Journal Pre-proofs

Lewis Acid Catalyst System for Claisen-Schmidt Reaction under Solvent Free Condition

Chandni G Halpani, Satyendra Mishra

PII: DOI: Reference:	S0040-4039(20)30635-3 https://doi.org/10.1016/j.tetlet.2020.152175 TETL 152175
To appear in:	Tetrahedron Letters
Received Date:	26 April 2020

Received Date:26 April 2020Revised Date:18 June 2020Accepted Date:22 June 2020

Please cite this article as: Halpani, C.G., Mishra, S., Lewis Acid Catalyst System for Claisen-Schmidt Reaction under Solvent Free Condition, *Tetrahedron Letters* (2020), doi: https://doi.org/10.1016/j.tetlet.2020.152175

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

Tetrahedron Letters journal homepage: www.elsevier.com

Lewis Acid Catalyst System for Claisen-Schmidt Reaction under Solvent Free Condition

Chandni G Halpani¹ and Satyendra Mishra^{1*}

¹ Department of Engineering and Physical Sciences Institute of Advanced Research, Gandhinagar, Gujarat, 382426 India *E-mail: satyendramishra1@gmail.com; satyendra.mishra@iar.ac.in

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Keywords: Chalcones

Claisen-Schmidt condensation Acetophenone Benzaldehyde Calcium trifluoromethanesulfonate Bu₄NPF₆ $Ca(OTf)_2$ in combination with NBu₄.BF₄ was established to function as an efficient catalyst system for one-pot Claisen-Schmidt condensation under neat conditions. Substituted acetophenones and benzaldehydes were coupled *in situ* to afford their corresponding chalcones in excellent yields. The method, with a broad range of substrate tolerance and mild operational conditions can produce assorted chalcone derivatives in moderate to high yields from easily accessible starting materials.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Chalcones which (1, 3- diphenyl-2-propene-1-one) are biphenyl compound have two aryl moieties connected through $-\alpha$, β unsaturated ketones. The $-\alpha$, β -unsaturated carbonyl group is a good Michael acceptor and undergoes nucleophilic addition. They acquire multi-prolonged activities due to methylene and carbonyl moieties in their structures. Chalcones which is one of secondary metabolite compounds have gained the attention of researchers due to their therapeutic potential activities as antitumor1d, antimicrobial^{1a}, antifungal^{1b}, antioxidant^{1c}, antimalarial^{1g}, anticancer^{1f}, anti-inflammatory^{1e}, antidepressant^{1h}, antituberculosis¹¹. Chalcones are also an imperative precursor for biosynthesis of flavonoids^{2a} and isoflavonoids^{2b} and numerous heterocyclic compounds such as benzodiazepine2c, pirazoline2d, flavones^{2e} and aurone^{2f}. Chalcones have two aromatic rings and are connected by three carbon α , β unsaturated in carbonyl compounds system³.

The carbon-carbon double bonds formation is essential reaction in organic chemistry. Numerous advances have been made for the synthesis of olefins while attempting to deal with the demands of chalcones from time to time.⁴ Usually, chalcone and their derivatives were prepared by performing the reaction between an aromatic ketones and aldehydes under normal acidic or alkaline conditions. This method is most often known as Claisen-Schmidt condensation ⁵. Plethora of efforts have, previously, been made for the synthetic strategies of chalcones and their derivatives in the past decades.⁶ However, in the majority cases of these transformations, strong base, noble metal catalysts, ligands and harsh operations are always required. The catalysts frequently used for the synthesis of chalcones were HCl61, SOCl26b, NaOH6c, KOH6d, Fly-ash: sulphuric acid6e, anhydrous zinc chloride6f, barium hydroxide6g, anhydrous sodium bicarbonate^{6-h-i}, Fly-ash:water^{6j}, triphenylphosphite^{6k}, acid6m-n. $KF/Al_2O_3^{6l}$, silica-sulphuric Claisen-Schmidt

condensations have been also reported using $Ca(OH)_2$ catalyst in aqueous ethanol.⁷

Recently, alkaline earth metal catalysts due to their broad natural abundance, low-cost and safe natures have been established as alternatives to transition metals and lanthanide based catalysts⁸⁻⁹. Among them, calcium salts holding a hard conjugate base such as triflate ions, was highly stable to moisture and air and demonstrated as an alternative to transition metals and lanthanide based catalysts. However, very few reports have been available about the applications of Ca(OTf)₂ in organic synthesis¹⁰⁻¹¹.

Claisen-Schmidt condensation methodology is widely used in organic synthesis ranging from the preparation of biologically active small molecules to the total synthesis of more complex natural products and there are a plethora of examples regarding synthesis in the literature¹². Remarkably, the substituted chalcone structural moiety get applications in several biologically active compounds along with marketed and investigational drugs.¹³ To the best of our knowledge, there are no reports describing chalcone synthesis in presence of Ca(OTf)₂-NBu₄.BF₄ catalyst system. Herein, we are reporting synthesis of a number of aromatic chalcones using Lewis acid based calcium catalyzed system under solvent free, base free, mild operational and wide substrate tolerance conditions to furnish corresponding products in moderate to good yields.

At the beginning of our strategy, a model reaction was performed using 4-methyl acetophenone and 4-nitrobenzaldehyde as a substrate, and 10 mol% of Ca(OTf)₂ as a catalyst in water at 110 °C (Table 1). Most pleasantly, the desired product 3c was obtained in modest yield (Table 1, entry 6) after 6h. Different Ca (II) sources such as CaCl₂, CaCO₃, CaSO₄, Ca(OH)₂ and CaNTf₂ were then examined, and we observed that Ca (OTf) ₂ was found to be the most effective catalyst. We examined a number of Journal Pre-proo

catalyst and mol % additive (Table 1).

Table 1: Optimizations of the conditions

H = H = H = H = H = H = H = H = H = H =							
Entry	[Ca(OTf) ₂] (mol%)	Additive (mol%)	Solvents	Time (h)	Temp(°C)	Yield	
1	10	0	H ₂ O	6	120	25	
2	10	0	CH ₃ CN	8	120	15	
3	10	0	Toluene	8	120	NR	
4	10	0	EtOH	8	120	NR	
5	10	0	CHCI ₃	8	120	NR	
6	10	0	Neat	6	120	56	
7	15	0	Neat	6	120	55	
8	5	0	Neat	6	120	55	
9	4	0	Neat	6	120	52	
10	6	0	Neat	6	120	55	
11	5	NaPF ₆ (5%)	Neat	6	120	52	
12	5	NaOTs (5%)	Neat	6	120	55	
12	5	Py.OTs (5%)	Neat	6	120	50	
13	5	Proline (5%)	Neat	6	120	45	
14 ^b	5	Bu ₄ NPF ₆ (5%)	Neat	0.5	120	96	
15	5	Bu ₄ NPF ₆ (10%)	Neat	0.5	120	90	
16	5	Bu ₄ NPF ₆ (15%)	Neat	0.5	120	90	
17	0	Bu ₄ NPF ₆ (5%)	Neat	8	120	trace	
18	0	Bu ₄ NPF ₆ (10%)	Neat	8	120	trace	
19	0	Bu ₄ NPF ₆ (15%)	Neat	8	120	trace	

a. Isolated Yields after crystallization; ^b. Optimum conditions; NR: no reaction

Initially the influence of solvent system was evaluated. To optimize the reaction conditions and find the right solvent, few experiments were carried out using 4-methyl acetophenone and 4-nitrobenzaldehyde as a model substrate with different solvents and 10 mol % of catalyst Ca(OTf)₂. Among the tested solvents CH₃CN, methanol, toluene, chloroform, water and neat system, the reaction proceeded most efficiently in neat system at 120 °C and afforded the desired product in good yield (Table 1, entry 6). Indeed, we used an extremely fundamental procedure and examined various solvent/base systems for the synthesis of representative compound 3c (Table 1).

Further, in order to evaluate the correct catalyst $Ca(OTf)_2$ loading, a model reaction using 4-nitrobenzaldehyde and 4methyl acetophenone was carried out using 4 mol%, 5 mol %, 10 mol % and 15 mol % of catalyst under neat system (Table 1, entries 6–10). It was found that 5 mol % of catalyst showed maximum yield in minimum time. Higher percentage of loading of the catalyst (10 to 15 mol %) neither increased the yield nor decreased the conversion time. The effective amount of the catalyst required for optimal yield was 5 mol % because on decreasing the amount of the catalyst from 5 mol% to 4 mol%, the yield was reduced (Table 1, entry 8 versus 9) while it did not change on using 6 mol% of the catalyst (Table 1, entry 8 versus 10). So, 5 mol % of catalyst was found to be the optimal quantity and sufficient to drive the reaction forward.

In order to scrutinize role of additive on reaction, initially, we examined the reaction with seven different additives NaPF₆, NaBF₄, Bu₄NPF₆, NaOTs, NaNO₃, CF₃SO₂Na, proline along with catalyst Ca(OTf)₂. Among these additives, the reaction with Bu₄NPF₆ gave the best results (Table 1, entry 14). The other six additives screened did not provide satisfactory yields of the desired product. When the same reaction was carried out in the absence of the additive Bu₄NPF₆ and the presence of catalyst 5 mol% of Ca (OTf)₂, 55% of chalcone (3c) was isolated. This

catalyst Ca(OTf)₂, addition of the additive (Bu₄NPF₆) is imperative in reaction (Table 1, entry 14). It is well observed that Bu_4NPF_6 helps in solubilizing the Ca(II) salts for the enhanced reactivity.¹⁴

 Table 2: Substrate scope in the Ca(II) catalyzed Claisen Schmidt

 reaction of 4-Methyl acetophenone with substituted aromatic

 aldehyde

a. Isolated Yields after crystallization

Considering the importance of the additive Bu_4NPF_6 we also carried out the reaction with 5 mol% of Bu_4NPF_6 (without $Ca(OTf)_2$) and no product formation of chalcone product was observed after 8 h (Table 1, entry 17). Increase in the additive (Bu_4NPF_6) loading from 5 to 15 mol% has also not showed any remarkable effect on the reaction time and yield (Table 1, entries 17-19). These studies confirm that the additive (Bu_4NPF_6) alone does have even minor effect on the reactions. Interestingly, no product formation was detected in the absence of catalyst $Ca(OTf)_2$ (Table1, entries17-19). In order to establish the real effectiveness of the catalyst $Ca(OTf)_2$ and addition of the additive (Bu_4NPF_6) is imperative in reaction (Table 1, entry 14).

The reaction of the 4-Nitrobenzaldehyde with 4-methyl acetophenone gave excellent yields of the desired adduct in presence of 5 mol% of catalyst Ca(OTf)₂ and 5 mol % of additives Bu₄NPF₆ under neat condition at 120 °C (Table 1, entry 14). Originally, we allowed the reaction to proceed for 4 h but later found the reaction to be complete within 30 min of at 120 °C. With this optimal reaction condition in hands the scope of this greener catalytic system was then studied, we extended our study with various substituted acetophenones and substituted benzaldehyde as reaction patterns (Table 2 and 3).¹⁵

Tab

reaction of 4-Bromo acetophenone with substituted aromatic aldehyde

b. Isolated Yields after crystallization

We have performed reactions with $Ca(OH)_2$ and TfOH on a number of aromatic aldehydes, under the reaction conditions which were used in the case of $Ca(OTf)_2/NBu_4.BF_4$ system but this did not work well. Neither the $Ca(OH)_2$ nor the TfOH could furnish the significant yield of chalcones even after 8 hrs at 120 \mathcal{C} .

A plausible mechanism for the chalcone adducts of acetophenones and aldehydes in the presence of catalyst $Ca(OTf)_2/Bu_4NPF_6$ is depicted in Figure 1. In essence, the Ca(II) ions act in conjugation with the non-coordinating PF6⁻ in order to activate the carbonyl groups. $Ca(OTf)_2/Bu_4NPF_6$ are anticipated to catalyze the reactions by activating the aldehydes via reversible coordination to Ca (II), resulting in a favorable transition state for driving the reaction forward. The presence of bulky anions likely increases the electrophilicity by leaving Ca(II) with unsaturated coordination sites.

Figure 1: Plausible mechanism for the chalcone synthesis using Ca (II) catalyst system

study using $Ca(O11)_2/Bu_4NPF_6$ (5 mol %) as catalyst system under solvent-free condition at 120 °C with different aromatic aldehydes to prepare a series of chalcones. Under the established optimized reaction conditions a series of aldehydes were reacted with acetophenones (1 and 4) respectively. The corresponding (3a-f and 5a-f) were obtained in good to excellent yields. The results are summarized in Table 2 and 3.

Subsequently, the reaction scope was evaluated by varying the aldehydes and the groups, attached to acetophenone ring (Table 2). When the reaction was performed using substituted aldehydes with the electron-withdrawing groups high to excellent results were achieved (88–99%) with full utilization of the starting materials within eight hours. The presence of the electron-donating groups on the substituted aldehydes slightly decreased the reactivity (Table 2 and 3, entries 1, 4). Subsequent to the completion of the reactions, the reaction mixtures were filtered to collect the precipitates and it was further purification by recrystallization to afford the pure chalcones 3a–k and 5a-i in 80–99% yield.

Here, we would like to conclude that we have presented a broadspectrum and efficient method for the synthesis of Claisen Schmidt adducts (chalcones) of acetophenones and aromatic aldehydes in the presence $Ca(OTf)_2/Bu_4NPF_6$. The mild reaction conditions, no workup, easy purification, higher yield, and economic availability of the catalyst make this procedure an ecofriendly attractive alternative to the existing methods for the synthesis of chalcones. This catalyst may find application in organic synthesis.

Acknowledgments

This work is generously supported by the Department of Science and Technology, India (DST- SERB/ ECR/2015/000363) to SM. SM is also Indian Institute of Science, Bangalore for the spectral analysis.

References and notes

- 1. (a) B. T. Yin, C.Y. Yan, X. M. Peng, S. L. Zhang, S. Rasheed, R. X. Geng and C.H. Zhou, Eur J Med Chem., 2014, 71, 148-159. (b) C. K. Ryu, J. Y. Lee, R. E. Park, M.Y. Ma and J. H. Nho, Bioorg. Med. *Chem. Lett.*, 2007, **17**, 127-131. (c) T. Narsinghani, M. C. Sharma and S Bhargav, Med. Chem. Res., 2013, 22, 4059-4068. (d) C. Jin, Y. J. Liang, H. He and L Fu,. Biomed. Pharmacother., 2013, 67, 215-217. (e) K. V. Sashidhara, M. Kumar, R. K. Modukuri, R. Sonkar, G. Bhatia, A. K. Khanna, S. Rai and R. Shukla, Bioorg. Med. Chem. Lett., 2011, 21, 4480-4484. (f) C. Dyrager, M. Wickström, M. Fridén-Saxin, A. Friberg, K. Dahlén, E. A. Wallén, J. Gullbo, M. Grøtli and K. Luthman, *Bioorg. Med. Chem. Lett.*, 2011, **19**, 2659-2665. (g) V. Zsoldos-Mády, A. Csámpai, R. Szabó, E. Mészáros-Alapi, J. Pásztor, F. Hudecz and P. Sohár, Chem. Med. Chem., 2006, 1(10), 1119-1125. (h) X. Sui, Y-C. Quan, Y. Chang, R-P. Zhang, Y-F. Xu and L-P. Guan, Med. Chem. Res., 2012, 21, 1290-1296. (i) T. Suwa, E. Sugiyama, I. Shibata and A. Baba, Synlett 2000, 4, 556-558.
- (a)S. Czemmel, S. C. Heppel and J Bogs, Protoplasma, 2012, 249, 109-118. (b) D. Shelton, M. Stranne, L. Mikkelsen, N. Pakseresht, T. Welham, H. Hiraka, S. Tabata, S. Sato, S. Paquette, T. L. Wang, C. Martin and P. Bailey, Plant Physiol., 2012, 159(2), 531-547. (c) X. Fu, J. Feng, Z. Dong, L. Lin, X. Liu and X. Feng, Eur. J. Chem., 2011, 5233-5236. (d) S. P. Saktinathan, G. Vanangamudi and G Thirunarayan. Spectrochim Acta A Mol. Biomol. Spectrosc., 2012, 95, 693-700. (e) K.V. Sashidhara, M. Kumar and A. Kumar, Tet. Lett., 2012, 53, 2355-2359. (f) C. M. Sousa, J. Berthet, S. Delbaere and P. J. Coelho, Dyes and Pigments, 2011, 92, 537-541.
- A.N. Choudhary and V. Juyal, Int. J. Pharm. Pharm. Sci., 2011, 3, 125-128.
- W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd ed.; Cambridge University: Cambridge, 1986; (b) B. P. Mundy and M. G.

- New York, NY, 1988
- H. Venkatachalam, Y. Nayak and B.S. Jayashee, APCBEE Procedia 2012, 3, 209–213.
- (a) J. Wu, C. Wang, Y. Cai, J. Peng, D. Liang, Y. Zhao, X. Yang, X. Li, 6. X. Wu and G. Liang, Med. Chem. Res., 2012, 21, 444-452. (b) M. R. Jayapal and N.Y. Sreedhar, Int. J. Pharm. Pharm. Sci., 2011, 3, 127-129. (c) A. N. Choudhary and V. Juyal, Int. J. Pharm. Pharm. Sci., 2011, 3, 125-128. (d) B. Tiwari, A. S. Pratapwar, A. R. Tapas, S. R. Butle, B. S. Vatkar, Int. J. Chem. Tech. Res., 2010, 2, 499-503. (e) G. Thirunarayanan, P. Mayavel and K. Thirumurthy, Spectrochim. Acta, 2012, 91A, 18-22. (f) D. R. Palleros, J. Chem. Educ., 2004, 81(9), 1345-1347. (g) P. Kumar, S. Kumar, K. Husain and A. Kumar, Bioorg. Med. Chem., 2011, **18(14)**, 4965-4974. (h) Z. Zhang, Y. W. Dong and G. W. Wang, Wang, Chem. Lett., 2003, 32(10), 966-967. (i) H. E. Blackwell, Curr. Opin. Chem. Biol., 2006, 10(3), 203-212. (j) G. Thirunarayanan, G. Vanangamudi, V. Sathiyendiran and K. Ravi, Indian J. Chem., 2011, 50B(4), 593-604. (k) B. F. G. Johnson, J. Lewis, G. R. Stephenson and E. J. S. Vichi, J. Chem. Soc. Dalton Trans. 1978, 369-373. (1) Y. Xiuying, P. An-shun and J Linyi, Teachers Coll., 2004, 23, O621.3 (m) G. Thirunarayanan, G. Vanangamudi, Arkivoc, 2006, 12, 58-64. (n) P. Salehi, M. Dabiri, M. A. Zolfigol and M. A. B. Fard J. Braz. Chem. Soc., 2004, 15(5), 773-776.
- (a) L.Yu, M. Han, J. Luan, L. Xu, Y. Ding Q. Xu, *Sci Rep* 2016, 6, 30432;
 (b) H. Zhanga, M. Han, C. Yang, L.Yua, Q. Xub, Chinese Chemical Letters 2019, 30(01), 263.
- (a) V. Nina, A. Forkel, A. David and J. F. Matthew, *Green Chem.*, 2012, 14, 2129;
 (b) M. Arrowsmith and M. S. Hill, Alkaline Earth Chemistry: Applications in Catalysis, *Comprehensive Inorganic Chemistry II*, ed.T. Chivers, Elsevier, 2013, 1, 1189.
- (a) A. S. Merle, M. S. William, M. Shepherd, M. S. Hill and K. Gabriele, *Chem. Commun.*, 2014, **50**, 12676-12679; (b) M. R. Crimmin, I. J. Casely and M. S. Hill, *J. Am. Chem. Soc.*, 2005, **127**, 2042-2043; 5514; (d) J. M. Begouin and M. Niggemann, *Chem. Eur. J.*, 2013, **19**, 8030, 8041.
- J-M. Begouin and M. Niggemann, *Chem. Eur. J.*, 2013, **19**, 8030 8041; (b) N. V Forkel, D. A. Henderson and M. J. Fuchter, *Green*

were, then, threed through suction pump and washed with 20-30 mL of water. It afforded crude products. The crude products recrystallization from ethanol afforded pure products.

Supplementary Material

Supplementary data associated with this article are attached with this article

Conflicts of interest: The authors declare no

conflict of interest.

Highlights

• Aryl-aryl chalcones were synthesized using

Ca(OTf)₂/BuNPF₆ catalyst system under

solvent free condition

• Better yields of the chalcones obtained

Leave this area blank for abstract info.

Claisen-Schmidt Reaction under Solvent Free Condition

Chandni G Halpani¹ and Satyendra Mishra^{1*}

Lewis Acid Catalyst System for

Chem., 2012, **14**, 2129; (c) M. Niggemann and M. J. Meel, *Angew.Chem. Int. Ed.*, 2010, **49**, 3684–3687; (d) V. Nina, D. A. Forkel, M. J. Fuchter, *Tetrahedron Lett*, 2014, **55**, 5511-5514.

- (a) S. Yaragorla, G. Singh, P. Saini and M. K. Reddy, *TetrahedronLett*, 2014, **55**, 4657-4660; (b) S. Yaragorla, A. Sudhakar, N. Kiranmai, *Ind. J. Chem., B*, 2014, **53**, 1471-1475; (c) R. Kalepu and S. Mishra, *J. Chem. Sci.*, 132, 48 (2020). https://doi.org/10.1007/s12039-020-1749-8
- (a) C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao, *Chem. Rev.* 2017, *117*, 7762; (b). Z. Rozmer, P. Perjési *Phytochem Rev.* 2016, **15**, 87.
- According to www.drugbank.ca (accessed in September 2017) there are 13 marketed and over 20 investigational drugs bearing the chalcone substructure
- 14. S Haubenreisser, M. Niggemann Adv Synth Catal. 2011, 353, 469.
 15. General experimental procedure for the Ca(OTf)₂/Bu₄NPF₆ catalyzed Chalcone synthesis: Suitable acetophenones (1mmol) and substituted benzaldehydes (1.1 mmol) were heated under solvent free condition at 120 °C for 0.5 h in the presence of Ca(OTf)₂ (5 mol%) and nBu₄NPF₆ (5 mol%). Progress of reactions was monitored by TLC. After completion, reaction mixtures were brought to room temperature and diluted with

• Easy-workup procedure, environmentally

solvent free synthetic method was adopted

• Purification through crystallization

techniques

Graphical Abstract

4

tates