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Protonated 1,8-diazabicyclo[5,4,0Jundec-7-ene as catalyst for cascade addition/cyclization of 2-alkyny-
laniline and carbon disulfide has been described. This process provides a convenient route for synthesis
of a variety of benzo[d][1,3]thiazine-2(4H)-thiones in high yields with high regio- and stereoselectivity at
room temperature without metal.
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Heterocyclic compounds are ubiquitous in natural products,
pharmaceuticals, and organic materials.! As a consequence, the
ongoing interest for developing new versatile and efficient synthe-
ses of heterocycles has always been a thread in the synthetic com-
munity. Among them, cascade reaction is one of the most powerful
strategic tools for the rapid assembly of heterocyclic compounds.?
This process enables multiple bond-forming to occur in one
sequence, which greatly enhances the synthetic efficiency, while
producing less waste and minimizing handling. Recently, the
metallic Lewis acid-catalyzed cascade reaction provided a straight-
forward method for the construction of heterocyclic compounds.?
For example, Pd- or Cu-catalyzed amination/cyclization of
o-haloalkynylarenes or haloenynes afforded indoles, pyrroles, or
quinoline®™+* and Ag-catalyzed addition/cyclization of 2-alkynyl-
benzenamines gave benzo[d][1,3]thiazine derivatives.> None-
theless, all reactions required metallic reagents such as
palladium, silver, and copper and in many cases the corresponding
ligands were used as co-catalyst, which made these reactions more
expensive. Lately, great progress has been made in the develop-
ment of metal-free transformation in organic synthesis.>~’ In this
respect, Brensted acid-catalyzed cascade reaction has attracted
considerable attention.® In contrast to the metallic Lewis acid-cat-
alyzed reaction, Brgnsted acid-catalyzed reaction is more economic
and has environmental benefits. With a point of these views, here-
in we would like to report protonated 1,8-diazabicy-
clo[5,4,0]lundec-7-ene (DBU) as a catalyst for cascade addition/
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cyclization of 2-alkynylaniline and carbon disulfide, in which
DBUH" is a catalyst for both activation of CS, and carbon-carbon
triple bond. This process provided a convenient synthetic route
to benzo[d][1,3]thiazine-2(4H)-thione for a variety of substrates
at room temperature without metal.

To optimize the reaction condition, several experiments were
performed using the reaction of p-methyl-2-(phenylethynyl)ani-
line 1a and carbon disulfide to obtain (Z)-4-benzylidene-6-
methyl-4H-benzo[d][1,3]thiazine-2-thiol 2a as model substrates
under different solvents and catalytic conditions (Table 1). Initially
we chose DBU as a catalyst for this reaction, based on our previous
work regarding DBU-promoted tandem reaction of o-haloanilines
and carbon disulfide.®*” The reaction occurred and product 2a
was obtained in 40% yield (entry 1). We next changed the reaction
temperatures and the amounts of DBU, respectively, the yield of
product 2a did not improve (entries 2-5). It is known that Brensted
acid or conjugated acid as a catalyst could activate carbon-carbon
triple bonds to make them much more electrophilic.'® Therefore,
5 mol % of H,SO4 was added into the reaction mixture. Gratifyingly,
the reaction proceeded smoothly and the yield of 2a increased to
80% (entry 6). It is noteworthy that H,SO4 was added as a single
catalyst and the reaction did not proceed (entry 7). When amount
and ratio of DBU/H,S0,4 and solvents were screened (entries 8-16),
20 mol % DBU/10 mol % H,SO,4 was found to be the best catalyst
system in acetonitrile as medium at room temperature (entry 9).
When other Brenstead acids such as p-toluenesulfonic acid (p-
TsOH), trifluoromethanesulfonic acid (CF3SOsH), trifluoroacetic
acid (CF3CO,H), and acetic acid (CH3CO,H) were employed, the
reaction performed smoothly and product 2a was also obtained
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Table 1
Optimization between p-methyl-2-(phenylethynyl)-aniline 1a and carbon disulfide®

NH
z Acid/base N\\rSH
+ s=c=§ ——————> s
Me % solvent, 24 h Me
Ph |
Ph
1a 2a

Entry  Acid/base (mol %/mol %) T (°C) Solvent Yield of 2a® (%)
1 DBU/— (20/0) 25 CH5CN 40

2 DBU/— (20/0) 50 CH3CN 48

3 DBU/— (20/0) 80 CH5CN 27

4 DBU/— (50/0) 25 CH5CN 33

5 DBU/— (100/0) 25 CH5CN 25

6 DBU/H,S0,4 (20/5) 25 CH3CN 80

7 —/H,S04 (0/5) 25 CH5CN NRE

8 DBU/H,S0, (10/5) 25 CH5CN 53

9 DBU/H,S0,4 (20/10) 25 CH4CN 94

10 DBU/H.S0,4 (50/25) 25 CH5CN 91

11 DBU/H,S0, (100/50) 25 CHsCN 73

12 DBU/H,S0, (100/100) 25 CH5CN NR®

13 DBU/H,S0,4 (20/10) 25 p-Toluene 79

14 DBU/H,S0,4 (20/10) 25 THF 21

15 DBU/H,S04 (20/10) 25 CH2CI2 NR€

16 DBU/H,S0,4 (20/10) 25 CH30H NR®

17 DBU/p-TsOH (20/10) 25 CH5CN 85

18 DBU/CF5S0sH (20/10) 25 CH5CN 87

19 DBU/CF5CO,H (20/10) 25 CH5CN 87

20 DBU/CH;CO,H (20/10) 25 CH5CN 91

21 Et;N/H»S0,4 (20/10) 25 CH5CN 22

22 DABCO/H,S0,4 (20/10) 25 CH4CN 25

23 Pyridine/H,S04 (20/10) 25 CH5CN NR®

¢ Unless otherwise noted the reactions were performed in a sealed tube with 4-
methyl-2-(phenylethynyl)aniline 1a (1 mmol), carbon disulfide (1.5 mmol) in sol-
vent (1.5 mL) for 24 h.

b The yield were evaluated by '"H NMR with CH,Br; as internal standard.

€ NR means no reaction.

in high yield (entries 17-20). Out of concern of the cost, H,SO4 was
chosen as a Brenstead acid. Furthermore, we used other protonated
organic bases such as triethylamine (EtsN) and 1,4-diazabicy-
clo[2.2.2]octane (DABCO), the reaction proceeded in lower yields
(entries 21 and 22). When a protonated pyridine was used as a cat-
alyst the reaction did not proceed (entry 23). On the basis of these
results, the optimal condition involved the following parameters:
DBU 20 mol %/H,S04 10 mol % as catalyst, acetonitrile as a solvent,
and reaction temperature at 25 °C.

Under the optimized conditions, a study on the substrate scope
was carried out, and the results are summarized in Table 2. Firstly,
treatment of (phenylethynyl)aniline 1b and carbon disulfide affor-
ded product 2b in 82% yield (entry 2). To our delight, crystals of 2b
were suitable for single crystal analysis, and its structure was fully
characterized by X-ray diffraction analysis.!! The structure of 2b
clearly shows the formation of (Z)-4-benzylidene-4H-
benzo[d][1,3]thiazine-2-thiol, in which the substituent on double
bond is on the same side with the carbamodithioic group. Then
we used other 2-alkynylbenzenamine derivatives 1 to react with
carbon disulfide. Both electron-donating groups (such as methyl
and methoxyl group) and electron-withdrawing groups (such as
chloro and fluoro atom) on the benzene ring showed good perfor-
mance (entries 1, 3-5). It is noteworthy that 2-alkynylbenzen-
amine with stronger electron-withdrawing groups, such as CO,Et
or CN group, on the para-position of 2-alkynylbenzenamine failed
to generate any product and starting materials remained (entries
6 and 7). When 2,4-dimethyl-6-(phenylethynyl)aniline 1h was
used as a substrate, the desired product 2h was also formed in
71% yield (entry 8). Notably, in all cases, only one product was ob-
served in situ by 'H NMR, it is different from Ag-catalyzed reac-
tion3V Next, different N-substituted 2-alkynylbenzenamine
derivatives were applied under the optimized conditions. For
example, when N-methyl-2-bromobenzamide 1i or N-ethyl-2-bro-
mobenzamide 1j was treated with carbon disulfide, the desired
product 2i or 2j was obtained in 72% or 54% isolated yield (entries
9 and 10), respectively. Benzyl substituted 2-alkynylbenzenamine
1k with carbon disulfide proceeded in 26% yield of product 2k

Table 2
Reaction of various 2-alkynylbenzenamine 1 with carbon disulfide®
Entry Substrate Time (h) Product Yield® (%)
NH, N _SH
e
S
1 Me/©/\ 24 Me 2a 82
1a Ph |
Ph
NH, N_ _SH
b
2 24 s 80
1o\ . ®
Ph
Ph
NH, N.__SH
N
S
3 Me0/©/\ 24 MeO 2c 84
1e Ph |
Ph
NH, N._ _SH
b
S
4 CI/©/\ 32 cl 2d 74
TR |
Ph
Ph
NH, N._ _SH
b
S
5 F N 24 E 2% 86
1e N |
Ph
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Table 2 (continued)
Entry Substrate Time (h) Product Yield® (%)
NH, N _SH
Y
6 36 S 0
EtO,C N EtO,C o
" Fh Ph
NH, N._ _SH
he
S 0
7 NC AN 36 NC | 2g
19 Ph
Ph
Me Me
NH, NYSH
8 24 S 71
Me A Me | 2h
1h Ph N
NHMe I\I/Ie
NYS
9 AN 24 s 72
gl Ph | 2i
Ph
NHEt Et
NYS
10 " A 24 s 54
Ph | 2
Ph
NHBn l?n
N\(S
11 1k§ 48 S 26
Ph | 2k
Ph
NH; N SH
Y
12 T 24 | S 9 78
1l Tol-p
Tol-p
NH, N _SH
Y
13 24 s 71¢
’ A | 2m
m ’
PhOMe-p PhOMe-p
NH, N _SH
Y
14 T 24 | S an 75
in " Spprp
PhF-p
NH, N _SH
Y
15 N 24 | S 20 67
10 -
PhCO,Me-p PhCOMe-p
NH, N_ _SH
Y
16 N 24 | S 2p 50
p PANO,-p
PhNO,-p
NH, N _SH
N
17 § 24 | S 2q 73
19 " “Th-3
Th-3
N._ _SH
b
18 F/©\ 24 E S 2r 81
r Th-3
Th-3

(continued on next page)
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Table 2 (continued)
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Entry Substrate Time (h) Product Yield® (%)
NH, N SH
N
19 48 S 2 68
AN |
Py-2
1s Py-2
N SH
b
S
20 F A 24 F 2t 0
1t B |
Bu"
NH, N SH
N
21 48 S 2u 0
A ] |
™
Tu ™S

2 Unless otherwise noted the reactions were performed in a sealed tube with 1 (1.0 mmol), carbon disulfide (1.5 mmol), DBU (20 mol %)-H,SO,4 (10 mol %) (0.134 M in

CH5CN, 1.5 mL).
b Isolated yields.
¢ Reaction temperature: 50 °C.

H,S0O,4 (10 mol%) + DBU (20 mol%)

l

R’ DBUH*

S=C=8

Scheme 1. Proposed route for DBUH"-catalyzed reaction of 2-alkynylaniline with carbon disulfide.

(entry 11). In addition, different substituent groups on the alkynes
of 2-alkynylbenzenamine were employed. Aromatic substituents
were on the end of alkynes, the reaction proceeded smoothly. For
instance, the aryl group attached on the triple bond with elec-
tron-donating groups (such as Me or OMe) (entries 12 and 13)
and electron-withdrawing groups (such as F, CO,Me, and NO,) (en-
tries 14-16). Both proceeded well and the desired products were
obtained in satisfying yields. Furthermore, thienyl and pyridyl
were on the end of alkynes, the desired products were formed in
73%, 81%, and 68% isolated yields, respectively (entries 17-19).
When alkyl and TMS groups were on the end of alkynes, the de-
sired product could not be observed and starting materials re-
mained (entries 20 and 21).

Based on the above results, the mechanism of this reaction is
proposed as shown in Scheme 1. First, the nucleophilic nitrogen
of 2-alkynylbenzenamine 1 attacks the carbon atom of carbon
disulfide,'>!® which might be activated by DBUH" to form interme-
diate 3 and release DBUH*.°*!3 The intermediate 3 undergoes pro-
ton-transfer and complexation of carbon-carbon triple bond with
DBUH" to form intermediate 4, which goes through intramolecular
nucleophilic addition to afford product 2 and release DBUH*
again.' A single DBUH" catalyst mediates both activities for CS,
molecule and alkyne species.

In summary, we have developed a simple and practical method
for the synthesis of benzo[d][1,3]|thiazine-2(4H)-thione derivatives
via protonated DBU as a dual functionalized catalyst in the reaction
of 2-alkynylaniline with carbon disulfide. The presented cascade
addition/cyclization represents a facile route for generation of het-
erocycles and avoids utilization of any metal under mild reaction.
Further reactions and mechanism of these small molecules are un-
der investigation in our laboratory, and the results will be reported
in due course.
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