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1. Introduction
Chalcones which (1, 3- diphenyl-2-propene-1-one) are biphenyl 
compound have two aryl moieties connected through -, β-
unsaturated ketones. The -α, β-unsaturated carbonyl group is a 
good Michael acceptor and undergoes nucleophilic addition. 
They acquire multi-prolonged activities due to methylene and 
carbonyl moieties in their structures. Chalcones which is one of 
secondary metabolite compounds have gained the attention of 
researchers due to their therapeutic potential activities as 
antimicrobial1a, antifungal1b, antioxidant1c, antitumor1d, 
antimalarial1g, anticancer1f, anti-inflammatory1e, antidepressant1h, 

antituberculosis1i. Chalcones are also an imperative precursor for 
biosynthesis of flavonoids2a and isoflavonoids2b and numerous 
heterocyclic compounds such as benzodiazepine2c, pirazoline2d, 
flavones2e and aurone2f. Chalcones have two aromatic rings and 
are connected by three carbon ,  unsaturated in carbonyl 
compounds system3. 

The carbon-carbon double bonds formation is essential reaction 
in organic chemistry. Numerous advances have been made for 
the synthesis of olefins while attempting to deal with the 
demands of chalcones from time to time.4 Usually, chalcone and 
their derivatives were prepared by performing the reaction 
between an aromatic ketones and aldehydes under normal acidic 
or alkaline conditions. This method is most often known as 
Claisen-Schmidt condensation 5. Plethora of efforts have, 
previously, been made for the synthetic strategies of chalcones 
and their derivatives in the past decades.6 However, in the 
majority cases of these transformations, strong base, noble metal 
catalysts, ligands and harsh operations are always required. The 
catalysts frequently used for the synthesis of chalcones were 
HCl61, SOCl2

6b, NaOH6c, KOH6d, Fly-ash: sulphuric acid6e, 
anhydrous zinc chloride6f, barium hydroxide6g,  anhydrous 
sodium bicarbonate6-h-i, Fly-ash:water6j, triphenylphosphite6k, 
KF/Al2O3

6l, silica–sulphuric acid6m-n. Claisen-Schmidt 

condensations have been also reported using Ca(OH)2   catalyst 
in aqueous ethanol.7  

Recently, alkaline earth metal catalysts due to their broad natural 
abundance, low-cost and safe natures have been established as 
alternatives to transition metals and lanthanide based catalysts8-9. 
Among them, calcium salts holding a hard conjugate base such as 
triflate ions, was highly stable to moisture and air and 
demonstrated as an alternative to transition metals and lanthanide 
based catalysts. However, very few reports have been available 
about the applications of Ca(OTf)2 in organic synthesis10-11. 

Claisen-Schmidt condensation methodology is widely used in 
organic synthesis ranging from the preparation of biologically 
active small molecules to the total synthesis of more complex 
natural products and there are a plethora of examples regarding 
synthesis in the literature12. Remarkably, the substituted chalcone 
structural moiety get applications in several biologically active 
compounds along with marketed and investigational drugs.13 To 
the best of our knowledge, there are no reports describing 
chalcone synthesis in presence of Ca(OTf)2-NBu4.BF4 catalyst 
system. Herein, we are reporting synthesis of a number of 
aromatic chalcones using Lewis acid based calcium catalyzed 
system under solvent free, base free, mild operational and wide 
substrate tolerance conditions to furnish corresponding products 
in moderate to good yields. 

At the beginning of our strategy, a model reaction was performed 
using 4-methyl acetophenone and 4-nitrobenzaldehyde as a 
substrate, and 10 mol% of Ca(OTf)2 as a catalyst in water at 110 
C (Table 1). Most pleasantly, the desired product 3c was 
obtained in modest yield (Table 1, entry 6) after 6h. Different Ca 
(II) sources such as CaCl2, CaCO3, CaSO4, Ca(OH)2 and CaNTf2 
were then examined, and we observed that Ca (OTf) 2 was found 
to be the most effective catalyst. We examined a number of 

ARTICLE  INFO ABSTRACT

Article history:
Received
Received in revised form
Accepted
Available online

Keywords:
Chalcones
Claisen-Schmidt condensation
Acetophenone
Benzaldehyde
Calcium trifluoromethanesulfonate
Bu4NPF6

Ca(OTf)2 in combination with NBu4.BF4 was established to function as an efficient catalyst 
system for one-pot Claisen-Schmidt condensation under neat conditions. Substituted 
acetophenones and benzaldehydes were coupled in situ to afford their corresponding chalcones 
in excellent yields. The method, with a broad range of substrate tolerance and mild operational 
conditions can produce assorted chalcone derivatives in moderate to high yields from easily 
accessible starting materials.

2009 Elsevier Ltd. All rights reserved.

mailto:satyendramishra1@gmail.com
https://www.sciencedirect.com/topics/chemical-engineering/zinc-chloride
https://www.sciencedirect.com/topics/chemical-engineering/barium
https://www.sciencedirect.com/topics/chemical-engineering/sodium-bicarbonate


Tetrahedron2
variables including reaction time, reaction solvent, mol % of 

catalyst and mol % additive  (Table 1). 

Table 1: Optimizations of the conditions

a. Isolated Yields after crystallization; b. Optimum conditions; NR: no 
reaction

Initially the influence of solvent system was evaluated. To 
optimize the reaction conditions and find the right solvent, few 
experiments were carried out using 4-methyl acetophenone and 
4-nitrobenzaldehyde as a model substrate with different solvents 
and 10 mol % of catalyst Ca(OTf)2. Among the tested solvents 
CH3CN, methanol, toluene, chloroform, water and neat system, 
the reaction proceeded most efficiently in neat system at 120 C 
and afforded the desired product in good yield (Table 1, entry 6). 
Indeed, we used an extremely fundamental procedure and 
examined various solvent/base systems for the synthesis of 
representative compound 3c (Table 1). 

Further, in order to evaluate the correct catalyst Ca(OTf)2 
loading, a model reaction using  4-nitrobenzaldehyde and 4-
methyl acetophenone was carried out using 4 mol%, 5 mol %, 10 
mol %  and 15 mol % of catalyst  under neat system (Table 1, 
entries 6–10). It was found that 5 mol % of catalyst showed 
maximum yield in minimum time. Higher percentage of loading 
of the catalyst (10 to 15 mol %) neither increased the yield nor 
decreased the conversion time. The effective amount of the 
catalyst required for optimal yield was 5 mol % because on 
decreasing the amount of the catalyst from 5 mol% to 4 mol%, 
the yield was reduced (Table 1, entry 8 versus 9) while it did not 
change on using 6 mol% of the catalyst (Table 1, entry 8 versus 
10). So, 5 mol % of catalyst was found to be the optimal quantity 
and sufficient to drive the reaction forward. 

In order to scrutinize role of additive on reaction, initially, we 
examined the reaction with seven different additives NaPF6, 
NaBF4, Bu4NPF6, NaOTs, NaNO3, CF3SO2Na, proline along with 
catalyst Ca(OTf)2.  Among these additives, the reaction with 
Bu4NPF6 gave the best results (Table 1, entry 14). The other six 
additives screened did not provide satisfactory yields of the 
desired product. When the same reaction was carried out in the 
absence of the additive Bu4NPF6 and the presence of catalyst 5 
mol% of Ca (OTf)2, 55% of  chalcone (3c) was isolated. This 

indicates that in order to establish the real effectiveness of the 
catalyst Ca(OTf)2, addition of the additive (Bu4NPF6) is 
imperative  in reaction (Table 1, entry 14). It is well observed 
that Bu4NPF6 helps in solubilizing the Ca(II) salts for the 
enhanced reactivity.14 

Table 2: Substrate scope in the Ca(II) catalyzed Claisen Schmidt 
reaction of 4-Methyl acetophenone with substituted aromatic 
aldehyde  

a. Isolated Yields after crystallization

Considering the importance of the additive Bu4NPF6 we also 
carried out the reaction with 5 mol% of Bu4NPF6 (without 
Ca(OTf)2) and no product formation of  chalcone product was 
observed after 8 h (Table 1, entry 17). Increase in the additive 
(Bu4NPF6) loading from 5 to 15 mol% has also not showed any 
remarkable effect on the reaction time and yield (Table 1, entries 
17-19). These studies confirm that the additive (Bu4NPF6) alone 
does have even minor effect on the reactions.  Interestingly, no 
product formation was detected in the absence of catalyst 
Ca(OTf)2 (Table1, entries17-19). In order to establish the real 
effectiveness of the catalyst Ca(OTf)2 and  addition of the 
additive (Bu4NPF6) is imperative  in reaction (Table 1, entry 14). 

The reaction of the 4-Nitrobenzaldehyde with 4-methyl 
acetophenone gave excellent yields of the desired adduct in 
presence of 5 mol% of catalyst Ca(OTf)2 and 5 mol % of 
additives Bu4NPF6 under neat condition at 120 C (Table 1, entry 
14).. Originally, we allowed the reaction to proceed for 4 h but 
later found the reaction to be complete within 30 min of at 120 
C. With this optimal reaction condition in hands the scope of 
this greener catalytic system was then studied, we extended our 
study with various substituted acetophenones and substituted 
benzaldehyde as reaction patterns (Table 2 and 3).15 

Entry [Ca(OTf)2] Additive Solvents Time (h) Temp Yielda

(mol%) (mol%)

1 10 0 H2O 6 120 25

2 10 0 CH3CN 8 120 15

3 10 0 Toluene 8 120 NR

4 10 0 EtOH 8 120 NR

5 10 0 CHCl3 8 120 NR

6 10 0 Neat 6 120 56

7 15 0 Neat 6 120 55

8 5 0 Neat 6 120 55

9 4 0 Neat 6 120 52

10 6 0 Neat 6 120 55

11 5 NaPF6 (5%) Neat 6 120 52

12 5 NaOTs (5%) Neat 6 120 55

12 5 Py.OTs (5%) Neat 6 120 50

13 5 Proline (5%) Neat 6 120 45

14b 5 Bu4NPF6 (5%) Neat 0.5 120 96

15 5 Bu4NPF6 (10%) Neat 0.5 120 90

16 5 Bu4NPF6 (15%) Neat 0.5 120 90

17 0 Bu4NPF6 (5%) Neat 8 120 trace

18 0 Bu4NPF6 (10%) Neat 8 120 trace

19 0 Bu4NPF6 (15%) Neat 8 120 trace
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Table 3: Substrate scope in the Ca(II) catalyzed Claisen Schmidt 
reaction of 4-Bromo acetophenone with substituted aromatic 
aldehyde 

a. Isolated Yields after crystallization

b. Isolated Yields after crystallization

We have performed reactions with Ca(OH)2 and TfOH on a 
number of aromatic aldehydes, under the reaction conditions 
which were used in the case of Ca(OTf)2/ NBu4.BF4 system but 
this did not work well .  Neither the Ca(OH)2 nor the TfOH could 
furnish the significant yield of chalcones even after 8 hrs at 120 
C.  

A plausible mechanism for the chalcone adducts of 
acetophenones and aldehydes in the presence of catalyst 
Ca(OTf)2/Bu4NPF6  is depicted in Figure 1. In essence, the Ca(II) 
ions act in conjugation with the non-coordinating PF6¯ in order 
to activate the carbonyl groups. Ca(OTf)2/Bu4NPF6  are 
anticipated to catalyze the reactions by activating the aldehydes 
via reversible coordination to Ca (II), resulting in a favorable 
transition state for driving the reaction forward. The presence of 
bulky anions likely increases the electrophilicity by leaving 
Ca(II) with unsaturated coordination sites.

Figure 1: Plausible mechanism for the chalcone synthesis using 
Ca (II) catalyst system

To investigate the generality of the reaction, we extended our 
study using Ca(OTf)2/Bu4NPF6 (5 mol %) as catalyst system 
under solvent-free condition at 120 C with different aromatic 
aldehydes to prepare a series of  chalcones. Under the established 
optimized reaction conditions a series of aldehydes were reacted 
with acetophenones (1 and 4) respectively. The corresponding 
(3a-f and 5a-f) were obtained in good to excellent yields. The 
results are summarized in Table 2 and 3. 

Subsequently, the reaction scope was evaluated by varying the 
aldehydes and the groups, attached to acetophenone ring (Table 
2). When the reaction was performed using substituted aldehydes 
with the electron-withdrawing groups high to excellent results 
were achieved (88–99%) with full utilization of the starting 
materials within eight hours. The presence of the electron-
donating groups on the substituted aldehydes slightly decreased 
the reactivity (Table 2 and 3, entries 1, 4). Subsequent to the 
completion of the reactions, the reaction mixtures were filtered to 
collect the precipitates and it was further purification by 
recrystallization to afford the pure chalcones 3a–k and 5a-i in 80–
99% yield.  

Here, we would like to conclude that we have presented a broad-
spectrum and efficient method for the synthesis of Claisen 
Schmidt adducts (chalcones) of acetophenones and aromatic 
aldehydes in the presence Ca(OTf)2/Bu4NPF6.The mild reaction 
conditions, no workup, easy purification, higher yield,  and 
economic availability of the catalyst make this procedure an eco-
friendly attractive alternative to the existing methods for the 
synthesis of chalcones. This catalyst may find application in 
organic synthesis.
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