

Article

Subscriber access provided by UNIV OF LOUISIANA

Metal-Free Synthesis of *N*-Aryl-Substituted Azacycles from Cyclic Ethers using POCI

Minh Thanh La, Soosung Kang, and Hee-Kwon Kim

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00377 • Publication Date (Web): 30 Apr 2019

Downloaded from http://pubs.acs.org on May 1, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Metal-Free Synthesis of *N*-Aryl-Substituted Azacycles from Cyclic Ethers using POCl₃

Minh Thanh La[†], Soosung Kang[§], and Hee-Kwon Kim^{*,†,‡}

[†]Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center,
Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
[‡]Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research
Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea
[§]College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans
University, Seoul 03760, Republic of Korea

Corresponding author: Hee-Kwon Kim.

* Corresponding author.

Tel: +82 63 250 2768; Fax: +82 63 255 1172.

E-mail address: hkkim717@jbnu.ac.kr (H-K Kim).

GRAPHICAL ABSTRACT

31 examples, up to 95% yield

ABSTRACT

A facile method for the synthesis of *N*-aryl substituted azacycles from arylamines and cyclic ethers has been developed. In this study, arylamines were treated with cyclic ethers in the presence of POCl₃ and DBU to provide five- and six-membered azacycles. Using this method, various azacycloalkanes, isoindolines, and tetrahydroisoquinolines were prepared in high yields. This synthetic method offers an efficient approach to the production of azacycles from cyclic ethers.

INTRODUCTION

The development of novel synthetic methods for *N*-substituted azacycles is an important topic in organic and medicinal chemistry; this is because these motifs possess valuable properties as building blocks for structures of complex biomolecules, and *N*-substituted azacycles are present in many pharmaceuticals as well as organic materials.¹ Thus, azacycle structures have received much attention in the drug discovery and materials industries. In particular, it was reported that several novel drugs recently approved by the FDA contain an *N*-substituted azacycle moiety (Figure 1).².

Figure 1. FDA approved drugs containing azacycles

Due to a variety of applications involving azacycle structures, several synthetic methods were reported to prepare *N*-substituted azacycle compounds: the reaction of primary arylamines with dihalides or diols,³ reduction of tertiary lactams or azacyclodienes formed by cyclocondensation between dicarbonyl compounds and an amine,⁴ and a cross-coupling reaction of *N*-unsubstituted azacycles and aryl halides.⁵ An intramolecular C(sp³)-N coupling reaction was also reported to prepare *N*-substituted azacycles.⁶ The reaction of a primary amine with cyclic ethers to prepare azacycles is an attractive method, as water is the co-product formed during condensation. Several protocols using arylamines and cyclic ethers have been described; the first method to synthesize *N*-phenylpyrollidine was the reaction of tertahydrofuran and aniline, using activated alumina at 400 °C.⁷ Other metal-based approaches have been utilized for the synthesis of *N*-substituted

azacycles, including Al₂O₃, AlCl₃, TiCl₄ or AlMe₃.⁸ Recently, several methods were developed using non-metal catalysts. Zhang and co-workers employed $B(C_6F_5)_3$ and *p*TSA.H₂O to synthesize *N*-substituted azacycles via a frustrated Lewis pairs pathway.⁹ Other metal-free protocols using HI or BF₃.Et₂O were also developed.¹⁰ However, these methods employ acid or Lewis acid catalysts that may be incompatible with acid-sensitive functional groups. To overcome the issues of previously reported azacycle syntheses, herein we report a metal-free and efficient base-mediated synthesis of five- or six-membered ring azacycle compounds (Scheme

1).

Previous studies:

RESULTS AND DISCUSSION

Synthetic chemistry of target products utilizing metal-free methods is a highly desirable green methodology. For the development of a novel metal-free reaction, phosphoramidates can be attractive intermediates for the preparation of target products since they are known precursors that have been practically used to synthesize amines, imines, and heterocycles such as aziridines.¹¹ Thus, we envisioned that a synthesis of azacycles utilizing phosphoramidic dichloride intermediates starting from amines would be realizable, and we hypothesized that reactions of amines with POCl₃ could be employed for *in situ* generation of phosphoramidic dichloride, which are active intermediates leading to azacycles. Such utilization of this base reaction system could be a novel approach to prepare N-unsubstituted azacycles. To test our hypothesis, aniline was selected as a model substrate in the initial study. Reaction with tetrahydrofuran (THF) was performed in xylene at 110 °C for 15 h, and the yield of the corresponding azacycle was investigated. First, reactions with a series of Lewis acids including CuCl₂, FeCl₃, ZnCl₂, ZrCl₄, and BiCl₂ were surveyed. However, the product was not obtained in most of the experiments (Table 1). When SnCl₂ was employed, the product was obtained in low yield. In addition, treatment with CaI₂, or CaBr₂ did not produce the azacycle. In this study, POCl₃ were employed for the synthesis of *N*-aryl substituted azacycle, and it was found that the reaction with $POCl_3$ provided the target azacycle with an improved yield (35%). Next, we investigated the base effect on the synthesis of N-substituted azacycles. Employment of K_2CO_3 , NaHCO₃, triethylamine, 4-dimethylaminopyridine (DMAP), KOH, and NaOH resulted in low vields of azacycles. When $C_{s_2}CO_3$ was used as a base, the yield of azacycle increased to 70%, but was still unsatisfactory. However, when DBU was used in the reaction, the desired azacycle was prepared in significantly increased yield (95%). Screening of solvents was also performed to

further optimize the reaction conditions. Reactions in MeCN, DMF, and DCE resulted in no reaction. When toluene and PhCF₃ were used as the reaction solvent, the yield of the azacycle was enhanced to 44% and 45%, respectively. When xylene was employed in the reaction, the yield of the corresponding azacycle increased significantly (95%).

Table 1. Screening of reaction conditions for the preparation of azacycles^a.

NH	H_2 H_2 H_2 H_2	Reagents, Base Solvent		
1a	2a	110 0, 1511	3a	
Entry	Reagents	Base	Solvent	Yield ^b (%)
1	CuCl ₂	-	xylene	NR¢
2	FeCl ₃	-	xylene	NR°
3	ZnCl ₂	-	xylene	NR°
4	ZrCl ₄	-	xylene	NR¢
5	BiCl ₂	-	xylene	NR°
6	MnCl ₂	-	xylene	NR°
7	SnCl ₂	-	xylene	24
8	CaI ₂	-	xylene	NR¢
9	CaBr ₂	-	xylene	NR¢
10	POCl ₃	-	xylene	35
11	POCl ₃	K ₂ CO ₃	xylene	44
12	POCl ₃	CsCO ₃	xylene	70
13	POCl ₃	NaHCO ₃	xylene	41
14	POCl ₃	Et ₃ N	xylene	42

15	POCl ₃	DMAP	xylene	NR°
16	POCl ₃	КОН	xylene	23
17	POCl ₃	NaOH	xylene	22
18	POCl ₃	DBU	xylene	95
19	POCl ₃	DBU	toluene	44
20	POCl ₃	DBU	PhCF ₃	45
21	POCl ₃	DBU	MeCN	NR°
22	POCl ₃	DBU	DMF	NR°
23	POCl ₃	DBU	DCE	NR°
24 ^d	POCl ₃	DBU	xylene	91
25 ^e	POCl ₃	DBU	xylene	88

^a Reaction conditions: compound **1a** (1 mmol), THF **2a** (20 mmol), reagents (1.5 mmol), Base (2 mmol), solvent (3 mL), 110 °C, 15 h; ^b Isolated yield after purification of flash column chromatography; ^c No reaction; ^d compound **1a** (1 mmol), THF **2a** (10 mmol), POCl₃ (1.5 mmol), DBU (2 mmol), xylene (3 mL), 110 °C, 15 h; ^e compound **1a** (1 mmol), THF **2a** (5 mmol), POCl₃ (1.5 mmol), DBU (2 mmol), DBU (2 mmol), xylene (3 mL), 110 °C, 15 h;

To better understand the effect of reagents and base on the reaction, reactions of aniline with a series of equivalents of POCl₃ and DBU were performed to produce the desired azacycle (see Table S1 in supporting information). The reaction results indicated that the highest yield of azacycle was observed in the presence of 1.5 equiv. of POCl₃ and 2.0 equiv. of DBU (95%), but

further addition of POCl₃ and DBU did not enhance the yield. In addition, we further investigated the use of different amounts of THF in the synthesis of azacycle. The yield of azacycle product increased in proportion to the amount of reagent (88% for 5 equiv. of THF and 91% for 10 equiv. of THF). In particular, employment of 20 equiv. of THF produced the target azacycle in high yield, although there was no significant difference in yield between employment of 20 equiv., 30 equiv., and 40 equiv. of THF.

With optimized reaction conditions in hand, the scope of this protocol for the synthesis of azacycles from arylamines and cyclic ethers was explored (Scheme 2). Most of the target azacycles were prepared in high yields via treatment of various arylamines with cyclic ethers. The synthesis of azacycles from arylamines and cyclic ethers was not significantly influenced by the electronic properties of substituents on the aromatic ring. Arylamines bearing electrondonating groups (methyl-, methoxyl-) and electron-withdrawing groups (nitro-, chloro-, fluoro-) reacted well with cyclic ethers under the optimal reaction conditions, yielding the desired N-arylsubstituted azacycles high yields (Scheme 2. **3b-j**). Naphthylamine, 3.4in (methylenedioxy)amine, 1,4-benzodioxan-6-amine and were also employed with tetrahydrofuran, affording the corresponding azacycles in 92%, 82%, and 80% yield, respectively (Scheme 2, **3k-m**). Besides, N.N-dimethyl-p-phenylenediamine bearing a nitrogen and 2-aminopyridine, a hetrocyclic amine, were used with tetrahydrofuran, yielding the corresponding azacycles in 76%, and 55% yield, respectively (Scheme 2, 3n-o). It was noteworthy that mono-substitution of the aniline such as *p-t*-Bu-substituted arylamine did not result in a big difference from that of aniline in the reaction. However, the reaction of 3,5- and 2,6-disubstituted anilines provided the desired products in lower yields (Scheme 2, 3e-f). The tolerance of different cyclic ethers was also explored. Even though 2-methyltetrahydrofuran is

more sterically hindered than THF, it successfully reacted with various aryl amines (such as aniline, amines containing electron-donating and electron-withdrawing groups, and naphthylamine) to yield the corresponding products in high yields (Scheme 2, **3p-s**). In addition, tetrahydropyran, a six-membered cyclic ether, and oxepane, a seven-membered cyclic ether, were employed for the synthesis of azacycles, and the yields were somewhat lower (Scheme 2, **3t-u**). 1,4-Dioxane, a heterocyclic compounds, was also used to react with tetrahydrofuran, giving the corresponding azacycles in 57% yield (Scheme 2, **3v**).

DBU (2 mmol), xylene (3 mL), 110 °C, 15 h

From these positive synthesis results, the scope of utilizing POCl₃ was extended to the synthesis of nitrogen-containing fused heterocyclic ring materials from arylamines. In particular, tetrahydroisoquinolines and isoindolines are important azacycle motifs in many biological active pharmaceuticals and natural products.¹² The treatment of aniline with phthalan readily resulted in successful synthesis of the corresponding azacycle in 93% yield (Scheme 3, **5a**). Furthermore, the electronic effect of substituents on the aryl amine was not significantly different from those shown in Scheme 3. The reaction of various arylamines bearing electron-donating groups or electron-withdrawing groups with phthalan also produced the corresponding isoindolines in satisfactory yields (Scheme 3, **5b-e**). In addition, the reaction of arylamines with isochroman under the same reaction conditions produced tetrahydroisoquinolines in high yields (Scheme 3, **5f-i**). These results suggest that POCl₃ and DBU could serve as an important reagent combination for the efficient conversion of arylamines to *N*-aryl substituted five- and six-membered azacycles.

Scheme 3. Scope of synthesis of isoindolines and tetrahydroisoquinolines^a

^a Reaction conditions: compound 1 (1 mmol), cyclic ethers 4 (1.5 mmol), POCl₃ (1.5 mmol),
DBU (2 mmol), xylene (3 mL), 110 °C, 15 h

To gain a mechanistic insight into this method, control experiments were performed. When $POCl_3$ and DBU were employed, the reaction successfully produced phosphoramidic dichloride **6**, while employment of $POCl_3$ alone or employment of DBU alone did not yield the phosphoramidic dichloride. Besides, the controlled experiment using the prepared phosphoramidic dichloride was performed. It was found that the reaction of the prepared phosphoramidic dichloride **6** with THF under the same condition produced the corresponding

product successfully. Thus, a plausible reaction pathway based on our results can be proposed, as shown in Scheme 4. The initial addition of $POCl_3$ and DBU to arylamine 1 probably affords phosphoramidic dichloride 6. Then, THF reacts with phosphoramidic dichloride 6 to provide 7. Intramolecular attack of the nitrogen on the carbon near phosphorus atom gives the desired product, 1-phenyl-pyrrolidine 3a.

Scheme 4. Proposed reaction mechanism for N-heterocyclization from arylamine.

CONCLUSION

In summary, a novel metal-free method for the synthesis of N-aryl-substituted azacycles from arylamines and cyclic ethers has been developed. In the present study, the combination of POCl₃ and DBU is crucial to produce the desired products. Using this method, N-aryl substituted fiveand six-membered azacycles were prepared in high yields. Moreover, the reaction protocol is simple and efficient. We expect that this novel method will be useful for the synthesis of a variety of five- and six-membered azacycles from cyclic ethers.

Experimental section

General Information

All reactions were performed in 20-mL vials with Teflon caps. Commercial chemicals and solvents were used without any purification. Reaction progress was analyzed by thin-layer chromatography (TLC) using silica gel 60 F254 pre-coated aluminum plate from Merck and TLC spots were observed under UV light (254nm) exposure. Flash chromatography was carried out using 230–400 mesh silica gel and analytical grade solvents. Stuart SMP10 Melting Point Apparatus was used to record melting points of products. Structure elucidation by NMR (¹H and ¹³C NMR) was performed on Bruker Avance 400 MHz spectrometer. The chemical shifts were reported in δ units (ppm) relative to the residual protonated solvent resonance, the coupling constants (J) quoted in Hz, and multiplicity of signals was abbreviated as follows: singlet (s); doublet (d); doublet of doublet (dd); triplet (t); multiplet (m). The high resolution mass spectra (HRMS) were analyzed on 6200 series TOF/6500 series Q-TOF B.08.00.

General procedure of the synthesis of azacyles 3a-3r

To a 20 mL vial containing a stirring mixture of aniline (**1a**) (0.093 g, 1.00 mmol) and DBU (0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl₃ (0.230 g, 1.50 mmol) at room temperature. The mixture was then heated at 90 °C for 15 min. Tetrahydrofuran (1.6 mL, 20 mmol) were added to the reaction mixture and the vial was closed tightly with Teflon cap. The reaction mixture was allowed to heat at 110 °C for 15 h. The reaction was cooled down to the ambient temperature, then saturated aqueous NaHCO₃ (10 mL) and brine (10mL) were added to

The Journal of Organic Chemistry

the mixture. The aqueous mixture was extracted with Et_2O and the organic layer was dried over anhydrous sodium sulfate and subsequently concentrated under reduced pressure. The crude product was then purified by flash column chromatography on silica gel with 2% diethyl ether in *n*-hexane as eluent to afford the desired product **3a** (0.140 g, 95% yield).

1-phenylpyrrolidine (3a).^{8e} Light yellow oil (0.140 g, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.2 Hz, 2H), 6.72 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 3.39-3.29 (m, 4H), 2.11-2.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 129.1 (2C), 115.4, 111.7 (2C), 47.6 (2C), 25.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₄N = 148.1126; found 148.1129..

1-p-tolylpyrrolidine (3b).^{8e} White solid (0.147 g, 91% yield); m.p. 41-43 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 8.0 Hz, 2H), 3.35-3.25 (m, 4H), 2.31 (s, 3H), 2.10-2.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 129.6 (2C), 124.5, 111.8 (2C), 47.9 (2C), 25.4 (2C), 20.3; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₆N = 162.1283; found 162.1285. *1-(3-methoxyphenyl)pyrrolidine (3c).*^{8e} Colorless oil (0.160 g, 90% yield); ⁻¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 8.0 Hz, 1H), 6.27 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.24 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.16 (t, J = 2.0 Hz, 1H), 3.84 (s, 3H), 3.35-3.26 (m, 4H), 2.07-2.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 149.3, 129.8, 104.9, 100.5, 97.9, 55.1, 47.7 (2C), 25.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₆NO = 178.1232; found 178.1237.

1-(4-tert-butylphenyl)pyrrolidine (3d).⁹ White solid (0.189 g, 93% yield); m.p. 40-42 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 8.8 Hz, 2H), 3.35-3.27 (m, 4H), 2.05-2.00 (m, 4H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 137.9, 125.9 (2C), 111.3 (2C), 47.7 (2C), 33.7, 31.6 (3C), 25.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₂₂N = 204.1752; found 204.1751..

1-(3,5-dimethylphenyl)pyrrolidine (3e).¹³ Colorless oil (0.137 g, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.38 (s, 1H), 6.26 (s, 2H), 3.35-3.29 (m, 4H), 2.32 (s, 6H), 2.05-1.97 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 138.7 (2C), 117.5, 109.7 (2C), 47.6 (2C), 25.5 (2C), 21.7 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₈N = 176.1439; found 176.1441..

1-(2,6-diisopropylphenyl)pyrrolidine (3f).⁹ Colorless oil (0.146 g, 63% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, J = 7.2 Hz, 1H), 7.15 (d, J = 7.2 Hz, 2H), 3.36-3.20 (m, 6H), 2.11-2.00 (m, 4H), 1.25 (d, J = 6.0 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 142.9, 126.3 (2C), 123.9 (2C), 52.8 (2C), 28.0 (2C), 26.6 (2C), 24.5 (4C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₆H₂₆N = 232.2065; found 232.2067.

*1-(4-nitrophenyl)pyrrolidine (3g).*⁹ Yellow solid (0.162 g, 84% yield); m.p. 167-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 9.2 Hz, 2H), 6.49 (d, J = 9.2 Hz, 2H), 3.37-3.29 (m, 4H), 2.15-2.05 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 136.6, 126.3 (2C), 110.4 (2C), 47.9 (2C), 25.4 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₃N₂O₂ = 193.0977; found 193.0978.

*1-(3-chlorophenyl)pyrrolidine (3h).*⁹ Colorless oil (0.165 g, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, *J* = 8.0 Hz, 1H), 6.64 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 6.55 (t, *J* = 2.0 Hz, 1H), 6.45 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 3.32-3.25 (m, 4H), 2.07-2.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 134.9, 130.0, 115.1, 111.4, 109.8, 47.6 (2C), 25.4 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₃ClN = 182.0737; found 182.0736.

1-(4-fluorophenyl)pyrrolidine (3i).^{8e} Colorless oil (0.153 g, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.03-6.93 (m, 2H), 6.55-6.47 (m, 2H), 3.33-3.20 (m, 4H), 2.10-2.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0&153.6 (d, ¹*J*_{C-F} = 231.8 Hz, 1C), 144.8, 115.5&115.3 (d, ²*J*_{C-F} = 21.9 Hz, 2C), 112.1&112.0 (d, ³*J*_{C-F} = 4.6 Hz, 2C), 48.1 (2C), 25.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₃FN = 166.1032; found 166.1037.

1-(2,4-difluorophenyl)pyrrolidine (3j).^{8e} Colorless oil (0.166 g, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.85-6.72 (m, 2H), 6.70-6.59 (m, 1H), 3.30-3.20 (m, 4H), 2.07-1.90 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0-153.5 (dd, ¹*J*_{C-F} = 238.3 Hz, ³*J*_{C-F} = 12.4 Hz, 1C), 153.1-150.5 (dd, ¹*J*_{C-F} = 243.4 Hz, ³*J*_{C-F} = 10.9 Hz, 1C), 134.3, 115.2, 110.5&110.3 (d, ²*J*_{C-F} = 18.2 Hz, 1C), 104.7-104.2 (t, ²*J*_{C-F} = 25.5 Hz, 1C), 50.0 (2C), 25.0 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₂F₂N = 184.0938; found 184.0940.

1-(naphthalen-1-yl)pyrrolidine (3k).^{8e} Light yellow oil (0.182 g, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.29-8.22 (m, 1H), 7.88-7.82 (m, 1H), 7.52-7.45 (m, 3H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 3.48-3.38 (m, 4H), 2.12-2.02 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 135.0, 128.3, 128.2, 125.9, 125.5, 124.8, 124.3, 121.3, 111.4, 52.7 (2C), 24.8 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₆N = 198.1283; found 198.1284.

1-(benzo[d][1,3]dioxol-5-yl)pyrrolidine (31).¹⁴ Light yellow solid (0.157 g, 82% yield); m.p. 68-70 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, *J* = 8.4 Hz, 1H), 6.25 (d, *J* = 1.6 Hz, 1H), 5.99 (d, *J* = 7.2 Hz, 1H), 5.87 (s, 2H), 3.30-3.20 (m, 4H), 2.07-1.97 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 144.5, 138.1, 108.7, 103.0, 100.4, 94.5, 48.4 (2C), 25.4 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₄NO₂ = 192.1025; found 192.1028.

1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidine (3m).¹⁵ Yellowish oil (0.165 g, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.79 (dd, J = 9.2 Hz, J = 3.2 Hz, 1H), 6.14 (d, J = 6.8 Hz, 2H), 4.28 – 4.20 (m, 4H), 3.22(t, J = 6.8 Hz, 4H), 2.01 -1.96 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 143.94, 143.73, 117.51, 105.42, 105.23, 100.36, 64.86, 64.24, 48.14 (2C), 25.38 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₆NO₂ = 206.1181; found 206.1182.

*N,N-dimethyl-4-(pyrrolidin-1-yl)aniline (3n).*¹⁶ White solid (0.145 g, 76% yield); m.p. 68-70 °C ¹H NMR (400 MHz, (CD₃)₂CO) δ 6.73 (d, *J* = 8.8 Hz, 2H), 6.49 (d, *J* = 8.5 Hz, 2H), 3.30-3.00

(m, 4H), 2.75 (s, 6H), 1.97-1.91 (m, 4H); ¹³C NMR (100 MHz, (CD₃)₂CO) δ 142.84, 141.74, 115.69 (2C), 112.71 (2C), 47.85 (2C), 41.50 (2C), 24.95 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₉N₂ = 191.1548; found 191.1547.

2-(*pyrrolidin-1-yl*)*pyridine* (**3o**).¹⁷ Yellow oil (0.082 g, 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 4.8 Hz, 1H), 7.48-7.41 (m, 1H), 6.52 (t, J = 6.0 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 3.50-3.40 (m, 4H), 2.09-2.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 148.1, 136.9, 111.0, 106.5, 46.6 (2C), 25.5 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₉H₁₃N₂ = 149.1079; found 149.1080.

2-methyl-1-phenylpyrrolidine (**3***p*).^{8e} Light yellow oil (0.151 g, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.23 (m, 2H), 6.84 (t, *J* = 8.8 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 2H), 3.96-3.87 (m, 1H), 3.51-3.43 (m, 1H), 3.25-3.16 (m, 1H), 2.19-1.97 (m, 3H), 1.79-1.70 (m, 1H), 1.22 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 129.2 (2C), 115.1, 111.8 (2C), 53.6, 48.2, 33.1, 23.3, 19.4; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₆N = 162.1283; found 162.1285.

2-methyl-1-p-tolylpyrrolidine (3q).^{8e} Colorless oil (0.159 g, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 6.4 Hz, 2H), 6.55 (d, J = 6.0 Hz, 2H), 3.90-3.80 (m, 1H), 3.47-3.38 (m, 1H), 3.23-3.10 (m, 1H), 2.28 (s, 3H), 2.15-1.95 (m, 3H), 1.75-1.65 (m, 1H), 1.20 (d, J = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 129.7 (2C), 124.2, 111.9 (2C), 53.7, 48.5, 33.2, 23.4, 20.3, 19.5; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₈N = 176.1439; found 176.1438.

1-(4-chlorophenyl)-2-methylpyrrolidine (3r).⁹ White solid (0.167 g, 85% yield); m.p. 41-43 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.8 Hz, 2H), 6.51 (t, *J* = 6.0 Hz, 2H), 3.90-3.80 (m, 1H), 3.47-3.38 (m, 1H), 3.23-3.10 (m, 1H), 2.28 (s, 3H), 2.15-1.95 (m, 3H), 1.75-1.65 (m, 1H), 1.20 (d, *J* = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 128.9 (2C), 119.9, 112.8 (2C),

53.8, 48.3, 33.1, 23.3, 19.1; HRMS (ESI) m/z (M+H)⁺ calcd for $C_{11}H_{15}ClN = 196.0893$; found 196.0894.

2-methyl-1-(naphthalen-1-yl)pyrrolidine (3s).¹⁸ Light yellow oil (0.176 g, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.30-8.25 (m, 1H), 7.88-7.82 (m, 1H), 7.55-7.40 (m, 4H), 7.07 (t, *J* = 7.6 Hz, 1H), 3.92-3.75 (m, 2H), 3.00-2.90 (m, 1H), 2.32-2.13 (m, 1H), 2.10-2.00 (m, 1H), 1.95-1.82 (m, 1H), 1.80-1.70 (m, 1H), 1.11 (d, *J* = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 134.8, 130.1, 128.1, 125.8, 125.6, 124.7, 124.5, 122.0, 114.1, 55.7, 55.4, 33.6, 23.5, 18.7; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₈N = 212.1439; found 212.1437.

*1-phenylpiperidine (3t).*⁹ Colorless oil (0.105 g, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.24 (m, 2H), 6.98 (d, J = 7.6 Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H), 3.30-3.15 (m, 4H), 1.85-1.72 (m, 4H), 1.68-1.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 129.0 (2C), 119.2, 116.6 (2C), 50.7 (2C), 25.9 (2C), 24.3; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₁H₁₆N = 162.1283; found 162.1283.

1-phenylazepane (3u).¹⁹ Light yellow oil (0.111 g, 63% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.20 (m, 2H), 6.72 (d, *J* = 8.0 Hz, 2H), 6.64 (t, *J* = 7.2 Hz, 1H), 3.47 (t, *J* = 9.2 Hz, 4H), 1.85- 1.75 (m, 4H), 1.59 -1.55 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.86, 129.24 (2C), 115.08, 111.17 (2C), 49.04 (2C), 27.79 (2C), 27.17 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₂H₁₈N = 176.1439; found 176.1440.

4-phenylmorpholine (*3v*).²⁰ Light brown solid (0.093 g, 57% yield); m.p. 52-54 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 2H), 7.03-6.90 (m, 3H), 3.90 (t, *J* = 4.4 Hz, 4H), 3.19 (t, *J* = 4.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 129.2 (2C), 120.1, 115.7 (2C), 67.0 (2C), 49.4 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₀H₁₄NO = 164.1075; found 164.1078.

General procedure of the synthesis of azacyles 5a-5e

To a 20 mL vial containing a stirring mixture of aniline (1a) (0.093 g, 1.00 mmol) and DBU (0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl₃ (0.230 g, 1.50 mmol) at room temperature. The mixture was then heated at 90 °C for 15 min. Phthalan (0.180 g, 1.50 mmol) was added to the reaction mixture and the vial was closed tightly with Teflon cap. The reaction mixture was allowed to heat at 110 °C for 15 h. The reaction was cooled down to the ambient temperature, then saturated aqueous NaHCO₃ (10 mL) and brine (10mL) were added to the mixture. The aqueous mixture was extracted with Et₂O and the organic layer was dried over anhydrous sodium sulfate and subsequently concentrated under reduced pressure. The crude product was then purified by flash column chromatography on silica gel with 2% diethyl ether in *n*-hexane as eluent to afford the desired product **5a** (0.181 g, 93% yield).

2-phenylisoindoline (5a).^{8e} White solid (0.181 g, 93% yield); m.p. 171-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.32 (m, 6H), 6.80 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 8.0 Hz, 2H), 4.70 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 137.9 (2C), 129.4 (2C), 127.2 (2C), 122.6 (2C), 116.2, 111.4 (2C), 53.8 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₄N = 196.1126; found 196.1129. 2-p-tolylisoindoline (5b).²¹ White solid (0.197 g, 94% yield); m.p. 196-198 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 4.67 (s, 4H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 138.1 (2C), 129.9 (2C), 127.1 (2C), 125.3, 122.6 (2C), 111.7 (2C), 54.0 (2C), 20.3; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₆N = 210.1283; found 210.1285.

2-(4-chlorophenyl)isoindoline (5c).^{8e} White solid (0.214 g, 93% yield); m.p. 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 4H), 7.26 (d, J = 9.2 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 4.65 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 137.6 (2C), 129.2 (2C), 127.3 (2C), 122.6

(2C), 121.1, 112.6 (2C), 53.9 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for $C_{14}H_{13}CIN = 230.0737$; found 230.0738.

2-(4-nitrophenyl)isoindoline (5d).²² Yellow solid (0.222 g, 92% yield); m.p. 266-268 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 9.2 Hz, 2H), 7.43-7.35 (m, 4H), 6.64 (d, J = 9.2 Hz, 2H), 4.80 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 137.5, 136.3 (2C), 127.8 (2C), 126.4 (2C), 122.7 (2C), 110.5 (2C), 54.0 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₄H₁₃N₂O₂ = 241.0977; found 241.0975.

2-(2,6-dimethylphenyl)isoindoline (5e).²³ White solid (0.186 g, 83% yield); m.p. 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 4H), 7.15-7.05 (m, 3H), 4.69 (s, 4H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 140.1 (2C), 138.9 (2C), 128.7 (2C), 126.7 (2C), 126.9, 122.5 (2C), 57.2 (2C), 18.7 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₆H₁₈N = 224.1439; found 224.1438.

General procedure of the synthesis of azacyles 5f-5i

To a 20 mL vial containing a stirring mixture of aniline (1a) (0.093 g, 1.00 mmol) and DBU (0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl₃ (0.230 g, 1.50 mmol) at room temperature. The mixture was then heated at 90 °C for 15 min. Isochroman (0.201 g, 1.50 mmol) was added to the reaction mixture and the vial was closed tightly with Teflon cap. The reaction mixture was allowed to heat at 110 °C for 15 h. The reaction was cooled down to the ambient temperature, then saturated aqueous NaHCO₃ (10 mL) and brine (10mL) were added to the mixture. The aqueous mixture was extracted with Et₂O and the organic layer was dried over anhydrous sodium sulfate and subsequently concentrated under reduced pressure. The crude product was then purified by flash column chromatography on silica gel with 2% diethyl ether in *n*-hexane as eluent to afford the desired product **5f**(0.136 g, 65% yield).

2-phenyl-1,2,3,4-tetrahydroisoquinoline (5f).^{8e} White solid (0.136 g, 65% yield); m.p. 45-47 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.31 (m, 2H), 7.26-7.18 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.89 (t, *J* = 7.6 Hz, 1H), 4.46 (s, 2H), 3.61 (t, *J* = 6.0 Hz, 2H), 3.03 (t, *J* = 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 134.9, 134.4, 129.2 (2C), 128.5, 126.5, 126.3, 126.0, 118.7, 115.2 (2C), 50.8, 46.6, 29.1; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₆N = 210.1283; found 210.1284. *2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (5g)*.^{8e} White solid (0.215 g, 88% yield); m.p. 69-71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 6H), 6.91 (d, *J* = 9.2 Hz, 2H), 4.41 (s, 2H), 3.56 (t, *J* = 6.0 Hz, 2H), 3.01 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 134.7, 134.0, 129.0 (2C), 128.5, 126.5 (2C), 126.1, 123.4, 116.2 (2C), 50.7, 46.5, 28.9; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₅ClN = 244.0893; found 244.0895..

2-(2,4-difluorophenyl)-1,2,3,4-tetrahydroisoquinoline (5h).^{8e} White solid (0.209 g, 85% yield); m.p. 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.15 (m, 3H), 7.15-7.10 (m, 1H), 7.05-6.96 (m, 1H), 6.92-6.78 (m, 2H), 4.29 (s, 2H), 3.42 (t, *J* = 5.6 Hz, 2H), 3.02 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1-156.9 (dd, ¹*J*_{C-F} = 211.4 Hz, ³*J*_{C-F} = 11.6 Hz, 1C), 156.8-154.4 (dd, ¹*J*_{C-F} = 217.3 Hz, ³*J*_{C-F} = 11.7 Hz, 1C), 136.4&136.3 (d, ³*J*_{C-F} = 8.8 Hz, 1C), 134.2 (2C), 128.9, 126.4, 126.3, 125.9, 120.1&120.0 (d, ³*J*_{C-F} = 5.1 Hz, 1C), 110.8-110.5 (dd, ²*J*_{C-F} = 21.1 Hz, ⁴*J*_{C-F} = 3.6 Hz, 1C), 105.0-104.5 (t, ²*J*_{C-F} = 25.5 Hz, 1C), 53.1, 49.3 (d, ⁴*J*_{C-F} = 3.7 Hz, 1C), 28.8; HRMS (ESI) m/z (M+H)⁺ calcd for C₁₅H₁₄F₂N = 246.1094; found 246.1097.

2-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinoline (5i).²⁴ White solid (0.197 g, 83% yield); m.p. 49-51 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.15 (m, 4H), 6.67 (s, 2H), 6.55 (s, 1H), 4.43 (s, 2H), 3.57 (t, J = 5.6 Hz, 2H), 3.02 (t, J = 6.0 Hz, 2H), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 138.7 (2C), 134.9, 134.6, 128.5, 126.5, 126.3, 126.0, 120.8, 113.2 (2C), 51.0, 46.7, 29.3, 21.8 (2C); HRMS (ESI) m/z (M+H)⁺ calcd for C₁₇H₂₀N = 238.1596; found 238.1597.

Phenylphosphoramidic dichloride (6).²⁵ To a 20 mL vial containing a stirring mixture of aniline (1a) (0.093 g, 1.00 mmol) and DBU (0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl₃ (0.230 g, 1.50 mmol) at room temperature. The mixture was then stirred at 90 °C for 30 min, quenched with saturated ammonium chloride, and extracted with CH_2Cl_2 (2 × 10 mL). The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with hexane-EtOAc as eluent to afford the desired product 6 (0.178 g, 85%). White solid (0.178 g, 85% yield); m.p. 80-82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, J = 8.4 Hz, 2H), 7.27-7.20 (m, 3H), 7.11-7.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 129.7 (2C), 125.2, 121.1 (2C); ³¹P NMR (CDCl₃) δ 8.43; HRMS (ESI) m/z (M+H)⁺ calcd for C₆H₇Cl₂NOP = 209.9642; found 209.9645. ASSOCIATED CONTENT **Supporting Information** The Supporting Information is available free of charge on the ACS Publications website at DOI: ¹H and ¹³C NMR spectra of compounds **3a-3v**, **5a-5i**, and **6**. Screening of reaction conditions for

AUTHOR INFORMATION

Corresponding Author

* E-mail address: hkkim717@jbnu.ac.kr (H-K Kim).

the preparation of azacycles the products (PDF)

ORCID

Minh Thanh La: 0000-0001-9280-1769

Soosung Kang: 0000-0001-7016-2417

Hee-Kwon Kim: 0000-0001-7612-7049

Notes

 The authors declare no competing financial interest.

ACKNOWLEDGMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07047572).

REFERENCES

(a) Ciufolini, M. A.; Hermann, C. W.; Whitmire, K. H.; Byrne, N. E. Chemoenzymatic preparation of trans-2,6-dialkylpiperidines and of other azacycle building blocks. Total synthesis of (+)-desoxoprosopinine. *J. Am. Chem. Soc.* **1989**, *111*, 3473-3475; (b) Lu, X.; Peng, Y.; Wang, C.; Yang, J.; Bao, X.; Dong, Q.; Zhao, W.; Tan, W.; Dong, X. Design, synthesis, and biological evaluation of optimized phthalazine derivatives as hedgehog signaling pathway inhibitors. *Eur. J. Med. Chem.* **2017**, *138*, 384-395; (c) Wang, C.; Zhu, M.; Lu, X.; Wang, H.; Zhao, W.; Zhang, X.; Dong, X. Synthesis and evaluation of novel dimethylpyridazine derivatives as hedgehog signaling pathway inhibitors. *Bioorganic Med. Chem.* **2018**, *26*, 3308-3320; (d) Marsh, J. D.; Smith, T. W. Piretanide: a loop-active diuretic. *Pharmacotherapy* **1984**, *4*, 170-178; (e) Hussein, Z.; Mulford, D. J.; Bopp, B. A.; Granneman, G. R. Stereoselective pharmacokinetics of pazinaclone, a new non-benzodiazepine anxiolytic, and its active metabolite in healthy subjects. *Br. J. Clin. Pharmacol.* **1993**, *36*, 357-361; (f) Zhanel, G. G.; Walkty, A.; Vercaigne, L.; Karlowsky, J. A.; Embil, J.; Gin, A. S.; Hoban, D. J. The new fluoroquinolones: a critical review.

Can. J. Infect. Dis. 1999, 10, 207-238.

(2)(a) Hubbard, H.; Lawitz, E. Glecaprevir + pibrentasvir (ABT493 + ABT-530) for the treatment of hepatitis C. Expert Rev Gastroenterol Hepatol 2018, 12, 9-17; (b) Popovici-Muller, J.; Lemieux, R. M.; Artin, E.; Saunders, J. O.; Salituro, F. G.; Travins, J.; Cianchetta, G.; Cai, Z.; Zhou, D.; Cui, D.; Chen, P.; Straley, K.; Tobin, E.; Wang, F.; David, M. D.; Penard-Lacronique, V.; Quivoron, C.; Saada, V.; de Botton, S.; Gross, S.; Dang, L.; Yang, H.; Utley, L.; Chen, Y.; Kim, H.; Jin, S.; Gu, Z.; Yao, G.; Luo, Z.; Lv, X.; Fang, C.; Yan, L.; Olaharski, A.; Silverman, L.; Biller, S.; Su, S.-S. M.; Yen, K. Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med. Chem. Lett. 2018, 9, 300-305; (c) Vangapandu, H. V.; Jain, N.; Gandhi, V. Duvelisib: a phosphoinositide-3 kinase δ/γ inhibitor for chronic lymphocytic leukemia. Expert Opin. Investig. Drugs 2017, 26, 625-632; (d) Camidge, D. R.; Kim, H. R.; Ahn, M.-J.; Yang, J. C.-H.; Han, J.-Y.; Lee, J.-S.; Hochmair, M. J.; Li, J. Y.-C.; Chang, G.-C.; Lee, K. H.; Gridelli, C.; Delmonte, A.; Garcia Campelo, R.; Kim, D.-W.; Bearz, A.; Griesinger, F.; Morabito, A.; Felip, E.; Califano, R.; Ghosh, S.; Spira, A.; Gettinger, S. N.; Tiseo, M.; Gupta, N.; Haney, J.; Kerstein, D.; Popat, S. Brigatinib versus Crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2027-2039; (e) Perl, A. E.; Altman, J. K.; Cortes, J.; Smith, C.; Litzow, M.; Baer, M. R.; Claxton, D.; Erba, H. P.; Gill, S.; Goldberg, S.; Jurcic, J. G.; Larson, R. A.; Liu, C.; Ritchie, E.; Schiller, G.; Spira, A. I.; Strickland, S. A.; Tibes, R.; Ustun, C.; Wang, E. S.; Stuart, R.; Röllig, C.; Neubauer, A.; Martinelli, G.; Bahceci, E.; Levis, M. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol. 2017, 18, 1061-1075.

(3)

(a) Craig, L. C.; Hixon, R. M. Synthesis of N-phenylpyrrolidine and N-

hexahydrophenylpyrrolidine. *J. Am. Chem. Soc.* **1930,** *52*, 804-808; (b) Cui, X.; Dai, X.; Deng, Y.; Shi, F. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. *Chem. Eur. J.* **2013,** *19*, 3665-3675.

(4) (a) Collins, C. J.; Lanz, M.; Singaram, B. Facile reduction of tertiary lactams to cyclic amines with 9-borabicyclo[3.3.1]nonane (9-BBN). *Tetrahedron Lett.* **1999**, *40*, 3673-3676; (b) Shim, S. C.; Huh, K. T.; Park, W. H. A new and facile synthesis of n-substituted pyrrolidine of amines with aqueous succinaldehyde using tetracarbonylhydridoferrate, HFe(CO)⁻⁴, as a highly selective reducing agent. *Tetrahedron* **1986**, *42*, 259-263; (c) Watanabe, Y.; Shim, S. C.; Uchida, H.; Mitsudo, T.; Takegami, Y. The reducive amination of phthalaldehyde by tetracarbonylhydridoferrate: Synthesis of 2-arylisoindoles. *Tetrahedron* **1979**, *35*, 1433-1436.

(5) (a) Rout, L.; Jammi, S.; Punniyamurthy, T. Novel CuO nanoparticle catalyzed C–N cross coupling of amines with iodobenzene. *Org. Lett.* 2007, *9*, 3397-3399; (b) Khatri, P. K.; Jain, S. L. Glycerol ingrained copper: an efficient recyclable catalyst for the N-arylation of amines with aryl halides. *Tetrahedron Lett.* 2013, *54*, 2740-2743.

(6) Jeffrey, J. L.; Bartlett, E. S.; Sarpong, R. Intramolecular C(sp³)-N coupling by oxidation of benzylic C,N-dianions. *Angew. Chem. Int. Ed.* **2013**, *52*, 2194-2197.

(7) Bourns, A. N.; Embleton, H. W.; Hansuld, M. K. The reaction of tetrahydropyran with primary aromatic amines over activated alumina. *Can. J. Chem.* **1952**, *30*, 1-8.

(8) (a) Walkup, R. E.; Searles, S. Synthesis of sterically hindered 1-arylpyrrolidines and 1-arylpiperidines by condensation of primary aromatic amines with cyclic ethers or diols. *Tetrahedron* 1985, *41*, 101-106; (b) Olsen, C. J.; Furst, A. N-Phenylpyrrolidine¹. *J. Am. Chem. Soc.* 1953, *75*, 3026-3026; (c) Hargis, D. C.; Shubkin, R. L. gem-cyclodialkylation A facile synthetic route to N-substituted heterocycles. *Tetrahedron Lett.* 1990, *31*, 2991-2994; (d) Sun,

The Journal of Organic Chemistry

Z.; Hu, S.; Huo, Y.; Wang, Z. Titanium tetrachloride-mediated synthesis of N-aryl-substituted azacycles from cyclic ethers. *RSC Adv.* **2017**, *7*, 4363-4367; (e) Korbad, B. L.; Lee, S.-H. Synthesis of N-aryl substituted, five- and six-membered azacycles using aluminum-amide complexes. *Chem. Commum.* **2014**, *50*, 8985-8988.

(9) Zhang, Z.; Miao, C.; Xia, C.; Sun, W. Synergistic acid-catalyzed synthesis of N-arylsubstituted azacycles from anilines and cyclic ethers. *Org. Lett.* **2016**, *18*, 1522-1525.

(10) (a) Hou, T.; Zhang, C.; Wang, Y.; Liu, Z.; Zhang, Z.; Wang, F. Metal-free protocol for the synthesis of N-arylpyrrolidines catalyzed by hydrogen iodine. *Catal. Commun.* 2017, *94*, 56-59; (b) Hu, S.; Huo, Y.; Wang, Z. Boron trifluoride-mediated synthesis of N-aryl-substituted pyrrolidines from tetrahydrofuran and amines. *Chem. Heterocycl. Comp.* 2017, *53*, 1365-1368.

(11) (a) Zwierzak, A.; Brylikowska-Piotrowicz, J. Alkylation of diethyl phosphoramidates – a simple route from primary to secondary amines. *Angew. Chem. Int. Ed.* **1977**, *16*, 107-107; (b) Ciufolini, M. A.; Spencer, G. O. Preparation of activated imines and their condensation with allylstannanes: stereoselective synthesis of 1,2-amino alcohols. *J. Org. Chem.* **1989**, *54*, 4739-4741; (c) Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Novel aziridination of α -halo ketones: an efficient nucleophile-induced cyclization of phosphoramidates to functionalized aziridines. *Tetrahedron Lett.* **2008**, *49*, 687-690; (d) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. A convenient synthesis of 1,2,4-trisubstituted azetidines by reductive cyclization of aza-Michael adducts of chalcones. *Tetrahedron Lett.* **2007**, *48*, 8037-8039.

(12) (a) Holzer, P.; Masuya, K.; Furet, P.; Kallen, J.; Valat-Stachyra, T.; Ferretti, S.; Berghausen, J.; Bouisset-Leonard, M.; Buschmann, N.; Pissot-Soldermann, C.; Rynn, C.; Ruetz, S.; Stutz, S.; Chène, P.; Jeay, S.; Gessier, F. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical

trials in p53wt tumors. *J. Med. Chem.* **2015,** *58*, 6348-6358; (b) Johnson, C. N.; Ahn, J. S.; Buck, I. M.; Chiarparin, E.; Day, J. E. H.; Hopkins, A.; Howard, S.; Lewis, E. J.; Martins, V.; Millemaggi, A.; Munck, J. M.; Page, L. W.; Peakman, T.; Reader, M.; Rich, S. J.; Saxty, G.; Smyth, T.; Thompson, N. T.; Ward, G. A.; Williams, P. A.; Wilsher, N. E.; Chessari, G. A fragment-derived clinical candidate for antagonism of X-linked and cellular inhibitor of apoptosis proteins: 1-(6-[(4-fluorophenyl)methyl]-5-(hydroxymethyl)-3,3-dimethyl-1H,2H,3H-pyrrolo[3,2-b]pyridin-1-yl)-2-[(2R,5R)-5-methyl-2-([(3R)-3-methylmorpholin-4-

yl]methyl)piperazin-1-yl]ethan-1-one (ASTX660). *J. Med. Chem.* **2018**, *61*, 7314-7329; (c) Zhu, K.; Song, J.-L.; Tao, H.-R.; Cheng, Z.-Q.; Jiang, C.-S.; Zhang, H. Discovery of new potent protein arginine methyltransferase 5 (PRMT5) inhibitors by assembly of key pharmacophores from known inhibitors. *Bioorganic Med. Chem. Lett.* **2018**, *28*, 3693-3699; (d) Wang, A.; Huang, G.; Wang, B.; Lv, K.; Wang, H.; Tao, Z.; Liu, M.; Guo, H.; Lu, Y. Design, synthesis and antimycobacterial activity of 3,5-dinitrobenzamide derivatives containing fused ring moieties. *Bioorganic Med. Chem. Lett.* **2018**, *28*, 2945-2948.

(13) Chen, D.; Yang, K.; Xiang, H.; Jiang, S. New ligands for copper-catalyzed C–N coupling reactions with aryl halides. *Tetrahedron Lett.* **2012**, *53*, 7121-7124.

(14) Hollmann, D.; Bähn, S.; Tillack, A.; Parton, R.; Altink, R.; Beller, M. A novel salt-free ruthenium-catalyzed alkylation of aryl amines. *Tetrahedron Lett.* **2008**, *49*, 5742-5745.

(15) Li, H.; Liang, W.; Wang, L.; Liu, L.; Chen, K.; Wu, Y. Convenient aqueous synthesis of Narylpyrrolidines under microwave irradiation. *Huaxue Yanjiu Yu Yingyong* **2011**, *23*, 955-960.

(16) Guizzardi, B. 1.; Mella, M.; Fagnoni, M.; Albini, A. Phenonium ions from the addition of phenyl cations to alkenes. Photochemical synthesis of (rearranged) aminoalkylanilines from haloanilines in the presence of alkenes and amines. *J. Org. Chem.* **2003**, *68*, 1067-1074.

(17) Zhang, Y. 1.; Yang, X.; Yao, Q.; Ma, D. Cul/DMPAO-catalyzed *N*-arylation of acyclic secondary amines. *Org. Lett.* 2012, *14*, 3056-3059.
(18) Afanasyev, O. I.; Tsygankov, A. A.; Usanov, D. L.; Chusov, D. Dichotomy of reductive addition of amines to cyclopropyl ketones vs pyrrolidine synthesis. *Org. Lett.* 2016, *18*, 5968-5970.
(19) Nguyen, M. H.; Smith, A. B. Copper-catalyzed electrophilic amination of organolithiums mediated by recoverable siloxane transfer agents. *Org. Lett.* 2013, *15*, 4872-4875.
(20) Yang, Q.; Lei, X.; Yin, Z.; Deng, Z.; Peng, Y. Copper-catalyzed NaBAr₄-based *N*-arylation of amines. *Synthesis.* 2019, *51*, 538-544.
(21) Lin, C.; Zhen, L.; Cheng, Y.; Du, H. J.; Zhao, H.; Wen, X.; Kong, L. Y.; Xu, Q. L.; Sun, H. Visible-light induced isoindoles formation to trigger intermolecular Diels-Alder reactions in the presence of air. *Org. Lett.* 2015, *17*, 2684-2687.
(22) Aboul-Fetouh E. Mourad, A.-F. E.; Nour-El-Din, A. M.; Hassan, A. A.; Döpp, D.

Charge-Transfer Complexes of Isoindolines with 1, 4-Benzoquinones. *Bulletin des Societes Chimiques Belges*, **1986**, *95*, 1045-1051.

(23) Krejer, R. P.; Feldhoff, U.; Seubert, J.; Schmitt, D. Isoindoles and isoindolenines. Part 25. 2-Aryl-2H-isoindoles. Chemiker-Zeitung, **1987**, *111*, 155-169.

(24) Wu, X.; Chen, D.-F.; Chen, S.-S.; Zhu, Y.-F. Synthesis of polycyclic amines through mild metal-free tandem cross-dehydrogenative coupling/intramolecular hydroarylation of N-aryltetrahydroisoquinolines and crotonaldehyde. *Eur, J. Org. Chem.* **2015**, *2015*, 458-473.

(25) MacDiarmid, J. E.; Rose, W. C.; Biddle, W. C.; Perlman, M. E.; Breiner, R, G.; Ambrus, J.

L.; Bardos, T. J. Synthesis and properties of bis(2,2-dimethylaziridinyl)phosphinic amides: a

series of new antineoplastic agents. J. Med. Chem. 1985, 28, 1685-1691.