethyl acetoacetate, and 

ammonium acetate 

 

 

Fig. 11. a) EDX pattern of fresh catalyst b) EDX pattern of recovered catalyst after 5th run c) 

comparison of FT-IR fresh catalyst and FT-IR 5th run 

In another study to confirm the non-leaching of acidic groups to the reaction medium, we 

performed a hot filtration test. For this purpose, the model reaction for Biginelli synthesis was 

performed in the presence of the catalyst and after half a reaction time (15 min) (70% yield), 

the catalyst was removed by simple filtration and residue transferred to another quartz tube and 

the reaction was stirred in the absence of the catalyst. After several hours, the reaction yield 

did not change significantly (72% yield as screened by TLC). This test is a good reason for the 

stability of the catalyst and the leaching of acid groups from the catalyst surface is not seen. 
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4. Conclusion 

In conclusion, this research displays one-pot multicomponent syntheses of 3,4-

dihydropyrimidones and 1,4-dihydropyridines catalyzed by efficient and recyclable 

BNPs@SiO2(CH2)3NHSO3H in mild reaction condition. Catalytic results showed that 

boehmite can be a stable, active and effective solid-phase support for the heterogenization of 

homogeneous catalysts. This solid catalyst demonstrates high acidic strength which leads to 

greater catalyst efficiency. It is noteworthy that, several unique advantages for the synthesis of 

DHPM and DHP derivatives are short times, excellent yields, use of mild conditions, easy 

catalyst separation, simple workup and catalyst recovery up to at least five times with small 

drop in activity. According to the results, BNPs@SiO2(CH2)3NHSO3H is superior to many of 

the reported catalysts in the scientific literature for the preparation of 3,4-DHPMs and 1,4-

DHPs. 
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