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Abstract: The photooxygenation of the acetanilide 2 affords the
hydroperoxide 3, which by titanium-tetraisopropoxide-catalyzed
reduction with dimethyl sulfide gives the corresponding quinol 4.
Regioselective and diastereoselective Weitz–Scheffer epoxidation
of the latter by tert-butyl hydroperoxide (TBHP) and DBU as base
catalyst leads to the cis-epoxy quinol 1, the essential functionality
in Manumycin antibiotics.
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The antibacterial manumycin A (Scheme 1) was first iso-
lated from Streptomyces parvulus in 1963 and since then
a family of structurally related antibiotics has been ob-
tained from the Streptomyces species.1,2 More recently,
alisamycin3 and asukamycin4 and others5 have been char-
acterized. The manumycin natural products possess a
wide range of bioactivity, in addition to their established
antibacterial properties.6

Scheme 1

The significant discovery is that manumycins act as selec-
tive inhibitors of ras farnesyl transferase and might be of

use in cancer chemotherapy.7 However, in view of the
metabolic instability of these natural products, it would
seem that their potential as drugs should be limited; none-
theless, it has been established that the structurally related
product LL-C10037�8,9 without side chains possesses po-
tent antitumor properties. The latter observation suggests
that the complex side chains are not essential and, conse-
quently, it should be worthwhile to prepare such simpli-
fied manumycin analogues, which might display useful
biological activity. For the purpose of structure-activity
studies, an efficient and versatile synthesis of manumycin
derivatives was desirable.

These natural products possess a central epoxy-quinol
functionality, with polyunsaturated side chains linked to
the C-5 position and the amino substituent. This unit is
thought to originate from 3-amino-4-hydroxybenzoic acid
through a biosynthetic pathway with a building block
from the TCA cycle.10a,b A consequence of this synthetic
pathway is the syn orientation of the epoxide (relative to
the hydroxy group), a feature that is common to most
manumycins. In the present work, we describe a conve-
nient diastereoselective synthesis of the racemic epoxy-
quinol cis-1, in which we have employed an effective se-
quence of photooxygenation, reduction, and Weitz–
Scheffer epoxidation (Scheme 2).

Scheme 2 Reagents: (a) O2, TPP, h�, acetone/CH2Cl2, –25 °C, 2 d,
62% yield; (b) Me2S (1.2 equiv), Ti(O-i-Pr)4 (5 mol%), CH2Cl2,
20 °C, 1 h, 4 Å molecular sieves, 83% yield; (c) Ac2O, pyridine,
CH2Cl2, 20 °C, 5 d, 67% yield (relative to converted material, conver-
sion ca. 60%); (d) TBHP (1.2 equiv), DBU, CH2Cl2, 20 °C, 3 d, 78%
yield.
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For the synthesis of the epoxy-quinol cis-1, we selected as
starting material the known acetanilide 2 with the hydroxy
functionality and methyl substituent.11 TPP-sensitized
photooxygenation of the acetanilide 2 at –25 °C resulted
in the hydroperoxide 3 (Scheme 1, step a). After column
chromatography on silica gel, the hydroperoxide 3 was
isolated in 62% yield.12 The use of the tetra-n-butyl am-
monium fluoride, claimed as catalyst for the photooxy-
genation of phenolic substrates,13 is unnecessary; in fact,
it caused a low yield of impure hydroperoxide 3. The IR,
1H NMR and 13C NMR spectral data substantiate the
structure assignment. The IR exhibited the characteristic
hydroperoxide band at 3340 cm–1 and a strong, highly
conjugated carbonyl absorption at 1654 cm–1. In the 1H
NMR spectrum, the olefinic protons display an AB pat-
tern at � = 7.08–6.27 ppm, as required by the �,�-unsatur-
ated enone functionality, of which the olefinic proton
proximate to the methyl group is further split into a dou-
blet by the vinylic proton next to the acetamide group
through W coupling. The 13C NMR spectrum possesses
the two expected carbonyl resonances at � = 180.2 and
163.4 ppm, which confirm the presence of the conjugated
enone and amide functionalities.

The reduction of the hydroperoxide 3 with dimethyl sul-
fide,14 catalyzed by titanium tetraisopropoxide, gave the
desired quinol 4 (Scheme 1, step b) in high yield.15 The
proposed structure for the quinol 4 is based on spectral
and analytic data. For further structural proof, quinol 4
was converted to the corresponding acetate 4a, whose as-
signment is consistent with its spectral and analytic data
(Scheme 1, step c). Thus, in an efficient two-step se-
quence, the hydroxyl and enone functionalities were con-
veniently introduced in the acetanilide 2.

The Weitz–Scheffer epoxidation of the quinol 4 with t-bu-
tyl hydroperoxide (TBHP) and catalytic amounts of DBU
as base afforded the racemic epoxide cis-1 (relative to the
hydroxy group) in 78% yield (Scheme 1, step d).16 Fortu-
nately, the Weitz–Scheffer epoxidation of the quinol 4
gave only a single diastereomer, namely cis-1 and no oth-
er products. In contrast, the use of hydrogen peroxide in-
stead of t-butyl hydroperoxide as oxygen source resulted
in a low yield of the quinol 4.

The structural assignment of the cis-1 epoxide rests main-
ly on its 1H and 13C NMR spectra. The olefinic proton oc-
curs as a doublet at � = 7.38 (J = 2.7 Hz) ppm, the epoxide
protons display an AB pattern at � = 3.68–3.53 ppm, in
which the low-field portion is further coupled to the ole-
finic proton proximate to the acetamide group.17 NOE ex-
periments confirmed the cis configuration. The 13C NMR
spectrum consists of four sp2 carbon and five sp3 carbon
signals, in support of the assigned structure for the epoxy-
quinol cis-1. Evidently, the hydroxy-directing effect18 op-
erates efficiently in the Weitz–Scheffer epoxidation to af-
ford exclusively the cis-configured epoxide 1. A hydrogen
bond between the quinol hydroxy group and the tert-butyl
hydroperoxide anion directs the delivery of the oxygen
atom to the dienone face towards which the hydroxy
group points, as shown in the transition structure of

Scheme 3. The more electrophilic, unfunctionalized
enone C=C double bond is attacked regioselectively.

Scheme 3

The present synthetic strategy is concise, convenient and
of well defined regioselectivity as well as diastereoselec-
tivity. Moreover, the reported for the preparation of manu-
mycin-type epoxy quinols employs readily available
phenolic starting materials. The efficiency of this protocol
should provide a variety of epoxy quinol derivatives for
the structure-activity studies with ras farnesyl transferase
of such manumycin analogues.
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