Article

Subscriber access provided by UNIV OF LOUISIANA

Cleavable Amide Bond: Mechanistic Insight of Cleavable 4-Aminopyrazolyloxy Acetamide at low pH

Amarnath Bollu, and Nagendra K. Sharma

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00535 • Publication Date (Web): 10 Apr 2019 Downloaded from http://pubs.acs.org on April 13, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Cleavable Amide Bond: Mechanistic Insight of Cleavable *4-Aminopyrazolyloxy Acetamide* at low pH

Amarnath Bollu and Nagendra K. Sharma*

School of Chemical Science, National Institute of Science Education and Research - (NISER) Bhubaneswar, Jatani-752050, Odisha, India & HBNI-Mumbai, Mumbai-India.

E-mail: nagendra@niser.ac.in

Abstract

The cleavage of amide bonds under mild acidic conditions are rare chemical event. *N*-acetamide bond of peptides is extremely stable even under the strongest organic acid TFMSA. This report mechanistically describes a new cleavable amide bond in 4-*aminopyrazolyloxy acetamide* peptide analogues under mild acidic conditions such as TFA (10-20%) or HCl (0.1 - 4.0 N) at room temperature, and the formation of unusual lactam from 4-*aminopyrazolyloxy acetic acid* after evaporation of solvent. This is a rare chemical event in peptide bond which could be explored as acid sensitive protecting group of free amines.

Introduction

Natural amides are extremely stable, and their half-life for spontaneous hydrolysis is estimated to be 350 to 600 years at neutral pH and room temperature.¹ The carbonyl group of amide are poor electrophiles because of the typical resonance stability. Though amides can readily be

cleaved/hydrolyzed by enzymes such as proteases. It is difficult to cleave the C-N bond of an amide selectively using synthetic chemistry. The cleavage/hydrolysis of amide bonds usually requires heating under strongly acidic or basic conditions. However, the cyclic amides, lactams, are easily cleavable as compare to the linear amides because of ring strained amides.² A large number of the highly strained lactams are synthesized and found as cleavable amide bond under mild conditions. Since the C=O bond of reactive lactams amide is arising to the strong electrophile as "ketonic" carbonyl because of the resonance decoupling through N-C=O torsion. Brown and co-workers have mechanistically confirmed that resonance decoupling induces the remarkable enhancement in hydrolysis rate by direct nucleophilic attack at the carbonyl of strained amide.³ The most twisted amide as Trimethylazatricyclodecanone is highly strained lactam with large resonance decoupling through N-C bond, and found as readily hydrolysable. This twisted lactam also shows the dual reactivity of amide as nucleophilic character of amine and electrophilic nature of carbonyl. Booker-Milburn and co-workers have reported the solvolysis/substitution reaction of acyclic synthetic amides at room temperature and neutral conditions via the formation of ketene intermediates.⁴ In literature, the cleavage of few natural amide bonds are precisely demonsterated through the formation of thiazolinone derivatives (by Edman degradation), oxazolinium intermediates and chemical modification of the amide backbone.⁵ Most Importantly, Edman degradation method for cleavage of amide bond is foundation for protein sequencing technology.^{5a} The presence of Zinc species in active sites of metalloproteases have inspired synthetic chemists to cleave amide bond using Zn²⁺. Mashima and co-workers have reported the cleavage of amides bearing a β -hydroxyethyl group under mild conditions with Lewis acid Zn(OTf)₂.⁶ Kostic and co-workers have prepared an artificial peptidase which cleavage of the sequence specific amide bonds as Pro-Met/Pro-His segments of peptide under mild conditions with Pd-catalyst.⁷ In repertoire of the making reactive amide group, Hauk, Garg and co-workers have established the conversion of amide

Page 3 of 21

functional group into ester group by cleaving C-N bond of amide using Ni-catalyst.⁸ The conversion of an amide into another amide with different amine group, transamidation, is important chemical transformation reaction for ligation or removal of amino functionalized chemical moieties at carboxylate functionalized molecules.⁹ Gellman, Stahl and co-workers have explored the amide groups for transamidation reaction, between secondary amines and tertiary amines, using Zr/Hf-catalyst.^{9a} Other Metal catalyzed and metal free transamidation reactions are also reported.^{9b, c, 10} Recently, we have also established the transamidation reaction in tropolonylalkylglycinate peptide derivatives with different amino acid/peptides.

We, the instability of amide bonds Nrecently, have found containing Tropolonylaminoalkylglycinate (Trag) in short peptides under mild acidic conditions. The formation of stable tropolonium cations followed by the formation of ketene intermediate are main caused for the cleavage of *Trag*-amide bonds.¹¹ In repertoire of unnatural heterocyclic aromatic amino acids, we have explored the syntheses and supramolecular self-assembly studies of pyrazolone containing amino acid analogues. One of those analogue is 4aminopyrazolonyl acetate has been conjugated with natural amino acid/short peptides for understanding the role of pyrazolonyl moiety in conformational changes of peptides.¹² However these conjugated peptides have shown an unusual reactivity under mild acidic conditions (Figure 1). To understand the role of 4-aminopyrazolonyl acetate in cleveage of amide bond, herein we report the syntheses and chemical instability of amide bond in simple non-functional amino acids and di-/tri-peptide containing aminopyrazolonyl acetyl residue under mild acidic conditions at room temperature by NMR and Mass analyses.

Figure 1. Hydrolyzable amide bonds: previous report (a); and this report (b).

Result and discussion

We used previously synthesized 4-aminopyrazolonyl amino acid (APA) ester derivative (1) for synthesis of conjugated peptides and their chemical behavior under mild acidic conditions. Ester (1) was hydrolyzed into 4-aminopyrazolonyl amino acid, APA acid (2) with LiOH (1.0N in THF), and then coupled with amino group of various natural amino acids/peptides (H₂N-AA-OMe) under peptide coupling reaction conditions which produced conjugated peptides **3** (APA-AA-OMe). Natural α -amino acid ester derivatives of Gly-OMe, Ala-OMe, Ile-OMe, and Phe-OMe produced unnatural respective conjugated dipeptides as BocNH-APA-Gly-OMe (**3a**), BocNH-APA-Ala-OMe (**3b**), BocNH-APA-Ile-OMe (**3c**), BocNH-APA-Phe-OMe. Further natural α -amino acid dipeptide esters, Gly-Ala-OMe, Ala-Gly-OMe, Gly-Ile-OMe and Ile-Gly-OMe gave respective unnatural conjugated tripeptides as BocNH-APA-Gly-Ala-OMe (**3e**), BocNH-APA-Ala-Gly-OMe (**3f**) BocNH-APA-Gly-Ile-OMe (**3g**), and BocNH-APA-Ile-Gly-OMe (**3h**) as shown in Scheme 1. The characterization data (¹H-/¹³C {¹H}-NMR/Mass) of all synthesized peptides are provided in Supporting Information.

BocHN

Ph

3 (BocNH-APA-NH-AA-OMe)

3g. BocNH-APA-Gly-Ile-OMe

3h. BocNH-APA-IIe-Gly-OMe

AA-OMe

Scheme 1. Synthesis of *N*-Boc-aminopyrazolonyl amino acid and their peptides.

Ρh

Peptides

For further elongation of peptides at N-terminal of hybrid peptides **3a-3h**, the removal of N-Boc group was necessary. The removal of Boc group of N-Boc-aminopyrazolonyl amino acid containing peptides **3a-3h** was attempted with 20% TFA in DCM, unfortunately we could not achieve desired aminopyrazolonyl amino acid peptides (Scheme 2). Surprisingly, we noticed the cleavage of amide bond by ESI-Mass studies. Then we isolated a new crystalline product and characterized as aminopyrazolyl lactam 4 by NMR & HRMS analysis. This crystal was also studied by single crystal X-ray diffractometer. The X-ray studies confirmed the structure of lactam 4, the ORTEP diagram is shown in Scheme 2. The cif file of crystal lactam 4 has deposited to CCDC with number CCDC 1890879. To ensure this cleavage of amide bond, we performed the similar acid treatment reaction with other hybrid di-/tri-peptides, **3b-3h** and then characterized their isolated products by NMR and Mass analyses (See Supporting Information). Irrespective of α -amino acid sequence, aminopyrazolyl amino acid containing amide bonds in peptides **3b-3h** were cleaved and produced the similar cyclized product as lactam **4**. In case of hybrid tripeptides **3e-3h**, other natural amide bonds, dipeptides (between two α -amino acids) were stable under that acidic conditions (20% TFA in DCM). To test the selective cleavage of 4-aminopyrazolyloxy acetamide bond in the presence of Boc group, we treated compound **3e** with 0.1 N HCl/1, 4-dioxane and studied with ESI-MS (Figure S20 in SI), Here the removal of Boc is very slow, under these conditions there are no significant representative peaks at m/z 348 (*N*-Boc acid) or 330 (*N*-Boc lactam) for selective cleavage products. We noticed the cleavage of 4-aminopyrazolyloxy acetamide bond is not cleavable until the Boc group is deprotected. Along with lactam 4, we also observed *N*-trifluoroacylation with 20% TFA in ESI-MS, this side reaction was minimized/avoided by using 10% TFA or 4.0 N HCl in 1,4-dioxane (Supporting Information, Figure S13-S15). These results strongly suggest the cleavage of specific amide bond containing 4-aminopyrazolonyl amino acid residue at C-terminal of α -amino acid/peptides.

Further, we attempted to remove the Boc group of *N*-Boc-aminopyrazolonyl amino acid ester **1** and its carboxylic acid **2** under similar acidic conditions (10-20% TFA in CDCl₃) for conjugation of aminoprazolonyl moiety at C-terminal of above mentioned di-/tri-peptides. Surprisingly, we failed to generate amino functionalized amino ester (**1-NH**₂) and acid (**2-NH**₂). However, we isolated a new product and characterized by NMR and ESI-Mass analyses. Our NMR and Mass results supported that both ester **1** and its acid **2** gave the common cyclized product as lactam **4** under mild acidic conditions (Scheme 2). The synthesis of that lactam **4** is extremely unusual from ester **1**/acid **2**/amide **3** under acidic conditions at room temperature which are also unusual in peptide chemistry.

Scheme 2. Reaction of APA derivatives under mild acidic conditions.

The progress of amide cleavage reactions, under acidic conditions, are studied by ¹H-NMR technique. We recorded the time dependent ¹H-NMR spectra of peptide **3a** under 10% TFA in deuterated solvent CDCl₃. The array of the ¹H-NMR spectra with time is provided in Supporting Information, Figure S25. Most importantly, the gradual disappearance of NMR signal, singlet at δ 5.0 (ppm), is noticed in peptide **3a** with respect to time under that acidic conditions. A transient increase and decrease of signal at δ 4.5 (ppm) is also observed. Similar time dependent NMR experiments were performed under acidic conditions with another peptide **3e**. Their NMR data are provided in Supporting Information (Figure S27). After the NMR study the same samples were subjected to ESI-MS in solvent CH₃CN (neat). Their mass spectra exhibit the mass (m/z) peak at 230, in solvent CH₃CN, for both peptides **3a**/**3e**, which belongs to mass of lactam **4** as [M+H]⁺ Supporting Information (Figure S26 & S28). These results (NMR and Mass) strongly support the involvement of α -CH₂ of aminopyrazolonyl residue in the cleavage of peptide **3a**/**3e** under acidic condition (10% TFA in CDCl₃) via the formation of stable lactam **4**. Further, we performed the similar NMR and Mass experiments

with *N*-Boc-aminopyrazolonyl amino acid ester **1** and its carboxylic acid **2**. Their NMR spectra, NMR profiles and mass spectra are provided in the Supporting Information. Our results suggest that the formation of lactam **4** is common for both aminopyrazolonyl ester **1** and its carboxylic acid **2** under mild acidic conditions (10% TFA in CDCl₃). We studied the ¹H-NMR kinetics of amide **3a**/acid **2**/ester **1** hydrolysis in CDCl₃. The relative concentrations were calculated in mole fractions (*x*) from relative integrations of -O-C<u>H</u>₂- peak of amide **3a**/acid **2**/ester **1** with gradually increasing lactam **4** with time. The plots of mole fraction (*x*) with time for APA amide **3a** and APA acid **2** is provided in Figure 2, and APA ester **1** is provided in supporting information (Figure S35A). We have also generated simulated kinetic plots from the sequential first-order reaction model with COPASI software program using experimentally obtained k_1 and k_2 values and then fitted with our experimental kinetic plots (Figure S41-S43).

Figure 2. Time dependent ¹H-NMR studies of APA peptide 3a (A) and APA acid 2 (B) in solvent CDCl₃ with 20 mM concentrations.

From the plots of concentration versus time, a transient increase and decrease of intermediate is also observed, this suggest that the cyclization of amide 3/acid 2/ester 1 is proceeding through an intermediate. After seeing these plots, we propose that compound 1, 2, & 3a are following consecutive first order kinetic pathway and the rate laws are given by equations 1-3 in

supporting information. The plots of integral mole fraction versus time, $(\ln(x) \text{ vs time})$ are provided in Supporting Information (Figure S33-S35) and gave a straight line with negative slope which are consistent with literature reports for consecutive reaction pathway.¹³ The rate constants k_1 , k_2 and their respective half-lives ($t_{1/2}$) are calculated from these integral plots and provided in Table 1. The observed rate constants and half-lives from Table 1 suggest that the acid **2** is hydrolysed relatively faster than amide **3a** followed by ester **1**. This is possibly due to the intramolecular hydrogen bonding in APA peptide **3a** and acid **2**, between *H*-atom (-COOH-) or amide NH with *O*-atom ($-O-CH_2-$) of pyrazolonyl residue, which provide rigidity at carbonyl group and enhance the nucleophilic addition elimination reaction (Figure S44). Such hydrogen bonding is not possible with APA ester **1**.

Table 1. Kinetic data of 4-aminopyrazolyloxy derivatives from ¹H-NMR spectrum.

Compound	<i>k</i> ₁ /min ⁻¹	k_2/min^{-1}	<i>k</i> ₂ / <i>k</i> ₁	$t_{1/2}$ /min (for k_1)	$t_{1/2}$ /min (for k_2)
3a (Amide)	2.28 x 10 ⁻²	0.83 x 10 ⁻²	0.36	30.34	83.00
2 (Acid)	1.97 x 10 ⁻²	1.09 x 10 ⁻²	0.55	35.09	63.35
1 (Ester)	1.95 x 10 ⁻²	0.78 x 10 ⁻²	0.4	35.43	88.74

Interestingly, during the hydrolysis of amide bond in peptides **3a-3h**, we observed methanolysis of amide bond in lactam in mass spectrum and exist in methyl ester form in presence of MeOH (Supporting Information Figure S13-S18). To further understanding the reactivity of this amide bond, the lactam **4** is monitored in several aspects using mass spectroscopy (Supporting Information Figure S37), from these studies it is apparent that, acid and MeOH both are needed for the amide bond cleavage in lactam **4**. Moreover, there is no

complete disappearance of lactam in any of the cleavage conditions implemented during this studies. This cleavage is also monitored by time dependent ¹H-NMR in CD₃CN, CD₃OD and PTSA (~ 3.0 equivalents) at 293 K, from the array of spectra the reaction proceeds with the formation of hydrolysed methyl ester and remains constant after ~500 min without complete conversion of lactam **4**. The relative concentrations were calculated in mole fractions (*x*) from relative integrations of -O-C \underline{H}_2 - peak of lactam with gradually increasing methyl ester **4-OCD₃** with time, the resultant plots indicate the existence of equilibrium (Figure 3) and the rate law for this equilibrium is given by equation 4 in supporting information. The equilibrium constant (K) from the plot of mole ratio vs time has a value of 2.72 (Supporting Information Figure S36B). After NMR study, the same sample is subjected to ESI-MS, we observed the mass of both deuterated methyl ester (m/z 265) and lactam (Supporting Information Figure S37h). Importantly, we were not able to isolate this methyl ester. From these studies, we assume that the lactam **4** and its methyl ester **4-OCH₃** forms are in equilibrium in solution state in presence of acid and MeOH.

Figure 3. Time dependent ¹H-NMR studies of lactam 4 in CD₃CN, CD₃OD and PTSA.

Since aminopyrazolone is aromatic compound and UV active in nature. Thus we attempted to monitor the cleavage of lactam **4** into its amino ester derivative **4-OCH**₃ under acidic condition by UV studies. We found that the UV spectrum of pure lactam **4** exhibited two characteristic peaks at wavelength (λ) 240 nm and 280 nm under neutral pH conditions (Supporting Information Figure S40). Then we recorded UV spectra of lactam **4** at different time intervals of times under acidic conditions (0.1 N HCl in MeOH) which exhibit the significant depletion of absorption intensity of lactam **4** at $\lambda_{240 \text{ nm}}$ and $\lambda_{280 \text{ nm}}$ (Figure 4). Such changes in UV spectra strongly support the formation of new species under that mild acidic conditions.

Figure 4. Time dependent UV-Spectra of lactam **4** under acidic conditions, time intervals in min. (right panel).

Recently, we have reported an unusual *syn* conformation between $-O-CH_2-CO-NH$ - in crystal structures of peptides **3b/3h** and a weak intramolecular hydrogen bonding between *H*-atom of amide (-CONH-) and *O*-atom ($-O-CH_2$ -).¹² Similar *syn* conformation is also noticed in crystal structure of APA ester **1** (Figure 5). Structural analyses of APA peptides **3b/3h** reveal that the

APA amide bond is twisted with tau (τ) ~ 5.5° (Supporting Information, Figure S39). We also noticed intramolecular hydrogen bonding between *H*-atom (-COOH-) and *O*-atom (-*O*-*C*H₂-) in APA acid **2** from NMR studies (Supporting Information, Figure S1-S4). The strong synergetic effects, such as electronegative -<u>*O*</u>-*CH*₂-, twisted amide bond ($\tau \sim 5.5^{\circ}$) and unfavourable *syn* conformation (ψ) weaken the stability of that amide bond. As a resultant, the favourable intramolecular attack of APA amine (6-exo-trig) led to the cleavage of that amide bond under mild acidic conditions.

Figure 5. (a) Structures of amide 3b/3h, ester 1, acid 2; (b) Their Newman Projection.

The removal of Boc group of aminopyrazolonyl derivatives 1/2/3 occurs under acidic conditions (10-20% TFA in DCM/CH₃CN) and generates the protonated amine intermediates (a) which may protonate the intramolecular carbonyl group of ester/acid/amide derivatives as intermediates (b). Subsequently the amine nucleophile possibly attacks at the protonated carbonyl electrophile as typical intramolecular nucleophilic addition-elimination reaction to

facilitate the formation of cyclic amide (lactam) derivative **4** (Figure 6). Most importantly, this lactam is stable in solvent free conditions and its structure is confirmed by single crystal X-ray analyses. The stability of this lactam **4** is further investigated under protic nucleophilic solvent (MeOH) under acidic conditions. Importantly, this lactam **4** is unstable in nucleophilic solvents (H₂O/MeOH) under acidic conditions and proceeds to amide hydrolysis possibly due to protonation of amide bond *N*-atom under acidic conditions. As resultant, lactam **4** hydrolyzes into acid/ester derivatives (**f**) with respective solvents H₂O/MeOH.

Figure 6. Plausible mechanism of amide hydrolysis.

Conclusion

In summary, 4-aminopyrazolyloxy acetate are successfully incorporated at *N*-terminal of natural di-/tri-peptides aminopyrazolyloxy acetamide derivatives which are hydrolysable under mild acidic conditions and such amide hydrolyses are rare. This unique character of amide bond is elaborated by NMR/UV/Mass/X-ray studies which helped to demonstrate the mechanism of reactions. Since aminopyrazoly rings and its derivatives are chromophores. Thus 4-aminopyrazolyloxy acetate could be employed in protection of free amine via acid sensitive

chromophoric amide bond unlike Boc group. Our future works are in progress to demonstrate the utility of this process, and have planned to study with other amino acids/longer peptides including functionalized amino acid/peptide derivatives.

EXPERIMENTAL SECTION

General methods. All required materials were obtained from commercial suppliers and used without any further purification. Dimethylformamide (DMF) was distilled over calcium hydride. Reactions were monitored by thin layer chromatography, visualized by UV and ninhydrin. Column chromatography was performed in 230-400 mesh silica. Mass spectra and HRMS were obtained from Bruker micrOTOF-Q II Spectrometer. ¹H NMR, ¹³C{¹H} NMR, were recorded on Bruker AV-400 or 700 MHz at 298 K. ¹H and ¹³C{¹H} NMR chemical shifts were recorded in ppm downfield from tetramethylsilane or residual solvent peak. Splitting patterns are abbreviated as: s, Singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; dq, doublet of quartet; m, multiplet.

Experimental procedure. Experimental procedure and their characterization data for compounds **1**, **3b-3d**, **3g-3h** are previously reported from our lab.¹²

N-phenyl, 4-aminopyrazolyloxy acetic acid, BocNH-APA-OH (**2**). Compound **1** (1.26 g, 3.52 mmol) is dissolved in THF (25 mL) and cooled to 0 °C, then added aqueous LiOH (1 M, 25mL) and at the same temperature stirred for 20 min. The solvents are evaporated under vacuum to half of its volume and adjusted the pH to 6-7 with 1 M HCl. The resulting aqueous layer extracted with EtOAc (3*30 mL) and dried over anhydrous Na₂SO₄ and concentrated under vacuum. The product is precipitated with chloroform and hexane, dried the solid to produce 1.0 g (90%) of title compound. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (OH, s, 1H), 7.63 (d, *J* = 7.8 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.27 (dd, *J* = 6.5, 4.7 Hz, 1H), 6.02 (NH, s, 1H), 4.67 (s,

2H), 2.15 (s, 3H), 1.49 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.6, 158.3, 147.4, 146.9, 138.2, 128.9, 126.7, 122.5, 101.2, 82.9, 67.8, 28.3. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₇H₂₂N₃O₅ 348.1554; Found 348.1567.

General experimental peptide coupling procedure for compounds, 3a-3h:

Compound **2**, corresponding amine (TFA or HCl salt form) (1.5 equivalent), HOAT (1.5 equivalent) was dissolved in Dry DMF (1.5 M). After stirring for 10 min, N-methyl morpholine (3 equivalent) was added drop wise and cooled the temperature to 0 °C and added EDC.HCl (1.5 equivalent). After 20 min allowed to warm to rt followed by heating at 60 °C for 8 h. The crude reaction mixture was evaporated under reduced pressure. The resultant crude was purified by column chromatography with MeOH in CH_2Cl_2 (1-3%).

methyl 2-(2-((4-((tert-butoxycarbonyl)amino)-3-methyl-1-phenyl-1H-pyrazol-5yl)oxy)acetamido)acetate, *BocNH-APA-Gly-OMe* (**3a**): R_f 0.25 (3% MeOH in CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.8 Hz, 2H), 7.44 (t, J = 7.9 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 6.94 (t, 1H), 6.15 (s, 1H), 4.65 (s, 2H), 4.07 (d, J = 5.7 Hz, 2H), 3.77 (s, 3H), 2.19 (s, 3H), 1.48 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0, 167.8, 155.1, 147.1 (two peaks merged), 138.1, 129.2, 126.9, 122.6, 102.6, 80.6, 70.7, 52.5, 40.5, 28.2, 11.8. HRMS (ESI-TOF) m/z: [M + H] + Calcd for C₂₀H₂₇N₄O₆ 419.1925; Found 419.1914.

(*S*)-methyl 2-(2-((4-((tert-butoxycarbonyl)amino)-3-methyl-1-phenyl-1H-pyrazol-5yl)oxy)acetamido)acetamido)propanoate *BocNH-APA-Gly-Ala-OMe* (**3e**): R_f 0.18 (3% MeOH in CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.30 (d, J = 7.3 Hz, 1H), 7.16 (s, 1H), 6.69 (s, 1H), 6.48 (s, 1H), 4.63 (s, 2H), 4.62 – 4.53 (m, 1H), 3.98 (d, J = 5.3 Hz, 2H), 3.74 (s, 3H), 2.18 (s, 3H), 1.79 (d, J = 7.0 Hz, 2H), 1.46 (s, 9H), 1.41 (d, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.3, 168.3 (two peaks merged together), 155.3, 147.2 (two peaks merged together), 138.1, 129.1, 126.9, 122.5, 102.8, 80.4, 70.7, 52.5, 48.2, 42.0, 28.2, 17.9, 11.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{23}H_{30}N_5O_{7s}Na$ 512.2116; Found 512.2121.

(*S*)-methyl 2-(2-((4-((tert-butoxycarbonyl)amino)-3-methyl-1-phenyl-1H-pyrazol-5yl)oxy)acetamido)propanamido)acetate *BocNH-APA-Ala-Gly-OMe* (**3f**): R_f 0.32 (3% MeOH in CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.8 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 6.91 (d, *J* = 6.8 Hz, 1H), 6.78 (s, 1H), 6.32 (s, 1H), 4.63 (s, 2H), 4.59 - 4.49 (m, 1H), 4.09 - 3.92 (m, 2H), 3.74 (s, 3H), 2.18 (s, 3H), 1.47 (s, 9H), 1.34 (d, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.3, 170.3, 167.7, 155.3, 147.3, 147.2, 138.1, 129.3, 127.1, 122.7, 102.8, 80.6, 70.8, 52.4, 48.2, 41.2, 28.3, 17.9, 11.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₃₁N₅O₇ 490.2296; Found 490.2295.

3-methyl-1-phenyl-4,6-dihydropyrazolo[3,4-b][1,4]oxazin-5(1H)-one, (4): 20% TFA in CH₂Cl₂ (5 mL) was added to **1** (0.50 g, 1.38 mmol) at room temperature and stirred for 1 h, then refluxed for an additional 1.5 h at 45 °C. The solvents were removed under vacuum and resulting pale orange residue was partitioned between EtOAc (25 mL) and saturated NaHCO₃ (10 mL). The aqueous layer was extracted with EtOAc (2 * 25 mL). The combined organic extracts were washed with saturated aqueous NaCl (10 mL), dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residual viscous oil was purified via chromatography with 3% MeOH in CH₂Cl₂ to produce 0.293 g (92%) of **4** as a crystalline solid. *R_f* 0.2 (0.3:9.7 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 7.72 – 7.58 (m, 2H), 7.45 (dd, *J* = 10.8, 5.2 Hz, 2H), 7.25 (t, *J* = 7.4 Hz, 1H), 4.84 (s, 2H), 2.15 (s, 3H). ¹³C {¹H} NMR (101 MHz, DMSO-*d*₆) δ 162.8, 140.2, 138.5, 136.0, 129.8, 126.3, 119.5, 106.5, 70.0, 12.2. HRMS (ESI-TOF) m/z: [M + H] + Calcd for C₁₂H₁₂N₃O₂ 230.0924; Found 230.0933. mp: 216-218 °C.

Supporting Information

NMR (¹H-/¹³C{¹H})/HRMS/Time dependent NMR spectra of peptides; kinetic profiles of amide/acid/ester **3a/3h/1/2**; X-ray crystallography data, Crystallographic Information Framework (CIF) file and UV-spectra of lactam **4** are provided in the Supporting Information.

AUTHOR INFORMATION

Corresponding Author

Phone no. +91-674-249-4141

E-mail: nagendra@niser.ac.in

ACKNOWLEDGMENTS

AB thanks to UGC for JRF/SRF fellowship. We also thank to Tiwari Ranjay Kumar and Dr. C. S. Purohit for helping in X-ray studies.

REFERENCES

1. (a) A. J. Barrett, N. D. R., J. F. Woessner, Enzymes can of course efficiently orchestrate amide cleavage under physiological conditions. *Handbook of Proteolytic Enzymes, 2nd ed., Academic Press, New York* **2004**; (b) Radzicka, A.; Wolfenden, R., Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. *J. Am. Chem. Soc.* **1996,** *118* (26), 6105-6109; (c) Smith, R. M.; Hansen, D. E., The pH-rate profile for the hydrolysis of a peptide bond. J. Am. Chem. Soc. **1998,** *120* (35), 8910-8913.

2. (a) Clayden, J.; Moran, W. J., The Twisted Amide 2-Quinuclidone: 60 Years in the Making. *Angew. Chem. Int. Ed. Engl.* 2006, 45 (43), 7118-7120; (b) Szostak, M.; Aubé, J.,

The Journal of Organic Chemistry

Medium-bridged lactams: a new class of non-planar amides. *Org. Biomol. chem.* **2011,** *9* (1), 27-35.

3. (a) Somayaji, V.; Brown, R., Distorted amides as models for activated peptide NC: O units produced during enzyme-catalyzed acyl transfer reactions. 1. The mechanism of hydrolysis of 3, 4-dihydro-2-oxo-1, 4-ethanoquinoline and 2, 3, 4, 5-tetrahydro-2-oxo-1, 5-ethanobenzazepine. *J. Org. Chem* **1986**, *51* (14), 2676-2686; (b) Slebocka-Tilk, H.; Brown, R., Effect of distortion on the hydrolytic reactivity of amides. 2. N-Pyramidalization: decomposition of N-benzoylaziridines in aqueous media. *J. Org. Chem.* **1987**, *52* (5), 805-808; (c) Bennet, A.; Somayaji, V.; Brown, R.; Santarsiero, B., The influence of altered amidic resonance on the infrared and carbon-13 and nitrogen-15 NMR spectroscopic characteristics and barriers to rotation about the NC (O) bond in some anilides and toluamides. *J. Am. Chem. Soc.* **1991**, *113* (20), 7563-7571.

4. Hutchby, M.; Houlden, C. E.; Haddow, M. F.; Tyler, S. N.; Lloyd-Jones, G. C.; Booker-Milburn, K. I., Switching pathways: room-temperature neutral solvolysis and substitution of amides. *Angew. Chem. Int. Ed. Engl.* **2012**, *51* (2), 548-51.

5. (a) Edman, P., Mechanism of the phenyl isothiocyanate degradation of peptides. *Nature* **1956**, *177* (4510), 667; (b) Samaritoni, J. G.; Copes, A. T.; Crews, D. K.; Glos, C.; Thompson, A. L.; Wilson, C.; O'Donnell, M. J.; Scott, W. L., Unexpected hydrolytic instability of Nacylated amino acid amides and peptides. *The Journal of Organic Chemistry* **2014**, *79* (7), 3140-3151; (c) Nalbone, J. M.; Lahankar, N.; Buissereth, L.; Raj, M., Glutamic acid selective chemical cleavage of peptide bonds. *Organic letters* **2016**, *18* (5), 1186-1189; (d) Mahesh, S.; Tang, K.-C.; Raj, M., Amide bond activation of biological molecules. *Molecules* **2018**, *23* (10), 2615.

6. Kita, Y.; Nishii, Y.; Onoue, A.; Mashima, K., Combined catalytic system of scandium triflate and boronic ester for amide bond cleavage. *Adv. Synth. Catal.* **2013**, *355* (17), 3391-3395.

7. Parac, T. N.; Kostić, N. M., Effects of linkage isomerism and of acid– base equilibria on reactivity and catalytic turnover in hydrolytic cleavage of histidyl peptides coordinated to Palladium (II). identification of the active complex between Palladium (II) and the histidyl residue. *J. Am. Chem. Soc.* **1996**, *118* (25), 5946-5951.

8. (a) Tobisu, M.; Nakamura, K.; Chatani, N., Nickel-catalyzed reductive and borylative cleavage of aromatic carbon–nitrogen bonds in N-aryl amides and carbamates. *J. Am. Chem. Soc.* **2014**, *136* (15), 5587-5590; (b) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K.; Garg, N. K., Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds. *Nature* **2015**, *524* (7563), 79; (c) Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K., Nickel-catalyzed alkylation of amide derivatives. *ACS Catal.* **2016**, *6* (5), 3176-3179.

9. (a) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S., Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. *J. Am. Chem. Soc.* 2009, *131* (29), 10003-10008; (b) Tamura, M.; Tonomura, T.; Shimizu, K.-i.; Satsuma, A., Transamidation of amides with amines under solvent-free conditions using a CeO 2 catalyst. *Green Chem.* 2012, *14* (3), 717-724; (c) Baker, E. L.; Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N. K., A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis. *Nat. commun.* 2016, *7*, 11554.

10. (a) Acosta-Guzmán, P.; Mateus-Gómez, A.; Gamba-Sánchez, D., Direct Transamidation Reactions: Mechanism and Recent Advances. *Molecules* 2018, *23* (9), 2382;
(b) Vanjari, R.; Allam, B. K.; Singh, K. N., Hypervalent iodine catalyzed transamidation of

carboxamides with amines. *RSC Adv.* **2013**, *3* (6), 1691-1694; (c) Zhang, F.; Li, L.; Ma, J.; Gong, H., MoS 2-Catalyzed transamidation reaction. *Sci. Rep.* **2019**, *9* (1), 2536.

11. (a) Balachandra, C.; Sharma, N. K., Synthesis and conformational analysis of new troponyl aromatic amino acid. *Tetrahedron* **2014**, *70* (41), 7464-7469; (b) Balachandra, C.; Sharma, N. K., Instability of Amide Bond Comprising the 2-Aminotropone Moiety: Cleavable under Mild Acidic Conditions. *Org. Lett.* **2015**, *17* (16), 3948-3951; (c) Balachandra, C.; Sharma, N. K., Direct/Reversible Amidation of Troponyl Alkylglycinates via Cationic Troponyl Lactones and Mechanistic Insights. *ACS Omega* **2018**, *3* (1), 997-1013.

12. Bollu, A.; Sharma, N. K., Syntheses and Conformational Analysis of Aminopyrazolonyl Amino Acid (APA)/Peptides. *Eur. J. Org. Chem.* **2019**, *6*, 1286-1292.

(a) House, J. E., *Principles of chemical kinetics* Second ed.; Academic Press: 2007, pp 47-53; (b) Koudriavtsev, A. B.; Linert, W., Keto-Enol Equilibrium from NMR Data: A Closer Look at the Laboratory Experiment. *J. Chem. Educ.* 2009, *86* (10), 1234-1237; (c) Nichols, M. A.; Waner, M. J., Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions. *J. Chem. Educ.* 2010, *87* (9), 952-955.