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The first total synthesis of the n-3 docosapentaenoic derived oxygenated product MaR2n-3 DPA has been
achieved. The 13R and 14S stereogenic centers were introduced using 2-deoxy-D-ribose in a chiral pool
strategy. The geometry of the Z,E,E-triene moiety was prepared using highly E-selective Wittig- and
Takai-olefination reactions as well as the Z-stereoselective Lindlar reduction. LC/MS-MS data of synthetic
MaR2n-3 DPA matched data for the biosynthetic formed product that enabled the configurational assign-
ment of this oxygenated natural product to be (7Z,9E,11E,13R,14S,16Z,19Z)-13,14-dihydroxydocosa-
7,9,11,16,19-pentaenoic acid.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Recent studies have demonstrated that polyunsaturated fatty
acids (PUFAs) derived specialized pro-resolving mediators (SPMs)
actively govern and promote the resolution of inflammation [1].
PUFAs are enzymatically converted into different families of SPMs,
e.g. the lipoxins, resolvins, protectins and maresins [2]. Maresin 1
(MaR1) is biosynthesized [3] from docosahexaenoic acid (DHA) in
the presence of 12-lipoxygenase and was the first member of the
maresin family of SPMs to be reported [4] and prepared by total
synthesis [5].

In 2013 Dalli and co-workers reported several new SPMs
biosynthesized from n-3 docosapentaenoic acid (n-3 DPA) [6]. n-
3 DPA, consisting of 22 carbons and five all-Z double bonds, is an
elongated product of eicosapentaenoic acid and an intermediate
in the biosynthesis of DHA [7]. Using a self-limited model of
inflammation and targeted metabololipidomics during the onset
and resolution of acute inflammation, Dalli and co-workers [6]
uncovered several novel n-3 DPA SPMs that are potent bioactive
molecules. The structures of MaR1n-3 DPA (1), MaR2n-3 DPA (2) and
MaR3n-3 DPA (3) are shown in Fig. 1.
Based on their novel pro-resolving and anti-inflammatory
bioactions, SPMs have attracted significant interest from the
biomedical, pharmacological and synthetic organic communities
[8]. SPMs act as agonists on individual GPCRs [9] exhibiting
nanomolar pro-resolution and anti-inflammatory bioactions [10].
Some SPMs have entered initial clinical trial development pro-
grams [11]. These endogenously formed products are available in
minute amounts from their natural sources and contain several
stereogenic centers and conjugated E- and Z-double bonds. Hence,
stereoselective synthesis for configurational assignment and
extensive biological testing becomes necessary.

A few of the n-3 DPA-derived SPMs have recently been prepared
[12] and subjected to biological evaluations [13], but MaR2n-3 DPA

(2) has not been synthesized to date and its absolute configuration
at C-13 remained to be determined. These facts, as well as the high
demand for sufficient material for biological and pharmacological
testing, inspired us to report the first total synthesis of
MaR2n-3 DPA (2).

The three key intermediates 4, 5 and 6 in our retrosynthetic
analysis are depicted in Scheme 1. The stereogenic centers at C13
and C14 were assumed to be R and S, respectively, based on biosyn-
thetic considerations [6]. Hence, 2-deoxy-D-ribose (7) was deemed
a suitable commercially available starting material for preparing
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Fig. 1. Structures of MaR1n-3 DPA (1), MaR2n-3 DPA (2) and MaR3n-3 DPA (3). The absolute configuration is presented where established.

Scheme 1. Retrosynthetic analysis of MaR2n-3 DPA (2).
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MaR2n-3 DPA (2). This carbohydrate has been used in the stereose-
lective total synthesis of other SPMs [14].

The phosphonium salt 8 was synthesized from Z-hex-3-en-1-ol
(9) as previously described [12c]. Intermediate 11 was obtained
from known TBS-protected aldehyde 10 [12d] using a highly Z-
selective Wittig reaction with the in situ generated ylide of 8
(Scheme 2). This produced 11 as one diastereomer in 84% yield
(ESI). Next, selective deprotection of the primary TBS-group in 11
was achieved with para-toluene sulfonic acid (PTSA) in MeOH at
�20 �C giving alcohol 12 that was oxidized (Dess-Martin periodi-
nane (DMP), NaHCO3, CH2Cl2) to its aldehyde 13 in 40% yield over
the two steps. Aldehyde 13 was dissolved in toluene and 1.3 equiv.
of the stabilized ylide (triphenyl-phosphoranylidene)acetaldehyde
was added. The reaction mixture was heated at reflux for 19 h to
afford the E-configured a,b-unsaturated aldehyde 14 in 60% yield
after purification by column chromatography (ESI). To complete
the formation of fragment 4, a Takai reaction was performed on
aldehyde 14. After acidic work-up and purification by column
chromatography the sensitive E,E-vinylic iodide 4 was isolated in
73% yield (Scheme 2).

Terminal alkyne 5 was conveniently prepared in a four-step
sequence, starting from cycloheptanone (15), see Scheme 3.
Bayer-Villiger oxidation on 15 followed by Fischer-esterification
gave hydroxyl-ester 16 that was oxidized to aldehyde 17 and
reacted in the Ohira-Bestmann reaction affording alkyne 5 in 12%
yield from 15.

The Sonogashira coupling reaction with key fragments 4 and 5
produced alkyne 18 in 50% isolated yield after careful chromato-
graphic purification (Scheme 4). Next, removal of the two-TBS
groups in 18 with excess TBAF in THF produced diol 19. Reduction
of the internal alkyne in 19 using the Lindlar-reduction (Pd-CaCO3,
EtOAc/pyridine/1-octene, H2 1 atm) gave the methyl ester of
MaR2n-3 DPA (20) in 55% isolated yield over the two steps and with
>95% chemical purity (HPLC, ESI). Finally, careful saponification
(LiOH, H2O, MeOH, 0 �C) of 20 gave MaR2n-3 DPA (2) in 97% yield
(Scheme 4). Data from NMR, LC/MS-MS and UV experiments (ESI)
confirmed the structure of 2.

We next tested whether synthetic 2 matched the endogenous
MaR2n-3 DPA (2) prepared from human samples. We first isolated
tive synthesis of MaR2n-3 DPA, Tetrahedron Letters, https://doi.org/10.1016/
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Scheme 2. Synthesis of vinylic iodide 4. Reagents and conditions: i) NaHMDS, CH2Cl2, � 78 �C; ii) para-toluene sulfonic acid (PTSA), MeOH, �20 �C; iii) DMP, NaHCO3, CH2Cl2;
iv) toluene, (triphenyl-phosphoranylidene)acetaldehyde, D; v) CrCl2, dioxane, THF, CHI3, 0 �C.

Scheme 3. Synthesis of alkyne 5. Reagents and conditions: i) a)m-CPBA, CH2Cl2; b) MeOH, H2SO4; ii) DMP, NaHCO3, CH2Cl2; iii) dimethyl(1-diazo-2-oxopropyl) phosphonate;
K2CO3, MeOH.

Scheme 4. Total synthesis of MaR2n-3 DPA (2). Reagents and conditions: i) CuI, Et2NH, Pd(PPh3)4 (5%); ii) TBAF, THF; iii) Pd/CaCO3, EtOAc/pyridine/1-octene, H2; iv) LiOH, H2O,
MeOH, 0 �C.
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material from human serum and the retention time of the endoge-
nous mediator using RP-HPLC-MS-MS lipid mediator profiling
experiments [15]. Using multiple reaction monitoring (MRM) of
the parent ion with m/z 361 and the daughter ions m/z 223 or
m/z 193, we obtained a sharp peak with retention time (RT) of
14.4 min (Fig. 2A). Of note, a similar retention time of 14.4 min
was obtained with synthetic 2 (see Fig. 2A). Moreover, co-injection
(2 lL) of a homogenous sample of biological MaR2n-3 DPA (2) with
synthetic 2 in a 1:10 M ratio, respectively, gave a single sharp peak
in MRM experiments, with RT 14.4 min (Fig. 2A). Similar findings
were made with platelet rich plasma, where endogenous
MaR2n-3 DPA (5) gave a RT of 14.4 min that co-eluted with synthetic
2 (Fig. 2B). To obtain further evidence that the chemical structure
for synthetic 2 matches that of endogenous MaR2n-3 DPA we next
assessed the MS/MS fragmentation spectra. Here we found that,
Fig. 2. Synthetic 2 matches endogenous MaR2n-3 DPA in human serum and cells. (A) hum
mediators were extracted and MaR2n-3 DPA was identified using lipid mediator profiling. P
orm/z 361 > 193 (platelet rich plasma). Top panels depict the chromatograms obtained w
2 and bottom panels depict chromatograms obtained with the biological material co-inj
n = 3 distinct human donors for B.
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in accordance with published findings [6], MaR2n-3 DPA from both
human serum and platelet rich plasma gave the following ions
m/z 361 = M�H, m/z 344 = M�H�H2O, m/z 325 = M�H�2H2O,
m/z 317 = M�H�CO2, m/z 299 = M�H�H2O�CO2, m/z
281 = M�H�2H2O�CO2, m/z 179 = 223-CO2, m/z 161 = 223-H2-
O�CO2, m/z 149 = 193-CO2, ions that were also found in the MS/
MS spectrum of synthetic 2 (Fig. 3).

The SPMs are among the most exciting small and naturally
occurring molecules currently undergoing investigations towards
drug development of new anti-inflammatory drugs [1,16]. The
stereoselective synthesis of 2 using the Lindlar reaction, the
Sonogashira coupling reaction and the Takai olefination
produced multi milligram quantities of 2 that is now available
for further biological and pharmacological evaluations to be
conducted.
an serum (B) platelet rich plasma were collected, placed in ice-cold methanol, lipid
anels depict representative MRM chromatograms form/z 361 > 223 (human serum)
ith biological material, center panels depict chromatograms obtained with synthetic
ected with synthetic 2. Results are representative of three determinations for A and

tive synthesis of MaR2n-3 DPA, Tetrahedron Letters, https://doi.org/10.1016/
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Fig. 3. MS/MS fragmentation spectra for synthetic 2 and MaR2n-3 DPA from human
serum and platelet rich plasma. Lipid mediators were extracted from (A) human
serum and (B) platelet rich plasma and MS/MS spectra for endogenous MaR2n-3 DPA,
together with those of (C) synthetic 2, were obtained using lipid mediator profiling.
Results are representative of n = 3 determination for A and C and 3 volunteers for B.
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Appendix A. Supplementary data

Copies of 1H and 13C NMR spectra for intermediates and charac-
terization data (UV/VIS spectra, HPLC chromatograms and LC/MS-
MS spectra frommatching experiments) of 2 as well as experimen-
tal procedures. Supplementary data to this article can be found
online at https://doi.org/10.1016/j.tetlet.2019.151510.
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