Stereoselective Synthesis of the Conformationally Constrained Glutamate Analogue, (–)-(2*R*,3*S*)-*cis*-2-Carboxyazetidine-3-acetic Acid, from (*S*)-*N*-Tosyl-2-phenylglycine

Antonio Carlos B. Burtoloso, Carlos Roque D. Correia*

Instituto de Química, Universidade Estadual de Campinas, UNICAMP, C.P. 6154, CEP. 13083-970, Campinas, São Paulo, Brazil Fax +55(19)37883023; E-mail: roque@iqm.unicamp.br

Received 17 February 2005

Abstract: The stereoselective synthesis of a novel *cis* conformationally constrained glutamate analogue containing an azetidine framework was accomplished from (*S*)-*N*-tosyl-2-phenylglycine in moderate overall yield. The key steps in the synthesis involved a N–H carbenoid insertion promoted by Cu(acac)₂, a very efficient Wittig olefination of an azetidin-3-one, followed by a highly stereoselective rhodium-catalyzed hydrogenation. Epimerization of the *cis* to the *trans* analogue was performed using DBU as base in toluene at reflux.

Key words: azetidin-3-ones, glutamate analogues, N–H insertion, conformationally constrained amino acids, Wittig reaction

Glutamate and aspartate are the predominant excitatory amino acid (EAAs) neurotransmitters in the mammalian brain.^{1a,b} These excitatory amino acids activate a family of ligand-gated ion channels, called ionotropic receptors (AMPA, KA and NMDA), and a family of receptors coupled through GTP-binding proteins, called metabotropic receptors, implicated in a variety of intracellular signaling molecules.^{2a-2d} EAA receptors participate in fast excitatory transmission as well as in more complex signaling processes, such as those required for synaptic plasticity and higher cognitive functions.^{3a-3c} In contrast to these normal signaling pathways, excessive activation of the ionotropic EAA receptors can trigger a cascade of events that eventually leads to neuronal death. This process, referred to as excitotoxicity, is thought to be an underlying pathological mechanism in a wide variety of neurological insults and degenerative disorders, such as ischemia, trauma, hypoglycemia, epilepsy, Huntington's and Parkinson's diseases.4a-4d

In the last decades many research groups have been involved with the synthesis of conformationally restricted glutamate and aspartate analogues and the majority of the glutamate analogues synthesized so far display a pyrrolidine ring as their rigid element.⁵ Four-membered rings as conformational constraining elements are less common and have been attracting considerable attention lately, especially for their increased rigidity and interesting physiological activities exhibited by four-membered ring containing amino acids.⁶ Regarding four-membered ami-

SYNLETT 2005, No. 10, pp 1559–1562 Advanced online publication: 07.06.2005 DOI: 10.1055/s-2005-869866; Art ID: S02205ST © Georg Thieme Verlag Stuttgart · New York no acids, the naturally occurring (*S*)-azetidine-2-carboxylic acid (Figure 1) represents the prototype of an α -amino acid containing an azetidine motif.

(S)-azetidine-2-carboxylic acid

Figure 1

Two illustrative examples of azetidine containing amino acids displaying important biological activities are the chiral glutamate analogues 1 and 2 (Figure 2).^{6a-6c} Glutamate 1 has been shown to act as an activator of the metabotropic receptors, whereas analogue 2 appears to be a potent agonist of the kainate receptor, as well as a potent inhibitor of sodium-dependent glutamate uptake.

Figure 2 Chiral glutamate analogues displaying biological activity

In spite of several examples of the synthesis of azetidinic amino acids available in the literature,⁶ the synthesis of chiral glutamate analogues has been accomplished with rather low stereoselectivity or has been restricted to the synthesis of the *trans*-glutamate analogues.^{6a–6c,6i}

Our research group has been involved in the application of azetidin-3-ones as key building blocks for the synthesis of azetidines and azetidine alkaloids. As illustrated in Scheme 1, chiral azetidin-3-ones can be readily prepared from commercially available amino acids, which make them potential intermediates for the synthesis of the *cis*-and *trans*-glutamate analogues. Herein, we report a short stereoselective synthesis of the (2R,3S) *cis* isomer of glutamate **2** from (*S*)-*N*-tosyl-2-phenylazetidin-3-one (**4**, Scheme 2), and a successful epimerization of the *cis*-glutamate analogue to the *trans* analogue using DBU. This approach extends the applicability of the metal-cata-

Scheme 1 Strategy to construct the *cis*- and *trans*-glutamate analogues

lyzed N–H insertion methodology commonly used for the preparation of azetidin-3-ones.⁷

We started our synthesis with the preparation of chiral azetidin-3-one 4^8 (Scheme 2). Based on a previous protocol⁹ compound **4** was readily prepared in two steps from (*S*)-*N*-tosyl-2-phenyl glycine in good overall yields. The protocol involved the conversion of N-protected phenyl glycine to the diazoketone **3** in 64% (Scheme 2), followed by the reaction of **3** with Cu(acac)₂ in reflux benzene for just one minute to promote the N–H insertion reaction in 50–55% yield.¹⁰

The azetidin-3-one **4** was then converted to the enoate **5** in quantitative yield by a Wittig olefination reaction¹¹ using the stabilized ylide carboethoxyethylidene-triphenylphosphorane. Catalytic hydrogenation of enoate **5** was carried out under a variety of conditions aiming at optimization of the stereoselectivity and yield of this key reduction step (Table 1). Hydrogenation using palladium on carbon as catalyst gave only 19% of the desired ester **6** in a diastereomeric ratio of 95:05 for the *cis:trans* stereoisomers, together with 81% of some unidentified material.¹²

 Table 1
 Conditions Employed for the Reduction of Enoate 5

Condition ^a	Yield of diester 6 (%)	cis:trans
H ₂ , Pd/C	19 ^b	95:05
H ₂ , Pt/C	0	
Et ₃ SiH/ Wilkinson cat.	80 ^b	88:12
H ₂ , Rh/C	90 ^c	92:08

^a Reductions were carried out at atmospheric pressure using a balloon filled with hydrogen.

^b Average of two experiments.

^c Average of three experiments.

Hydrogenation using platinum over carbon failed to provide the diester **6**. Better results were obtained using rhodium on carbon or Et_3 SiH in the presence of the Wilkinson catalyst.¹³ Under these conditions the *cis*-ester **6**¹⁴ was obtained in good yields (90% and 80%, Table 1) and in good diastereoselectivities (92:8 and 88:12, *cis:trans* ratio, respectively).

As planned, the phenyl ring of **6** was then converted to the carboxylic acid by oxidation with RuCl₃ hydrate and NaIO₄¹⁵ followed by addition of diazomethane to furnish the *cis*-diester **7**¹⁶ in moderate yields ranging from 40% to 54%. A small 3% epimerization was observed at this step, as the *cis*:*trans* ratio dropped from 92:08 to 89:11 as observed by GC (average of three experiments). Next, hydrolysis of the diester **7** with LiOH¹⁷ gave the N-protected glutamate acid derivative **8** as a white solid (91% yield, *cis*:*trans* = 89:11). The major *cis*-compounds **6**, **7** and even **8** could not be separated from their respective *trans* isomers by column chromatography along the synthetic pathway. Fortunately, after a careful recrystallization (ethanol–hexane) of diacid **8** (*cis*:*trans* = 89:11) we were

Scheme 2 Synthesis of glutamate analogue 9

Synlett 2005, No. 10, 1559–1562 © Thieme Stuttgart · New York

able to obtain this key compound in almost pure form (ds > 98:02 after a single recrystallization).¹⁸

Finally, completion of the synthesis of the novel conformational restricted *cis*-azetidine glutamate **9** was carried out by N-deprotection of diacid **8** with Na/naphthalene in quantitative yield, after purification on ion exchange resin (Dowex 50 H⁺).¹⁹

After completion of the synthesis of the *cis*-glutamate analogue **9**, we have also examined the conversion of the *cis*-diester **10** (prepared from diacid **8** with diazomethane) to its *trans* stereoisomer. The use of bases such as LH-MDS, KHMDS, *t*-BuOK, proton sponge, Me₂NH²⁰ and pyridine led to no epimerization²¹ at C2 or led to decomposition of the diester **10**. However, reaction of diester **10** with DBU (10 equiv) in toluene at reflux for seven hours provided a diastereomeric mixture of diester **10** and **11** in a 20:80 (GC) ratio as described in Scheme 3. Attempts to carry out this epimerization step beyond the *cis:trans* ratio of 20:80 were fruitless.

Scheme 3 Epimerization of 10 with DBU

In summary, we have accomplished for the first time the stereoselective synthesis of the novel *cis*-glutamate analogue **9** containing an azetidine nucleus in seven steps in 15% yield from the chiral (*S*)-*N*-tosyl-phenylglycine. Epimerization of the *cis*-glutamate analogue **10** with DBU allowed the synthesis of the *trans*-glutamate analogue **11** with good diastereoselectivity. The synthesis of other constrained azetidine glutamates and aspartates will be reported in due course.

Acknowledgment

We thank FAPESP (Research Supporting Foundation of the State of São Paulo) for financial support and a student fellowship and Angelo H. L. Machado (Unicamp) for useful suggestions during the development of this work.

References

- (a) Kanai, Y.; Smith, C. P.; Hediger, M. A. *Trends Neurosci.* 1993, *16*, 365. (b) Szatkowski, M.; Attwell, D. *Trends Neurosci.* 1994, *17*, 359.
- (2) (a) Conn, P. J.; Patel, J. In *The Metabotropic Glutamate Receptors*; Humana Press: Totowa / New Jersey, **1994**, 1–277. (b) Hollmann, M.; Heinemann, S. *Annu. Rev. Neurosci.* **1994**, *17*, 31. (c) Nakanishi, S. *Neuron* **1994**, *13*, 1031. (d) Nicolletti, F.; Bruno, V.; Copani, A.; Casabona, G.; Knöpfel, T. *Trends Neurosci.* **1996**, *19*, 267.
- (3) (a) Daw, N. W.; Stein, P. S.; Fox, K. A. *Rev. Neurosci.* 1993, *16*, 207. (b) Collingridge, G. L.; Bliss, T. V. P. *Trends Neurosci.* 1995, *18*, 54. (c) Cotman, C. W.; Kahle, J. S.; Miller, S. E.; Ulas, J.; Bridges, R. J. *Excitatory Amino Acid*

Neurotransmission, In *Psychopharmacology: The Fourth Generation of Progress*; Bloom, F. E.; Kupfer, D. J., Eds.; Raven Press: New York, **1995**, 75–85.

- (4) (a) Choi, D. W. Ann. Rev. Neurosci. 1990, 13, 171.
 (b) Meldrum, B. S. Brain Pathol. 1993, 3, 405. (c) Choi, D. W. Prog. Brain Res. 1994, 100, 47. (d) Rothman, S. M.; Olney, J. W. Trends Neurosci. 1995, 18, 57.
- (5) Chamberlin, A. R.; Bridges, R. J. Conformationally Constrained Amino Acids as Probes of Glutamate Receptors and Transporters, In Drug Design for Neuroscience; Kozikowski, A. P., Ed.; Raven Press: New York, 1993, 231– 259.
- (6) For the synthesis and studies of azetidinic α -amino acids, see: (a) Kozikowski, A. P.; Tückmantel, W.; Reynolds, I. J.; Wroblewski, T. J. J. Med. Chem. 1990, 33, 1561. (b) Kozikowski, A. P.; Tückmantel, W.; Liao, Y.; Wroblewski, T. J.; Wang, S.; Pshenichkin, S.; Surin, A.; Thomsen, C. Bioorg. Med. Chem. Lett. 1996, 6, 2559. (c) Kozikowski, A. P.; Tückmantel, W.; Liao, Y.; Wroblewski, T. J.; Manev, H.; Ikonomovic, S. J. Med. Chem. 1993, 36, 2706. (d) Bridges, R. J.; Lovering, F. E.; Humphrey, J. M.; Stanley, M. S.; Blakely, T. N.; Cristofaro, M. F.; Chamberlin, R. Bioorg. Med. Chem. Lett. 1993, 3, 115. (e) Arakawa, Y.; Murakami, T.; Arakawa, Y.; Yoshifugi, S. Chem. Pharm. Bull. 2003, 51, 96. (f) De Kimpe, N.; Boeykens, M. Tetrahedron 1998, 54, 2619. (g) Hanessian, S.; Bernstein, N.; Yang, R.; Maguire, R. Bioorg. Med. Chem. Lett. 1999, 9, 1437. (h) Couty, F.; Evano, G.; Rabasso, N. Tetrahedron: Asymmetry 2003, 14, 2407. (i) Couty, F.; Carlin-Sinclair, A.; Rabasso, N. Synlett 2003, 726.
- (7) For a review on azetidin-3-ones, see: Dejaegher, Y.; Kuz'nenok, N. M.; Zvonok, A. M.; De Kimpe, N. *Chem. Rev.* 2002, 102, 29.
- (8) Compound 4 was also prepared by Pussino: Pusino, A.; Saba, A.; Desole, G. *Gazz. Chim. Ital.* 1985, 115, 33.
- (9) Burtoloso, A. C. B.; Correia, C. R. D. *Tetrahedron Lett.* 2004, 45, 3355.
- (10) For the synthesis of *N*-tosyl-azetidin-3-ones employing Cu(acac)₂, see: Wang, J.; Hou, Y.; Wu, P. *J. Chem. Soc.*, *Perkin Trans. 1* **1999**, 2277.
- (11) For previous applications of the Wittig olefination of azetidin-3-ones, see: (a) Hanessian, S.; Fu, J.; Chiara, J. L.; Di Fabio, R. *Tetrahedron Lett.* **1993**, *34*, 4157. (b) Podlech, J.; Seebach, D. *Helv. Chim. Acta* **1995**, *78*, 1238. (c) Emmer, G. *Tetrahedron* **1992**, *48*, 7165.
- (12) Inseparable mixture of compounds by column chromatography.
- (13) Liu, H.; Ramani, B. Synth. Commun. 1985, 15, 965.
- (14) The *cis* compound **6** could not be separated from its *trans* isomer by column chromatography.
- (15) Matsuura, F.; Hamada, Y.; Shioiri, T. *Tetrahedron Lett.* 1992, 33, 7921.
- (16) Compound 7 was obtained as an inseparable mixture of the *cis* and *trans* stereoisomers. The ratio of these compounds was determined by ¹H NMR and GC.
- (17) Clayden, J.; Menet, C. J.; Tchabanenko, K. *Tetrahedron* 2002, 58, 4727.
- (18) Mp 201–202 °C (dec). IR: 3300–2500, 1698, 1437, 1346, 1229, 1161, 943 cm⁻¹. ¹H NMR (300 MHz, acetone- d_6): $\delta = 7.79$ (d, J = 8.8 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 2 H), 4.62 (d, J = 9.5 Hz, 1 H), 3.90 (t, J = 8.1 Hz, 1 H), 3.50 (dd, J = 8.1, 4.4 Hz, 1 H), 2.97 (m, 1 H), 2.67 (d, J = 8.1 Hz, 2 H), 2.46 (s, 3 H). ¹³C NMR (75 MHz, acetone- d_6): $\delta = 172.5$, 169.6, 145.1, 134.1, 130.8, 129.0, 63.8, 54.2, 34.5, 28.4, 21.6.

Synlett 2005, No. 10, 1559–1562 © Thieme Stuttgart · New York

(19) IR: 3077, 1679, 1625, 1574, 1421, 1184, 1129, 974, 801, 723 cm⁻¹. ¹H NMR (300 MHz, D₂O): δ = 4.90 (d, *J* = 9.5 Hz, 1 H), 4.30 (dd, *J* = 10.9, 8.8 Hz, 1 H), 3.77 (dd, *J* = 10.9, 6.6 Hz, 1 H), 3.40 (m, 1 H), 2.60 (dd, *J* = 16.1, 5.1 Hz, 1 H), 2.44 (dd, *J* = 16.1, 11.7 Hz, 1 H). ¹³C NMR (75 MHz, D₂O): δ = 176.0, 170.6, 61.8, 48.5, 34.5, 30.5. ESI-MS: *m/z* = 160

 $[M+1],\,114,\,97,\,96,\,84,\,78,\,68.$ HRMS: m/z calcd for $C_6H_9NO_4{:}$ 159.05316; found: 159.06178.

- (20) Alcaide, B.; Aly, M. F.; Rodríguez-Vicente, A. *Tetrahedron Lett.* **1998**, *39*, 5865.
- (21) In some occasions, a small amount of epimerization at C2 was observed.