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ABSTRACT: While the synthesis of biaryls has advanced rap-
idly in the past decades, cross-Ullman couplings of aryl chlo-
rides, the most abundant aryl electrophiles, have remained 
elusive. Reported here is the first general cross-Ullman cou-
pling of aryl chlorides with aryl triflates. The selectivity chal-
lenge associated with coupling an inert electrophile with a re-
active one is overcome using a combination of two catalysts:  
nickel and palladium. Studies demonstrate that LiCl is essen-
tial for effective cross-coupling by accelerating the reduction 
of Ni(II) to Ni(0) and counteracting autoinhibition of reduc-
tion at Zn(0) by Zn(II) salts. The modified conditions toler-
ate a variety of functional groups on either coupling partner 
(42 examples) and examples include a three-step synthesis of 
flurbiprofen. 

The synthesis of biaryls has become one of the most com-
monly used reactions in pharmaceutical, agrochemical, and 
materials science industries,1 yet access to arylmetal reagents 
remains limiting. The low commercial availability of arylmetal 
reagents has inspired a number of active areas of research 
(Scheme 1A), including improved methods for arylmetal syn-
thesis,2 C-H arylation,3 and decarboxylative cross-coupling.4 

The relative abundance of aryl electrophiles (Scheme 1B5) 
would make the cross-Ullman reaction6,7 an attractive ap-
proach, however our recently reported catalytic nickel and pal-
ladium method was not broadly effective with the most abun-
dant and versatile aryl electrophiles, aryl chlorides.8 In addi-
tion to opening up more chemical space, aryl chlorides are of-
ten lower in cost and their lower reactivity would allow for se-
quential coupling in fragment-based drug discovery9 or late-
stage coupling on complex molecules.10 

Although significant advances in the use of aryl chlorides in 
cross-coupling have been made recently, 7c,11 12,13,14 there are no 
general methods for the direct cross-coupling of electron-neutral or 
electron-rich aryl chlorides with other aryl electrophiles.15,16  In our 
prior report we established that in order to promote a 
successful cross-Ullman reaction, the electrophiles employed 
had to be orthogonally paired in reactivity:  the Ni catalyst 

activated aryl bromides at a faster rate than aryl triflates; the 
Pd catalyst activated aryl triflates at a faster rate than aryl 
bromides. When sufficiently electron deficient aryl chlorides 
were substituted for aryl bromides, they were still activated 
enough to maintain catalyst selectivity. However, when less 
activated aryl chlorides were used, an erosion in catalyst 
selectivity led to homocoupling  
Scheme 1. Cross-Ullman Reaction in Biaryl Synthesis.  

 
rather than effective cross-coupling. Preliminary studies at-
tempting to couple more electron-rich chlorides with aryl tri-
flates led to production of the triflate-derived dimer and in-
complete conversion of both the aryl chloride and the aryl 
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triflate. Herein we report a general, multimetallic solution that 
achieves the selective coupling of a variety of aryl chlorides 
with aryl triflates (Scheme 1C). 

Based upon the mechanism proposed in our earlier studies 
with nickel and palladium co-catalysis (Table 1A),8 the slow 
consumption of the aryl chloride and aryl triflate suggested that 
arylnickel (II) formation was being inhibited (Table 1A). 
Arylpalladium (IV) will not consume aryl triflate without 
arylnickel (II) present. The inhibition could come from slow 
oxidative addition (I to II),17 slow reduction (III to I), or an 
off-cycle loss of nickel catalyst. 

Reduction of (dtbbpy)NiIIX2 complexes III-Cl and III-OTf 
was studied by both electrochemical and chemical methods 
(Table 1B). CV studies, which are commonly used to assess 
the ease of reduction of metal complexes,18 showed no differ-
ence between III-Cl and III-OTf (Table 1B and Supporting 
Information Figures S7 and S8). While CV provides infor-
mation on the thermodynamic driving force for a reduction, it 
does not account for the complex kinetic picture of reduction 
at a metal surface.19,20 Indeed, the reduction of complexes III-
OTf and III-Cl over zinc flake in the presence or absence of 
additives showed that III-OTf is not reduced unless chloride 
salts are present (Table 1B and 1C; Supporting Information 
Figures S8 and S9; Table S2). There is also a cation effect:  
while LiCl enhances the rate of reduction of both nickel com-
plexes III-OTf and III-Cl, ZnCl2 did not. In fact, zinc chloride 
and zinc triflate, salts formed during the reaction, inhibit re-
duction of (dtbbpy)NiIICl2 (37% yield with no salt, 2-5% yield 
with 1 equiv of ZnCl2 or Zn(OTf)2). Lithium chloride21 can 
overcome zinc inhibition and is generally the most useful ad-
ditive studied (Table 1, entries 1-6 and Supporting Infor-
mation Table S2).22,23 While we found that reduction of octyl 
bromide to octylzinc bromide was also inhibited by zinc 
salts,24,21d reduction of palladium(II) phosphine complexes to 
palladium(0) was fast with or without added LiCl or Zn (Sup-
porting Information Figures S11-S16).25,26 

These studies show that the low reactivity observed for the 
coupling of aryl chlorides with aryl triflates (Scheme 1B) is 
due to autoinhibition:  the zinc salts (ZnCl2 and Zn(OTf)2) 
formed in reduction of III to I inhibit subsequent reductions 
of III. While it had previously been noted that halide anions 
accelerate reduction of NiX2 intermediates at zinc surfaces,27,28 
the inhibitory effect of less-coordinating anions (OTf–, BF4

–, 
PF6

–)29 and zinc salts have not been previously reported. This 
result has broad implications for cross-electrophile coupling 
reactions that rely upon metallic reductants. 

The catalytic reaction behaved as expected from the stoichi-
ometric studies:  the addition of LiCl enabled turnover (Table 
1C, entries 1-6, Supporting Information Figures S1-S2).30 
Consistent with previous reports,8 these reactions were still 
promoted by the cooperativity between two metal catalysts:  
reactions without palladium were poorly selective and reac-
tions without nickel did not consume starting materials  

Table 1. Mechanistic Study and Optimization of Ar-Cl 
Cross-Ullman Reaction. 

 
entry change from optimized conditionsc 3a (%)d 

1 none 84 

2 NaCl instead of LiCl 62 

3 LiBr instead of LiCl 59 

4 Bu4NCl instead of LiCl 53 

5 TMSCl instead of LiCl 16 

6 no LiCl <10 

7 Mn instead of Zn 62 

8 Mn instead of Zn, LiBr instead of LiCl 77 

9 without PdCl2 and dppb 44 

10 without NiCl2(dme) and dtbbpy <5 

11 Reaction set up on benchtope 80 

12 1.2 equiv of 2a 90(89f) 
a In DMF. See Supporting Information for details on electro-

chemical studies. b
 Reduction of III was conducted in DMF at a 

concentration of 0.025 M with Zn powder (40 equiv). Cyclooc-
tadiene (0.125 M) was added to stabilize the product. Salts (1 to 
40 equiv) were added in some cases. See Supporting Information 
for additional results and experimental details. c Reactions were 
run on 0.5 mmol scale in 2 mL of solvent. NMP = N-methyl-2-
pyrrolidinone. d GC yield vs dodecane as internal standard. e Re-
action was set up under air with dry solvent. f Isolated yield. 
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(entries 9 and 10). Similar to other cross-electrophile cou-
pling reactions,28a the reaction was tolerant of adventitious di-
oxygen, allowing reactions to be set up on the benchtop (Ta-
ble 1, entry 11), albeit O2 in the reaction headspace resulted in 
an induction period (Supporting Information Figure S6).31 
Both Zn and Mn could be utilized as reductants. As in our pre-
vious report, LiBr was superior to LiCl with Mn (Table 1, en-
tries 7 and 8 and Supporting Information Figure S5).20a Fi-
nally, while dtbbpy and dppb were generally the best pair of 
ligands for this coupling, PCy3 was also effective (Supporting 
Information Figures S2 and S3). While 6,6´-dibromo-2,2´-bi-
pyridine was not an effective ligand for the model reaction, it 
was effective for couplings of electron-poor aryl chlorides 
(Scheme 2). 

With these modified reaction conditions and an effective 
way to promote aryl chloride reactivity, we examined the cou-
plings of a variety of aryl chlorides and triflates containing an 
array of functional groups and steric environments (Scheme 
2). Electron-poor fluorine-containing substrates, neutral, and 
electron-rich substrates were well tolerated, including sensi-
tive functionalities such as a Boc-protected amine (3c), an al-
dehyde (3i), an alkyl Bpin ester (3ab), and a phosphonate es-
ter (3ac). More reactive aryl halides, such as aryl chlorides 
bearing strongly electron-withdrawing groups, heteroaryl hal-
ides, or aryl bromides, could be selectively coupled with an 
aryl triflate by employing the hindered, electron-poor 6,6´-di-
bromo-2,2´-bipyridine ligand (3g, 3i, 3j, 3o, 3t, and 3u). Un-
der these reaction conditions ortho-substitution (3q-s) and 
2,6-disubstitution on aryl bromides and chlorides (3t-v) were 
also coupled efficiently. In contrast, steric hinderance was not 
as well tolerated in our previous report.32,33 The ability to cou-
ple unactivated aryl chlorides can be beneficial in synthesis 
when the corresponding aryl bromide is either more expen-
sive or not commercially available (3w-ac). The most chal-
lenging combination was electron-rich aryl chlorides with 
electron-poor aryl triflates (3l), which suffered from lower se-
lectivity (about 2.5:1 biaryl to product). 

The scope of the aryl triflate was also examined (Scheme 2), 
demonstrating good yields with both electron-donating and 
electron-withdrawing substituents (3ad-am). The lower 
yields observed for the coupling of electron-poor aryl triflates 
with electron-poor aryl chlorides (3ah and 3aj) were due to 
competing homodimer formation. In these cases, the use of 
6,6´-dibromo-2,2´-bipyridine as ligand did not improve 
yields. The couplings with 2-cyano-1-chlorobenzene form 
biaryls that could be useful for the synthesis of angiotensin II 
receptor antagonists (3ad-ah).34 

Besides their improved availability and lower cost, an addi-
tional benefit of using aryl chlorides is that their lower reactiv-
ity facilitates multistep synthesis (Scheme 2). For example, 
cross-electrophile coupling with an alkyl bromide (5), C-H 

arylation (7), and reductive α-arylation (9) can all be con-
ducted while preserving the C-Cl bond.35 As an example of 
how this can be applied in synthesis, a concise, three-step syn-
thesis of flurbiprofen (9) was demonstrated that would be 
amenable to rapid analog synthesis.36 

This report shows how the nickel and palladium co-catalyst 
system can be rationally modulated to couple less reactive sub-
strates:  an unselective multimetallic reaction was made selec-
tive with the use of an additive, LiCl, that facilitates the reduc-
tion of the nickel catalyst at the zinc surface. Combined with 
our previous reports, these results suggest that the Ni/Pd sys-
tem is general and that multimetallic catalysis may have broad 
generality. Finally, this work demonstrates how reactivity in 
cross-electrophile coupling reactions can be influenced by the 
reductant choice as much as the ligand choice:  salts formed in 
the reaction may be autoinhibitory and new reductant combi-
nations can unlock new reactivity. 
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V.; Garg, N. K. Suzuki–Miyaura Coupling of Aryl Carbamates, Carbonates, 
and Sulfamates. J. Am. Chem. Soc. 2009, 131, 17748-17749. 
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Scheme 2. Reaction Scope and Applications.a 

 
a Reactions were run on 0.5 mmol of scale in 2 mL solvent for 2 to 24 h. Ar1 = 4-(CH3O)C6H4-. Ar2 = 4-(MeO2C)C6H4-. b Using 5 

mol% 6,6'-dibromo-2,2'-bipyridine instead of dtbbpy. c Aryl bromide was used instead of aryl chloride. 
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