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A new, general palladium-catalyzed oxidative strategy for the cleavage of the CC triple bond is presented. By employing PdCl2, CuBr2, TEMPO and air as 
the catalytic system and H2O as the carbonyl oxygen atom source, a wide range of 2-alkynyl carbonyl compounds, including 1,3-disubstituted 
prop-2-yn-1-ones, propiolamides and propiolates, lost an alkynyl carbon to access various 1,2-dicarbonyl compounds, e.g., 1,2-diones, 2-keto amides 
and 2-keto esters, through Wacker oxidation, intramolecular cyclization and C-C bond cleavage cascades.  

 

Background and Originality Content 

Alkynes are importantly common chemical feedstocks that 
have been widely used in synthetic community. Accordingly, the 
development of methods for transformations of alkynes to 
increase molecular complexity and construct functional molecules 
has attracted ongoing attention.1-9 Attractive methods include 
transformations of alkynes by cleavage of the CC triple bonds.2-8 
Although the cleavage of the CC triple bond of alkynes has been 
widely explored, it remains a great challenge of completely 
cleaving the CC triple bond and then functionalizing. Traditionally, 
the CC triple bond is cleaved by ligating to metal complexes and 
oxidative cleavage using a stoichiometric amount of metal 
reagents.2,3 However, only a few papers3-7 on the metal-catalyzed 
alkyne cleavage reactions have been reported except for 
metathesis of alkynes.

8
 For example, the initial Rh-catalyzed 

alkynes cleavage protocol used additional 2-aminopyridine or 
2-aminophenol to in situ react with alkynes leading to the CC 
triple bond cleavage.3,4 Subsequently, 1,n-ynols were employed 
for the alkyne cleavage purpose by either Ru-catalyzed 
OH-elimination generating alkene and CO5 or Au-catalyzed 
OH-addition leading to butenolides and acids.6 Jiang and Wang 
have established a Lewis acid promoted palladium-catalyzed 
oxidative cleavage of alkynes with molecular oxygen to furnish 
esters in the presence of additional alcohols.7a Thus, the 
development of new metal-catalyzed alkynes cleavage 
transformations are still fascinated due to its cascade or domino 
strategy. In 2014, Cui and coworkers7b found a new radical 
strategy for the cleavage of the C≡C triple bonds where a 
combination of a base (K2CO3) with O2 as both the oxidant and the 
carbonyl oxygen atom source enabled oxidative conversion of 
diaryl eth-2-yn-1-ones to 1,2-diketones (Scheme 1a). However, 
this method is limited to 1,3-diaryl prop-2-yn-1-ones probably 
because the in-situ generation of the superoxide radical 
intermediates requires the aryl functional groups to activate them. 
Due to an interest in the palladium-catalyzed transformations of 
alkynes, and inspired by Wan’s work which involved a new 
Wacker-type oxidation of alkynes mediated by PdBr2 and CuBr2,

9h-i
 

we accidentally found a CC triple bond cleavage using 2-alkynyl 
carbonyl compounds as the starting materials, which meanwhile 
led to an efficient approach to 1,2-dicarbonyl compounds through 

an alkynyl carbon-lost process (Scheme 1b).  

Scheme 1  Oxidative transformations of 2-alkynyl carbonyl compounds.  

 

Results and Discussion 

Optimization of Reaction Conditions 

We initiated our study by examining the reaction of 
1,3-diphenylprop-2-yn-1-one (1a) with PdCl2 and CuBr2 in dioxane 
at 80 oC under air atmosphere: we were pleased to find that an 
unexpected benzil (2a) was isolated in 16% yield (entry 1 in Table 
1). Distinctly, benzil (2a) is generated by a carbon-lost process 
from 1,3-diphenylprop-2-yn-1-one (1a), which may proceed via 
the oxidative cleavage of the CC triple bond. Based on these 
considerations, several oxidants, TEMPO, TBHP, DDQ and K2S2O8, 
were investigated (Table S1; Supporting Information). Screening 
revealed that TEMPO displayed the highest activity: treatment of 
substrate 1a with 10 mol% of PdCl2, 1.2 equiv of CuBr2 and 1.2 
equiv of TEMPO afforded benzil (2a) in 82% yield (entry 2). Among 
the effects of Pd and Cu examination, it turned out that the 
reaction was carried out at 10 mol% of PdCl2 and 1.2 equiv of 
CuBr2, providing the best results (entries 2-9). Screening revealed 
that the amount of water in dioxane influenced the reaction in 
terms of yield: the yield of 2a was lowered to 66% using 0.25 mL 
of H2O and 61% in 2 mL of H2O (entries 2, 10 and 11). Notably, the 
reactivity of substrate 1a was decreased under either O2 or argon 
atmosphere, suggesting that air can facilitate the reaction (entries 
12 and 13). It is noteworthy that the Cu salt acts as a promoter as 
without it the reaction could occur in 31% yield (entry 14). 
However, Pd catalysts were crucial because omission of them the 
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reaction could not take place (entry 15). 

Table 1  Screening of the optimal reaction conditions
a
  

 

Entry [Pd] (mol%) [Cu] Solvent (v/v)
 

Yield (%)
b 

1
c PdCl2 (10) CuBr2 H2O/dioxane (1/4) 16 

2
 PdCl2 (10) CuBr2 H2O/dioxane (1/4) 82 

3
 PdCl2 (15) CuBr2 H2O/dioxane (1/4) 81 

4
 PdCl2 (5) CuBr2 H2O/dioxane (1/4) 71 

5 PdBr2 (10) CuBr2 H2O/dioxane (1/4) 78 

6 Pd(OAc)2 (10) CuBr2 H2O/dioxane (1/4) 71 

7 Pd(PPh3)4 (10) CuBr2 H2O/dioxane (1/4) 68 

8 PdCl2 (10) CuCl2 H2O/dioxane (1/4) 58 

9 PdCl2 (10) Cu(OAc)2 H2O/dioxane (1/4) 41 

10 PdCl2 (10) CuBr2 H2O/dioxane (1/9) 66 

11 PdCl2 (10) CuBr2 H2O/dioxane (4/1) 61 

12
d PdCl2 (10) CuBr2 H2O/dioxane (1/4) 68 

13
e PdCl2 (10) CuBr2 H2O/dioxane (1/4) 56 

14 PdCl2 (10) ― H2O/dioxane (1/4) 31 

15 ― CuBr2 H2O/dioxane (1/4) 0 

a
 Reaction conditions: 1a (0.3 mmol), [Pd], [Cu] (1.2 equiv), TEMPO (1.2 

equiv), and H2O/solvent (2.5 mL) at 80 
o
C for 36 h under air atmosphere. 

b
 

Isolated yield. 
c
 Without TEMPO. 

d
 Under O2 (1 atm) atmosphere. 

e
 Under 

argon atmosphere. 

As shown in Table 2, the generality of this Pd-catalyzed 
oxidative CC triple bond cleavage protocol with regard to 
2-alkynyl carbonyl compounds was investigated under the optimal 
reaction conditions. A variety of 3-oxoprop-1-ynyl compounds, 
including 2-yn-1-ones, propiolamides and propiolate, successfully 
underwent the reaction in moderate to good yields (Products 
2b-s). Using 10 mol % of PdCl2, 1.2 equiv of CuBr2 and 1.2 equiv of 
TEMPO, a number of substituents, such as electron-rich or 
electron-deficient aryl, heteroaryl, vinyl and aliphatic groups, at 
the terminal alkyne moiety of 2-yn-1-ones were all tolerated 
(2b-2j). We found that substituents, including Me, MeO and 
MeCO, on the aryl ring were well tolerated (2b-d), and the 
electron-withdrawing MeCO group showed lower reactivity than 
the electron-donating groups (e.g., Me, MeO). While alkyne 
bearing a p-methoxyphenyl group reacted with PdCl2, CuBr2, 
TEMPO and air smoothly to furnish the desired product 2c in 79% 
yield, alkyne with an acetyl (MeCO) group diminished the yield of 
2d to 63%. Notably, the introduction of a heterocycle or a 
cyclohex-1-en-1-yl group into this system were also efficient for 
accessing 2e-f in good yields, which makes this methodology 
more valuable for the preparation of pharmaceuticals and nature 
products. We were pleased to find that internal 
2-alkyl-1-arylacetylenes, such as 1-phenylundec-2-yn-1-one, 
7-chloro-1-phenylhept-2-yn-1-one, 
3-cyclopropyl-1-phenylprop-2-yn-1-one and bulky 
4,4-dimethyl-1-phenylpent-2-yn-1-one, were consistent with the 
optimal conditions, giving the corresponding products 2g-j in high 

yields.  
In light of the above results, substituents adjacent to the 

carbonyl moiety of 2-alkynyl carbonyl compounds were tested 
(2k-s). Using 1-arylprop-2-yn-1-one, possessing a para-MeO group, 
on the aryl ring was converted efficiently to 2k in 73% yield. 
Gratifyingly, for 1-arylprop-2-yn-1-ones bearing a para- or an 
ortho-Cl group the reaction executed smoothly to afford 2l-n, 
respectively, in 74-80% yields. Notably, the reaction of 
1-(4-chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one only furnished 
1-(4-chlorophenyl)-2-(p-tolyl)ethane-1,2-dione 2n in 80% yield, 
and the cross CC triple bond cleavage products, such as 
1,2-dip-tolylethane-1,2-dione and 
1,2-bis(4-chlorophenyl)ethane-1,2-dione, were not observed by 
GC-MS analysis. The results imply the reaction proceeds via an 
intramolecular CC triple bond cleavage process. The reaction was 
applicable to both propiolamides and propiolate, accessing the 
corresponding products 2o-2r in good yields. Unfortunately, 
attempts to execute oxidative transformations of terminal ynones 
1t-u failed (2t-2u). 

Table 2  Variation of the 2-alkynyl carbonyl compounds (1)
a 

 
a
 Reaction conditions: 1a (0.3 mmol), PdCl2 (10 mol %), CuBr2 (1.2 equiv), 

TEMPO (1.2 equiv), and H2O/dioxane (1:4, 2.5 mL) at 80 
o
C for 36 h under 

air atmosphere. 

To understand the mechanism, some controlled experiments 
were carried out (Scheme 2). Two 13C-labeled experiments 
showed that the alkynyl carbon adjacent to the carbonyl group 
was lost during the CC triple bond cleavage process (eqs 1 and 2). 
Subsequently, treatment of substrate 1a with H2

18
O, PdCl2, CuCl2, 

TEMPO and air afforded the corresponding 18O-containing product 
2a-18O determined by GC-MS analysis (eq 3). To our surprise, the 
HRMS analysis indicated that some of oxygen of the inherent 
carbonyl group of 1a was replaced by 18O (2a-18O).10 We found 
that a trace of 3-hydroxy-1,3-diphenylprop-2-en-1-one (3a) was 
observed by GC-MS analysis during the reaction of 1a (Table 1). 
Thus, 3-hydroxy-1,3-diphenylprop-2-en-1-one (3a) was employed 
for the reaction in the presence of PdCl2, CuBr2, TEMPO and air: 
Indeed, substrate 3a could be converted to the desired product 2a 
in 80% yield (eq 4). This suggests that the reaction may proceed 
via the similar 3-hydroxy-prop-2-en-1-one intermediate.11 Notably, 
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the cross reaction with ynones 1a and 1k gave no the cross 
product 2ak, supporting an intramolecular process (eq 5). 

Scheme 2  Control Experiments 

 

Therefore, a possible mechanism as outlined in Scheme 3 was 
proposed on the basis of the current results and the previously 
reported literatures. Complexation of PdCl2 with alkyne 1a 
generates intermediate A, followed by Wacker oxidation of the 
CC triple bond in the alkyne with H2O to affords intermediate 
B.11,12 Intermediate B undergoes the second Wacker reaction13 
with the aid of TEMPO to yield intermediate C, and then 
deprotonation to intermediate D and 
2,2,6,6-tetramethylpiperidin-1-ol, in which TEMPO is regenerated 
from the oxidation of 2,2,6,6-tetramethylpiperidin-1-ol by O2 (air). 
Intramolecular addition to the pre-existing carbonyl group of 
intermediate D results in intermediates E and F.14 Finally, 
sequential decarbonylation and reductive elimination of 
intermediate F takes place leading to the desired product 2a, CO, 
HX and Pd(0) species. Oxidation of the Pd(0) species by CuBr2 
regenerates the active Pd(II) species to start the new catalytic 
cycle. 

 

Scheme 3  Possible mechanisms 

 

Conclusions 

In summary, we have described a novel palladium-catalyzed 
oxidative cleavage of the CC triple bond in 2-alkynyl carbonyl 
compounds for the synthesis of 1,2-dicarbonyl compounds using 
H2O as the carbonyl oxygen atom source. This method employs an 

oxidative tandem strategy to allows a wide range of 2-alkynyl 
carbonyl compounds, including 1,3-disubstituted 
prop-2-yn-1-ones, propiolamides and propiolates, to undergo the 
CC triple bond cleavage with excellent selectivity and functional 
group compatibility. The mechanism was also discussed according 
to the 13C-labeled and 18O-labeled experiments.  

Experimental 

General experimental section. 

2-Alkynyl carbonyl compounds 1 were prepared according to 
the known procedures.15 All the other materials and solvents 
were purchased from commercial suppliers and used without 
additional purification. 1H and 13C NMR spectra were recorded on 
a Bruker DRX-500 spectrometer (1H at 500 MHz and 13C at 125 
MHz). NMR data were obtained in CDCl3 unless otherwise noted. 
High-resolution mass spectra were recorded on a Bruker 
microTOF-QII (ESI) spectrometer. Preparative thin-layer 
chromatography was performed on silica gel plates with PF254 
indicator. Flash column chromatography was performed with silica 
gel 60N unless otherwise noted. 

Typical Experimental Procedure for Palladium-Catalyzed 
Oxidative Cleavage of the CC Triple Bond of 
3-Oxoprop-1-ynyl Compounds (1):  

To a Schlenk tube was added alkynes 1 (0.3 mmol), PdCl2 (10 
mol %), CuBr2 (1.2 equiv), TEMPO (1.2 equiv) and dioxane (2.0 mL) 
and H2O (0.5 mL) was stirred at 85 oC under air atmosphere for 
the indicated time (36 h) until complete consumption of starting 
material as monitored by TLC and GC-MS analysis. After the 
reaction was finished, the mixture was filtered, washed with water, 
and extracted with ethyl acetate. The organic layer was dried over 
Na2SO4 and evaporated in vacuum. The residue was purified by 
flash column chromatography on silica gel (hexane/ethyl acetate) 
to afford the desired products 2.  

Analytical data for 2 and 3 

(Main Text Paragraphs) Please include all the experimental 
details here excluding those in Supporting Information. 

1,2-Diphenylethane-1,2-dione (2a):16a Green solid, mp: 
94-95 °C (uncorrected); 1H NMR (500 MHz, CDCl3) δ: 7.98 (d, J = 
8.0 Hz, 4H), 7.66 (t, J = 7.5 Hz, 2H), 7.51 (t, J = 7.5 Hz, 4H); 13C NMR 
(125 MHz, CDCl3) δ: 194.5, 134.9, 132.9, 129.9, 129.0; IR (KBr, 
cm-1): 1659; LRMS (EI 70 ev) m/z (%): 210 (M+, 3), 105 (100), 77 
(51), 51 (20). 

1-Phenyl-2-p-tolylethane-1,2-dione (2b):
16a

 Brown oil; 
1
H 

NMR (500 MHz, CDCl3) δ: 7.87 (d, J = 7.5 Hz, 2H), 7.78 (d, J = 8.0 
Hz, 2H), 7.55 (t, J = 7.0 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.21 (d, J = 
8.0 Hz, 2H), 2.34 (s, 3H); 13C NMR (125 MHz, CDCl3) δ: 194.7, 194.3, 
146.2, 134.8, 133.0, 130.5, 129.9, 129.8, 129.7, 128.9, 21.9; IR 
(KBr, cm-1): 1655, 1685; LRMS (EI 70 ev) m/z (%): 224 (M+, 2), 119 
(100), 105 (24), 91 (37). 

1-(4-Methoxyphenyl)-2-phenylethane-1,2-dione (2c):16a 
Green oil; 1H NMR (500 MHz, CDCl3) δ: 7.97-7.93 (m, 4H), 7.63 (t, J 
= 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 3.86 
(s, 3H);

 13
C NMR (125 MHz, CDCl3) δ: 194.8, 193.1, 164.9, 134.6, 

133.0, 132.3, 129.8, 128.8, 125.9, 114.3, 55.5; IR (KBr, cm-1): 1668, 
1593; LRMS (EI 70 ev) m/z (%): 240 (M+, 1), 135 (100), 107 (11), 92 
(13), 77 (38), 51 (9). 

1-(4-Acetylphenyl)-2-phenylethane-1,2-dione (2d):16b Green 
oil; 

1
H NMR (500 MHz, CDCl3) δ: 7.98 (s, 4H), 7.89 (d, J = 8.0 Hz, 

2H), 7.60 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 2.58 (s, 3H); 13C 
NMR (125 MHz, CDCl3) δ: 197.2, 193.7, 193.6, 141.2, 135.9, 135.1, 
132.6, 130.0, 129.9, 129.1, 128.7, 26.9; IR (KBr, cm

-1
): 1773, 1683; 

LRMS (EI 70 ev) m/z (%): 252 (M+, 3), 147 (19), 119 (6), 105 (100), 
91 (9), 77 (42), 43 (13). 
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1-Phenyl-2-(thiophen-3-yl)ethane-1,2-dione (2e):16c Green 
oil; 1H NMR (500 MHz, CDCl3) δ: 7.96 (d, J = 8.0 Hz, 2H), 7.76 (d, J 
= 5.0 Hz, 1H), 7.72 (d, J = 4.0 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.44 
(t, J = 8.0 Hz, 2H), 7.11 (d, J = 5.0 Hz, 1H); 13C NMR (125 MHz, 
CDCl3) δ: 192.0, 185.6, 139.8, 136.9, 136.7, 134.8, 132.6, 130.2, 
128.9, 128.8; IR (KBr, cm-1):1685; LRMS (EI 70 ev) m/z (%): 216 (M+, 
7), 111 (49), 105 (100), 77 (45). 

1-Cyclohexenyl-2-phenylethane-1,2-dione (2f): Green oil; 1H 
NMR (500 MHz, CDCl3) δ: 7.81 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 7.5 Hz, 
1H), 7.42 (t, J = 7.5 Hz, 2H), 6.77-6.76 (m, 1H), 2.33-2.30 (m, 2H), 
2.22-2.18 (m, 2H), 1.67-1.58 (m, 4H); 13C NMR (125 MHz, CDCl3) δ: 
196.5, 195.7, 149.9, 137.0, 134.5, 133.3, 129.6, 128.8, 26.6, 21.9, 
21.4; IR (KBr, cm-1): 2848, 1667, 1662; LRMS (EI 70 ev) m/z (%): 
214 (M

+
, 11), 105 (42), 109 (100), 81 (60), 77 (47), 51 (18); HRMS 

m/z (ESI) calcd for C14H15O2 [M+H]+ 215.1067, found 214.1073. 
1-Phenyldecane-1,2-dione (2g):16d Green oil; 1H NMR (500 

MHz, CDCl3) δ: 7.93 (d, J = 7.0 Hz, 2H), 7.59 (t, J = 7.0 Hz, 1H), 7.44 
(t, J = 7.5 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 1.66-1.63 (m, 2H), 
1.32-1.22 (m, 10H), 0.83 (t, J = 6.8 Hz, 3H); 13C NMR (125 MHz, 
CDCl3) δ: 203.3, 192.3, 134.3, 131.8, 129.9, 128.6, 38.6, 31.5, 29.0, 
28.9, 28.8, 22.6, 22.4, 13.8; IR (KBr, cm-1): 2917, 2847, 1720, 1671; 
LRMS (EI 70 ev) m/z (%): 246 (M+, 1), 141 (6), 105 (100), 77 (25), 
71 (11), 57 (13). 

6-Chloro-1-phenylhexane-1,2-dione (2h): Green oil; 1H NMR 
(500 MHz, CDCl3) δ: 7.92 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 
7.44 (t, J = 7.5 Hz, 2H), 3.51 (t, J = 6.0 Hz, 2H), 2.87 (t, J = 7.0 Hz, 
2H), 1.82-1.79 (m, 4H); 13C NMR (125 MHz, CDCl3) δ: 202.5, 192.0, 
134.7, 131.8, 130.2, 128.9, 44.4, 37.7, 31.7, 20.2; IR (KBr, cm-1): 
2958, 1708, 1668; LRMS (EI 70 ev) m/z (%): 226 (M++2, 1), 224 (M+, 
3), 105 (100), 77 (39), 51 (13); HRMS m/z (ESI) calcd for 
C12H14

35ClO2 [M+H]+ 225.0677, found 225.0815. 
1-Cyclopropyl-2-phenylethane-1,2-dione (2i):16e Green oil; 

1H NMR (500 MHz, CDCl3) δ: 7.92 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 7.5 
Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 2.49-2.46 (m, 1H), 1.27-1.24 (m, 
2H), 1.14-1.11 (m, 2H); 13C NMR (125 MHz, CDCl3) δ: 202.6, 192.3, 
134.5, 132.1, 130.2, 128.8, 18.6, 13.2; IR (KBr, cm-1): 1691, 1675; 
LRMS (EI 70 ev) m/z (%): 174 (M+, 2), 105 (100), 78 (4), 77 (48), 51 
(19), 41 (21). 

3,3-Dimethyl-1-phenylbutane-1,2-dione (2j):
16c

 Green oil; 
1
H 

NMR (500 MHz, CDCl3) δ: 7.75 (t, J = 8.5 Hz, 2H), 7.56 (t, J = 8.5 Hz, 
1H), 7.42 (t, J = 8.0 Hz, 2H), 1.23 (s, 9H); 13C NMR (125 MHz, CDCl3) 
δ: 210.9, 195.4, 134.5, 132.8, 129.5, 128.9, 42.6, 26.2; IR (KBr, 
cm-1): 2962, 1695, 1671; LRMS (EI 70 ev) m/z (%): 190 (M+, 2), 105 
(100), 85 (6), 77 (35), 57 (33), 51 (13). 

1,2-Bis(4-methoxyphenyl)ethane-1,2-dione (2k):16a Yellow 
oil; 1H NMR (500 MHz, CDCl3) δ 7.94 (d, J = 9.0 Hz, 4H), 6.96 (d, J = 
9.0 Hz, 4H), 3.87 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 193.5, 164.8, 
132.3, 126.1, 114.2, 55.6; LRMS (EI, 70 eV) m/z (%): 270 (M+, 3), 
207 (4), 135 (100), 92(28). 

1-(4-Chlorophenyl)-2-phenylethane-1,2-dione (2l):16a Brown 
solid, mp 82-83 

o
C (uncorrected); 

1
H NMR (500 MHz, CDCl3) δ: 

7.89 (d, J = 7.5 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 
1H), 7.46-7.40 (m, 4H);

 13
C NMR (125 MHz, CDCl3) δ: 193.4, 192.5, 

141.1, 134.6, 132.2, 130.8, 130.7, 129.4, 128.9, 128.6; IR (KBr, 
cm

-1
): 1671, 1589; LRMS (EI 70 ev) m/z (%): 246 (M

+
+2, 1), 244 

(M
+
, 3), 139 (24), 111 (16), 105 (100), 77 (40), 75 (13), 51 (16). 

1-(2-Chlorophenyl)-2-phenylethane-1,2-dione (2m):16f 
Brown oil; 1H NMR (500 MHz, CDCl3) δ: 7.94 (d, J = 7.5 Hz, 2H), 
7.81 (d, J = 8.0 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 
3H), 7.33 (t, J = 8.0 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ: 193.1, 
191.5, 134.1, 134.0, 133.4, 133.2, 131.8, 131.6, 130.0, 129.6, 
128.4, 126.8; IR (KBr, cm-1): 1673, 1592; LRMS (EI 70 ev) m/z (%): 
246 (M++2, 2), 244 (M+, 7), 139 (25), 105 (100), 77 (44), 51 (17). 

1-(4-Chlorophenyl)-2-p-tolylethane-1,2-dione (2n):16g Green 
solid, mp 101-102 oC (uncorrected); 1H NMR (500 MHz, CDCl3) δ: 
7.84 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.5 Hz, 
2H), 7.24 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H); 13C NMR (125 MHz, CDCl3) 

δ: 193.6, 193.2, 146.4, 141.4, 131.4, 131.2, 130.3, 130.0, 129.8, 
129.4, 21.9; IR (KBr, cm-1): 1667; LRMS (EI 70 ev) m/z (%): 260 
(M++2, 1), 258 (M+, 3), 119(100). 

N,N-Diethyl-2-oxo-2-phenylacetamide (2p):16h Green oil; 1H 
NMR (500 MHz, CDCl3) δ: 7.94 (d, J = 8.0 Hz, 2H), 7.64 (t, J = 7.0 Hz, 
1H), 7.51 (t, J = 7.5 Hz, 2H), 3.59-3.55 (m, 2H), 3.27-3.23 (m, 2H), 
1.29 (t, J = 7.0 Hz, 3H), 1.16 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, 
CDCl3) δ: 191.5, 166.7, 134.5, 133.2, 129.5, 128.9, 42.1, 38.8, 14.0, 
12.8; IR (KBr, cm-1): 1679, 1654; LRMS (EI 70 ev) m/z (%): 205 (M+, 
2), 105 (48), 100 (100), 77 (35) 72 (75). 

N-Butyl-2-oxo-2-phenylacetamide (2q):16i Green oil; 1H NMR 
(500 MHz, CDCl3) δ: 8.26 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 
7.41 (t, J = 7.5 Hz, 2H), 7.02 (brs, 1H), 3.35-3.31 (m, 2H), 1.54-1.50 
(m, 2H), 1.36-1.32 (m, 2H), 0.89 (t, J = 7.5 Hz, 3H);

 13
C NMR (125 

MHz, CDCl3) δ: 187.9, 161.7, 134.3, 133.4, 131.2, 128.4, 39.1, 31.3, 
20.0, 13.7; IR (KBr, cm-1): 3388, 2954, 2921, 1664; LRMS (EI 70 ev) 
m/z (%): 205 (M+, 12), 105 (100), 77 (38), 57 (25). 

N-Benzyl-N-butyl-2-oxo-2-phenylacetamide (2r): Green 
oil;1H NMR (500 MHz, CDCl3) δ: 7.87 (t, J = 4.5 Hz, 2H), 7.53 (d, J = 
7.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 4.5 Hz, 2H), 
7.24-7.17 (m, 3H), 4.67 (s, 1H), 4.30 (s, 1H), 3.33 (t, J = 7.5 Hz, 1H), 
3.00 (t, J = 7.5 Hz, 1H), 1.54-1.51 (m, 1H), 1.45-1.42 (m, 1H), 1.27 
(t, J = 7.5 Hz, 1H), 1.07-1.02 (m, 1H), 0.85 (t, J = 7.5 Hz, 1.5H), 0.67 
(t, J = 7.5 Hz, 1.5H); 13C NMR (125 MHz, CDCl3) δ: 191.4, 191.2, 
167.3, 167.2, 136.2, 135.1, 134.5, 133.2, 130.0, 129.6, 129.5, 
128.9, 128.9, 128.7, 128.6, 128.3, 128.2, 128.0, 127.8, 127.7, 51.0, 
46.8, 46.6, 43.3, 29.9, 28.8, 20.0, 19.6, 13.7, 13.4; IR (KBr, cm-1): 
2962, 2929, 1683, 1634; LRMS (EI 70 ev) m/z (%): 295 (M+, 2), 105 
(37), 91 (100); HRMS m/z (ESI) calcd for C19H22NO2 [M+H]+ 
296.1645, found 296.1657. 

Ethyl 2-oxo-2-phenylacetate (2s):16j Green oil; 1H NMR (500 
MHz, CDCl3) δ: 7.93 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.43 
(t, J = 7.5 Hz, 2H), 4.40-4.35 (m, 2H), 1.34 (t, J = 7.0 Hz, 3H); 13C 
NMR (125 MHz, CDCl3) δ: 186.4, 163.8, 134.8, 132.3, 129.9, 128.8, 
62.3, 14.0; IR (KBr, cm-1): 1736, 1683, 1200; LRMS (EI 70 ev) m/z 
(%): 178 (M+, 1), 105 (100), 77 (48). 

3-Hydroxy-1,3-diphenylprop-2-en-1-one (3a):16k Colorless oil; 
1H NMR (500 MHz, CDCl3) δ: 16.92 (s, 1H), 8.01 (d, J = 7.5 Hz, 4H), 
7.55 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 4H), 6.88 (s, 1H);

 13
C 

NMR (125 MHz, CDCl3) δ: 185.6, 135.3, 132.3, 128.5, 127.0, 93.0; 
LRMS (EI 70 ev) m/z (%): 224 (M+, 65), 223 (80), 147 (38), 105 
(100). 
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