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ABSTRACT: An efficient Rh/Cu-catalyzed method has been developed for the direct β-arylation or alkenylation of ketones 
using (hetero)aryl or alkenyl carboxylic acids as coupling partners. This direct ketone β-functionalization reaction proceed-
ed via merging Cu-catalyzed ketone dehydrogenative desaturation and Rh-catalyzed carboxyl-directed C-H alkylation, ex-
hibited a broad substrate scope for both coupling partners. TEMPO proved to be essential for both dehydrogenation process 
and generation of the active Rh-catalyst for C-H activation.  
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β-arylated saturated ketones are the structural motifs 
that are embedded in many natural products and bioactive 
compounds.1 Consequently, efficient methods for con-
structing such structures are always the goal sought after 
by chemists. Traditionally, β-arylated ketone architectures 
are constructed through the aldol condensa-
tion/hydrogenation two-step procedure,2 or rhodium-
catalyzed Michael addition of aryl organometallic reagents 
to enones.3 These conventional methods either require 
harsh reaction conditions such as strong bases that limit 
substrate scope, or employ the reactants that are often 
prepared by way of multi-step synthetic sequences, which 
prompts chemists to invent the efficient methods that pro-
duce β-arylated ketones in atom- and step-economical 
manner staring from simple reactants. Recently, a break-
through has been achieved in the development of the bi-
dentate directing group-assisted β-C(sp3)-H activation 
reaction of carbonyl compounds.4 In this context, Yu and 
co-workers 4a have realized β-C(sp3)-H arylation reaction 
of ketones with aryl iodides as arylating reagents (Scheme 
1a) by using amino acid as a transient directing group. 
MacMillan and co-workers have demonstrated that merg-
ing the organocatalysis and photoredox catalysis enabled 
β-C(sp3)-H arylation reaction of aliphatic ketones using 
dicyanobenzene as an arylating reagent (Scheme 1b).5  

On the other hand, due to the importance of olefins in 
organic synthesis, transition metal-catalyzed dehydro-
genative desaturation of various compounds to generate 
olefins has recently attracted considerable interest.6-8 
Moreover, efforts to achieve the tandem metal-catalyzed 
dehydrogenation/secondary olefin reaction sequence have 
led to  the inventions of diverse interesting chemical trans-
formations,9-13 including Baudoin’s Pd-catalyzed β-C-H 

arylation of α-substituted esters10a, b, c and N-Boc-
piperidines with aryl halides,10d and Pihko’s β-C-H indola-
tion of β-keto esters.11 As for the tandem sequence to ac-
cess β-arylated ketone, Dong and Li have established the 
Pd-catalyzed β-arylation reaction of ketones with aryl io-
dides,12a diaryliodonium salts12b  and  arylboronic acids12c 
via ketone dehydrogenative desaturation respectively 
(Scheme 1b). Newhouse and co-workers have developed 
the cascade Pd-catalyzed ketone dehydrogena-
tion/organocuprate conjugate addition process to realize 
β-functionalization or α,β-difunctionalization of cyclic ke-
tones, including ketone β-arylation.13 Very recently, our 
group has discovered a Cu-catalyzed radical-based ketone 
dehydrogenative desaturation process that could merge 
conjugate addition of nucleophiles to the newly formed 
enones to furnish β-functionalized saturated ketones.14 
Herein, we report a novel method for facile synthesis of β-
arylated or β-alkenylated ketones via merging Cu(II)-
catalyzed ketone dehydrogenation and Rh-catalyzed car-
boxyl-directed ortho-C-H alkylation of (hetero)aryl- or 
alkenyl carboxylic acids with enone (Scheme 1c).

 15 

Scheme 1. The Metal-catalyzed Direct β-Csp3-H Aryla-

tion of Ketones  
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Actually, the implementation of the tandem dehydro-
genative desaturation/C-H alkylation of arene with enone 
to construct β-aryl saturated ketone represents a challenge 
for the following reasons: 1) the compatibility between the 
dehydrogenative desaturation and the C-H fuctionalization 
is required; 2) the β-aryl ketone products compete with 
ketone starting materials for dehydrogenation to form the 
overoxidized side-product;16 3) the expected alkyl-M in-
termediate in the C-H alkylation catalysis tends to undergo 
β-H elimination to form overoxidized side-products. One of 
our strategies to address these problems is the identifica-
tion of a suitable catalyst system responsible for C-H alkyl-
ation with olefin, which is compatible with the Cu-
catalyzed dehydrogenative desaturation process.14 We 
hypothesized that if the C(sp3)-M bond of the alkyl-M in-
termediate generated is enough polar, this intermediate 
would prefer protonolysis over β-elimination. Since in-
creasing the concentration of ketone could accelerate Cu-
catalyzed ketone dehydrogenation to enone, 14a the use of 
excessive ketone starting material would suppress dehy-
drogenation of β-aryl ketone products. 

Table1. The Selected Result of the Optimization Stud-

ies on the Ketone  β-Arylation a 

 aReaction conditions: 1a (0.6 mmol), 2a (0.2 mmol), b yield as 
determined by NMR. 

With these considerations in mind, we chose the reac-
tion of propiophenone (1a) with ortho-methoxy benzoic 
acid (2a) as a model system for the optimization of reac-
tion conditions (Table 1). Benzoic acids were used as ary-
lating reagents because benzoic acids are readily available, 
versatile arylating reagents via decarboxylative cross-
coupling reactions 17 or carboxyl-directed ortho-C-H func-
tionalization reactions. 18 Our targeted reaction aimed at 
the carboxyl-directed C-H alkylation to produce 3a of 
which carboxyl group is able to undergo protodecarboxy-
lation or various decarboxylative cross-coupling reaction, 
and therefore allow for the further elaboration of products. 
The undesired lactone by-product 3aa came from overoxi-
dation of 3a via further dehydrogenation of 3a and subse-
quent conjugate addition of carboxyl to enone. Initially, we 
screened a variety of metal catalysts in the presence of one 
equivalent of 2,2,6,6-tetramethylpiperidine-1-oxyl 
(TEMPO) and 20 mol% Cu(OAc)2, and found that the metal 
catalysts, which are regularly used for C-H activation reac-
tions, allowed for the reaction of 1a with 2a to occur but 
gave overoxidized product 3aa (entries 1-4). Gratifyingly, 
we obtained the targeted product in 65% yield using 
[Rh(COD)Cl]2 (5 mol%) 15b, 19 as a catalyst (entry 5). Reduc-

ing loading of [Rh(COD)Cl]2 to 3 mol% led to a decrease in 
the yield of 3a (entry 6). However, increasing the amount 
of TEMPO to 1.2 equivalents gave 70% yield with 3 mol% 
[Rh(COD)Cl]2 catalyst (entry 7). Then, we checked the ef-
fect of bases on the reaction outcome. Although acetate 
and carbonate salts have a negative effect on the reaction 
(see Table S1 in the Supporting Information), 10 mol% CsF 
could increase the yield to 82% (entry 8). 

Scheme 2. The Scope of Carboxylic Acid a 

 
 aReaction conditions: 1a (0.6 mmol), 2 (0.2 mmol), All isolat-
ed yields. b1a (0.8 mmol), TEMPO (2.4 equiv.).  

With the optimized reaction conditions in hand, we 
evaluated the substrate scope of carboxylic acids (Scheme 
2). Ortho-substituted benzoic acids gave good-to-excellent 
yields and variation of the ortho-substituents of these ben-
zoic acids did not significantly affect the reaction outcomes 
(3a-3g, 3t). Although nonsubstituted benzoic acids gave 
di-substituted product (3q), the reaction of 3-t-butyl ben-
zoic acid occurred only on the less sterically hindered posi-
tion (3h). A series of multi-substituted benzoic acids could 
be smoothly transformed into the corresponding products 
in good yields (3i-3m, 3r, 3u). Heteroaryl carboxylic acids 
were also suitable substrates as illustrated by 3n and 3o. 
Interestingly, this protocol was amenable to carboxyl-
directed alkenylic C-H alkylation of alkenyl carboxylic ac-
ids (3v-3x), further highlighting the generality of this pro-
tocol. 

Next, we explored the substrate scope of saturated ke-
tones (Scheme 3). A variety of electronically diverse func-
tionalities on 4-positions of phenyl rings in propiophe-
nones were well tolerated to give the β-arylation ketones 
in excellent yields (4a-4f and 4j). Changing the substitu-
tion position to meta-position of phenyl ring in propiophe-
nones had no effect on the reaction yields (4g-4i). Propio-
phenones containing multi-substituted phenyl rings were 
also suitable for this transformation (4k-4m). Additionally, 
heteroaromatic ketones such as 2-propionylfuran and 2-
propionylthiophene participated in the targeted β-
arylation reaction without side reactions occurring at their 
reactive C-2 or C-3 positions of heteroaromatic rings (4o 
and 4p). As exemplified in the cases of 4q-4t, aliphatic 
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ketones also underwent β-arylation reaction which oc-
curred exclusively on less sterically hindered ethyl moiety. 
This selective β-arylaton of aliphatic ketones circumvented 
the formidable synthesis of the alkyl vinyl ketones used in 
Ru-catalyzed hydroarylation of olefins, and provided a 
solution to the selectivity issue encountered in the synthe-
sis of β-aryl ketone via aldol reaction of unsymmetrical 
ketone. 

Scheme 3. The Scope of  Saturated Ketones a  

 
 aReaction conditions: 1 (0.6 mmol), 2 (0.2 mmol). All isolated 
yields. b Cu(OAc)2 (40 mol%) was used. 

Our Rh/Cu catalyzed method also enabled one-step 
gram-scale synthesis of a kind of matrix metalloproteinase 
inhibitor in 71% yield using commercially available start-
ing materials.  In sharp contrast, this matrix metallopro-
teinase inhibitor was previously synthesized by way of a 
six-step synthetic route starting from 3-(1-
bromnaphthalen-2yl) propan-1-ol (Scheme 4). 20 

Scheme 4. One Step Synthesis of a kind of matrix met-

alloproteinase inhibitor  

     
Scheme 5. One-pot procedure for Rh/Cu-catalyzed ke-

tone β-arylation and protodecarboxylationa 

 
aReaction conditions: 1 (0.6 mmol), 2 (0.2 mmol), 120 oC, 

24 h, N2. All isolated yields. 

To test the feasibility of further transformation of these 
ketone β-arylation products, we investigated one-pot two-
step procedure for Rh/Cu catalyzed carboxyl-directed C-H 
alkylation and subsequent protodecarboxylation. We are 

pleased to find that adding AgOAc (1 equiv.), K2CO3 (1 
equiv.) and HOAc to the reaction system after Rh/Cu catal-
ysis process allowed for protodecarboxylation of these β-
arylation products to generate 1,3,5-trisubstituted ben-
zenes as final products in synthetically useful yields 
(Scheme 5).  

To gain an insight into the Rh/Cu catalyzed β-arylation 
of ketone, we conducted preliminary mechanism investiga-
tions (See Supporting Information for details). By means of 
a H/D exchange experiment, we initially explored the ef-
fect of TEMPO on [Rh(COD)Cl]2-mediated carboxyl-
directed ortho C-H activation. In the presence of D2O (20 
equiv.) and TEMPO (1.2 equiv.), 30% of C-H bond ortho to 
carboxyl group in 2-methoxy-benzoic acid was deuterated, 
indicating that the reversible C-H cyclorhodation occurred. 
Control experiments revealed that only negligible H/D 
exchanges occurred in the absence of TEMPO, suggesting 
that TEMPO played a key role in the [Rh(COD)Cl]2-
mediated C-H activation step. Moreover, TEMPO was es-
sential for [Rh(COD)Cl]2-catalyzed carboxyl-directed C-H 
alkylation of benzoic acids with enone, consistent with 
H/D exchange experiments. In light of these observations, 
we reasoned that TEMPO would promote the generation of 
the active Rh catalyst for C-H bond activation, likely by 
oxidation of Rh(I) to Rh(III) species as proposed by Studer 
and co-workers 21 for the Rh-catalyzed oxidative cross-
coupling reactions with TEMPO as the only terminal oxi-
dant. Moreover, we conducted the reaction of 1(3-
methoxyphenyl)propan-1-one with [D5]benzoic acid un-
der standard reaction conditions and found that 45% of 
deuterium on ortho-position of [D5]benzoic acid was in-
corporated to α-position of β-arylated ketone product, and 
35% to β-position.  

Scheme 6. Proposed Mechanism. 

 
The identification of enone intermediate in the reaction 

system and the experiments described by Scheme S1-S3 
supported that the Rh/Cu-catalyzed ketone β-arylation 
occurred via the in-situ ketone dehydrogenation and C-H 
alkylation with the enone. Scheme 6 shows a proposed 
mechanism for the Rh-catalyzed carboxyl-directed ortho C-
H alkylation with the enone. Initially, the catalytically ac-
tive Rh(III)(TEMPO)2Ln I is generated via oxidation of 
[Rh(COD)Cl]2 by TEMPO (2 equiv.). After carboxylate coor-
dinates to Rh(III) catalyst I, ortho C-H metalation proceeds 
via a concerted metalation/deprotonation mechanism 
(CMD) to form aryl-Rh(III) species II, 22 in which TEMPO- 
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anion ligand accepts proton by its nitrogen atom to pro-
mote C-H metalation. Olefin insertion into aryl-Rh bond 
leads to formation of alkyl-Rh intermediate III that under-
goes protonolysis via proton transfer from the nitrogen 
atom of coordinating TEMPO ligand to the carbon atom of 
C-Rh bond to release product VI. Meanwhile, Product VI is 
also produced through protonolysis of isomeric alkyl-Rh 
intermediate V, which is generated from intermediate III 
via β-H elimination and subsequent re-insertion pro-
cess,15b, 23 since deuterium atoms were incorporated to 
both α and β positions of β-arylated ketone product in the 
deuterium-labeling experiment. The fact that 80% of or-

tho-deuterium atoms of [D5]benzoic acid were incorpo-
rated into the final product implicates that after accepting 
proton in the C-H metalation process, TEMPO still coordi-
nates to Rh atom in the form of zwitterion, and therefore 
makes it easy to deliver proton to the proximal Rh-C bond 
of alkyl-Rh intermediate. 

In summary, we have developed the Rh/Cu catalyzed di-
rect β-arylation or alkenylation of ketones with aryl or 
alkenyl carboxylic acids as coupling partners via combina-
tion of Cu/TEMPO-promoted ketone dehydrogenation pro-
cess with Rh-catalyzed carboxyl-directed C-H alkylation 
with enone. Both aryl alkyl ketones and dialkyl ketones 
underwent β-functionalization reactions with a broad 
range of aryl carboxylic acids as well as alkenyl carboxylic 
acids with good selectivity in good-to-excellent yields.  The 
strategy to merge the dehydrogenative desaturation and 
the C-H activation reaction would bring about discoveries 
of various new transformations due to versatile reactivity 
of olefins and diversity of C-H activation reactions. 
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