
A New Approach to the Formation of Phosphorus–Phosphorus Double Bonds

Alan H. Cowley,* Jan E. Kilduff, Sushil K. Mehrotra, Nicholas C. Norman, and Marek Pakulski Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

The reaction of $(Me_3Si)_2CHPCl_2$ or $(Me_3Si)_3CPCl_2$ with $(2,4,6-But_3C_6H_2)PH_2$ in the presence of DBU (1,5-diazabicyclo[5.4.0]undec-5-ene) affords the unsymmetrical diphosphene, $(Me_3Si)_2CHP=P(2,4,6-But_3C_6H_2)$.

Despite the current interest in compounds with phosphorusphosphorus double bonds (diphosphenes),¹⁻⁶ only one synthetic approach to these derivatives has been reported so far, *viz.* the coupling of RPCl₂ [R = 2,4,6-Bu^t₃C₆H₂, (Me₃Si)₃C] with active metals or organometallic reagents. We now report that diphosphenes can be prepared in high yield by the reaction of RPCl₂ with R'PH₂ in the presence of DBU (1,5diazabicyclo[5.4.0]undec-5-ene). Use of this method has permitted the synthesis of an unsymmetrical diphosphene (RP= PR'), a development which has led to measurement of a ¹J_{PP} coupling constant for the phosphorus-phosphorus double bond.

Treatment of equimolar quantities of (Me₃Si)₂CHPCl₂⁷ and 2,4,6-But₃C₆H₂PH₂⁸ with a 5% excess of DBU in tetrahydrofuran (THF) solution at 0 °C resulted in the formation of a white precipitate. After warming to room temperature and stirring for an additional 12 h, the reaction mixture gradually assumed an orange-yellow colour. Filtration and purification by column chromatography (silica gel, hexane) afforded a 78% yield of orange-yellow solid (Me₃Si)₂CHP=P(2,4,6-Bu^t₃C₆H₂) (1). Compound (1) was characterised by high-resolution mass spectroscopy (M^+ observed 466.2764, calculated 466.2771) and ³¹P n.m.r. spectroscopy. The ³¹P {¹H } n.m.r. spectrum of (1) consists of an AB system with δ_A 513.0, δ_B 493.0 p.p.m., and ${}^{1}J_{PP}$ 577.5 Hz. The corresponding coupled spectrum comprises the AB portion of an ABX system (with $\frac{1}{2}|J_{AX} + J_{BX}| = 16.6$ Hz) owing to coupling from the α -hydrogen of the (Me₃Si)₂CH group. Typically, single-bonded trivalent phosphorus compounds exhibit ${}^{1}J_{PP}$ values in the range 200-300 Hz.⁹ The sig-

nificantly larger ${}^{1}J_{PP}$ value for (1) is attributed to shortening of the phosphorus–phosphorus bond length and to π -bond formation rather than to changes in P(3s) character because the P–P–C bond angles in (2,4,6-But₃C₆H₂)P=P(2,4,6-But₃C₆H₂) (102.8°)¹ and (Me₃Si)₃CP=PC(SiMe₃)₃ (av. 108.5°)¹⁰ are approximately the same as those in the diphosphines (mesityl)₄P₂ (av. 104.0°)¹¹ and (cyclohexyl)₄P₂ (av. 104.9°).¹²

$$(Me_{3}Si)_{3}CP=P(2,4,6-Bu^{t}_{3}C_{6}H_{2})$$
(2)
[(Me_{3}Si)_{2}CHP]_{3} [(Me_{3}Si)_{2}CHP]_{4}
(3) (4)

Interestingly, the reaction of $(Me_3Si)_3CPCl_2$ with 2,4,6-But₃-C₆H₂PH₂ in the presence of DBU results in (1) rather than $(Me_3Si)_3CP=P(2,4,6-But_3C_6H_2)$ (2). Although additional studies will be needed to prove this point, we presume that (2) is the product formed initially and that the conversion of (2) into (1) arises via Cl⁻ attack on the (Me₃Si)₃C group followed by elimination of Me₃SiCl and protonation of the resulting carbanion. Diphosphene (2) can, in fact, be prepared in low yields by treatment of mixtures of (Me₃Si)₃CPCl₂ and 2,4,6-But₃C₆H₂PCl₂ with sodium naphthalide in THF solution followed by column chromatography (silica gel, hexane). ³¹P {¹H} N.m.r. data for (2): AB system, δ_A 533.1, δ_B 530.0 p.p.m., and ¹J_{PP} 619.7 Hz.

The use of models indicates that the steric demands of the 2,4,6-Bu^t₃C₆H₂ and (Me₃Si)₃C groups are adequate to prevent cyclic oligomerisation of diphosphenes. Moreover, a combination of either of these groups with a (Me₃Si)₂CH substituent also results in a kinetically stabilized P=P system. However, two (Me₃Si)₂CH groups are not sufficiently bulky, hence oligomerisation to [(Me₃Si)₂CHP]₃ (3) and [(Me₃Si)₂CHP]₄ (4) takes place when (Me₃Si)₂CHPCl₂ is treated with Mg or sodium naphthalide in THF. ³¹P {¹H} N.m.r. data: (3) A₂B system, $\delta_A - 127.4$, $\delta_B - 151.8$ p.p.m., and ¹J_{AB} 204.3 Hz; (4) singlet, $\delta - 90.2$ p.p.m.

We are grateful to the National Science Foundation and the Robert A. Welch Foundation for generous financial support.

Received, 21st February 1983; Com. 236

References

- 1 M. Yoshifuji, M. Shima, and N. Inamoto, J. Am. Chem. Soc., 1981, 103, 4587.
- 2 B. Cetinkaya, A. Hudson, M. F. Lappert, and H. Goldwhite, J. Chem. Soc., Chem. Commun., 1982, 609.
- 3 B. Cetinkaya, P. B. Hitchcock, M. F. Lappert, A. H. Thorne, and H. Goldwhite, J. Chem. Soc., Chem. Commun., 1982, 691.
- 4 A. H. Cowley, J. E. Kilduff, T. H. Newman, and M. Pakulski, J. Am. Chem. Soc., 1982, 104, 5820.
- 5 G. Bertrand, C. Couret, J. Escudie, S. Majid, and J.-P. Majoral, *Tetrahedron Lett.*, 1982, 23, 3567.
- 6 C. Couret, J. Escudie, and J. Satge, *Tetrahedron Lett.*, 1982, 23, 4941.
- 7 M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power, and H. Goldwhite, J. Chem. Soc., Dalton Trans., 1980, 2428.
- 8 K. Issleib, H. Schmidt, and C. Wirkner, Z. Anorg. Allg. Chem., 1982, 488, 75.
- 9 R. K. Harris, E. M. Norval, and M. Fild, J. Chem. Soc., Dalton Trans., 1979, 826.
- 10 J. L. Atwood, A. H. Cowley, W. E. Hunter, J. E. Kilduff, and N. C. Norman, to be published.
- 11 S. G. Baxter, A. H. Cowley, R. E. Davis, and P. E. Riley, J. Am. Chem. Soc., 1981, 103, 1699.
- 12 R. Richter, J. Kaiser, J. Sieler, H. Hartung, and C. Peter, Acta Crystallogr., Sect. B, 1977, 33, 1887.