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Abs t rac t  

Michael additions of 5-glyco-4-nitrocyclohex-l-enes (2 and 3) proceeded in a stereoselectiveway, leading in 

each case to single adducts in which the electron-deficient alkcnes add on the C-4 of the cyclohexene rings, in a 

mode to the adjacent, sterically demanding, sugar side-chain. When dimethyl malente or dimethyl funmntte 

and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were used, there was in situ elimination of nitrous acid, and the 

product consisted in a 1:1 mixture of the epimeric a~8-unsamrated esters 7. © 1998 Elsevier Science Ltd. All rights reserved. 
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The Michael addition reaction constitutes one of the most important preparative methods 
in organic chemistry. Among the plethora of nucleophiles that can be used in those carbon- 
carbon bond-forming processes [1], aliphatic nitro compounds are of increasing importance 
because of their remarkable versatility, since the nitro group can be transformed into various 
functionalities [2]. Moreover, in recent years considerable efforts have been made in the 
development of highly diastereo- and even enantio-selective methods, allowing the control of 
absolute stereochemistry [3]. In this sense, the easy availability of chiral nitro compounds 
should increase the synthetic usefulness of this methodology. 

In previous papers [4], we reported on the preparation of stereochemically pure 5-glyco- 
4-nitmcyclohex-l-enes (2 and 3), which were obtained by Diels-Alder reactions between the 
sugar-derived nitroalkenes l a  or l b  and 2,3-dimethylbuta-l,3-diene (Scheme 1). 

We present here our results of stereoselective Michael additions between chiral nitro 
compounds 2 or 3 and several electron-deficient alkenes. In all cases, the reactions were 
carried out at room temperature for 12-24 h, with acetonitrile as the solvent, and 1,8- 
diazabicyclo[5.4.0]undec-7-ene (DBU), 1,1,3,3-tetramethylguanidine (TMG) or triethylamine 
(TEA) as the basic catalysts (see Table I). 

0040-4039/98/$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. 
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(a), R 1 = D-ga/acto-(CHOAc)4-CH2OAc 
(b), R 1 = D-manno-(CHOAc)4-CH2OAc 
(c), R 1 = D-galacI~CHOH)4-CH2OH 
(d), R 1 - D-manno-(CHOH)4-CH2OH 
(e), R 1 - CHO 
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Table I. Michael additions with 5-glyco-4-n/trocyclohex-l-enes 2and  $. 

4a COOCH 3 DBU (I. 15) 60 

4g COCH 3 TMG (0,09) 82 

4a CHO TMG (O.O9} 44 (*) 
CN TMG (0.09) 60 

~b (~)OCH 3 DBU (I. 15) 89 
m COOCH s TMG (0.09) 54 

O00CH 3 TMG (I. 15) 91 

8b CXX:H s TMG {0.09} 65 
W) CHO TEA (1.60} 36 [*) 

8b CN TMG (0.09} 85 

41) C(XX~ 3 DBU (I. 15) 35 (*) 

6 COCH s TMG (0.09) 44 (*} 
41) Clio TMG (O.O9) 43 0 
41) CN TMG (O.09) 5O (*) 
6a TMG (I.15) 91 

7a DBU {2,0} 88 

a All compounds were czysta]I/ne except for those marked (*), which were 
/solated as  amorphous solids, byields refer to pure isolated products. 

The crucial point to be studied for the above processes was the stereoselectivity of  the 
Michael additions; in this way, the NMR spectra of the crude mixtures showed that only one 
of the two possible diastereomers was formed in each case. Thus, the Diels'Alder adducts 2a 
and 2b led exclusively to products of the type 4 (or 6), whereas the Diels-Alder adduct 3b 
yielded exclusively compounds of the 5 series. Hence, the Michael reactions were completely 
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stereoselective, the products being the result of the addition of the electron-deficient alkenes 
on the less-hindered face of the intermediate carbanion; i.e. the opposite to that is occupied 
by the sugar side-chain (Scheme 2). 

R t R 1 NO 2 

Scheme 2 

The structures of the new compounds (4-7) are based on elemental analyses and 
spectroscopic data (IR, 1H and 13C NMR). For compound 4a (R 2 = COOCH3), the absolute 
configuration at C-4 was unambiguously determined by single crystal X-ray crystallographic 
analysis [5], the result of which is shown in Fig. 1. The opposite configurations at C-4 for 
compounds 4a (R 2 = COOCH3) and 5b (R 2 = COOCH3) were deduced from data of their 
respective nitro aldehydes [6] 4e and 5 e, which showed spectral identity and nearly equal and 
opposite values for their optical rotations. For all the remaining products we have obtained, 

the configuration at C-4 is based on the close resemblance 
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~ 1. X-ray crystal structure 
of compound 4~t (R  2 = C O O C H 3 ) .  

between the 1H NMR spectra within each series; thus, the 
ranges in which the H-5 proton appears are: (a) 2.67-2.78 
ppm, (b) 2.93-2.99 ppm, and (c) 2.43-2.44 ppm for 
compounds in the series 4a, 5b, and 4b, respectively. 

On the other hand, we have also studied the Michael 
reactions of 2a and dimethyl maleate or dimethyl 
fumarate. The results we found were identical for these 
two alkenes and, although the stereochemistry at C-4 in the 
products is only tentatively assigned, we suppose that it is 
the same as above cited (see Scheme 2). The compounds 
we obtained depended on the basic catalyst and 
temperature; thus, with TMG (1.15 mol) at 0 °C, a 1:1 
mixture of the epimers 6 was formed quantitatively, 
whereas with DBU (2.0 mol) at room temperature, the 
product consisted in a quantitative 1:1 mixture of the 
epimers 7. These same elimination products 7 were 
obtained when the addition compounds 6 were treated with 
2.0 mol of DBU. As described by Ballini et al. [7] for 
reactions between achiral nitroalkanes and dimethyl 
maleate by using DBU, formation of compounds 7 should 

occur via the adducts 6, through nitrous acid elimination induced by the presence of an 
electron withdrawing group at the I~ position to the nitro group. For the not i s o l a t e d  
compound 8, the new exocyclic double bond should isomerize to the more-stable, endocyclic 
conjugated diene 7. In this sense, we have performed semiempirical calculations [8] for 
simplified model compounds of 7 and 8 (R 1 = -CHOH-CH2OH ), finding that the former was 
more stable by about 9,2 Kcal/mol. 
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