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GRAPHICAL ABSTRACT

ABSTRACT

A facile method for the synthesis of N-aryl substituted azacycles from arylamines and cyclic 

ethers has been developed. In this study, arylamines were treated with cyclic ethers in the 

presence of POCl3 and DBU to provide five- and six-membered azacycles. Using this method, 

various azacycloalkanes, isoindolines, and tetrahydroisoquinolines were prepared in high yields. 

This synthetic method offers an efficient approach to the production of azacycles from cyclic 

ethers.
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INTRODUCTION

The development of novel synthetic methods for N-substituted azacycles is an important topic 

in organic and medicinal chemistry; this is because these motifs possess valuable properties as 

building blocks for structures of complex biomolecules, and N-substituted azacycles are present 

in many pharmaceuticals as well as organic materials.1 Thus, azacycle structures have received 

much attention in the drug discovery and materials industries. In particular, it was reported that 

several novel drugs recently approved by the FDA contain an N-substituted azacycle moiety 

(Figure 1).2. 
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Figure 1. FDA approved drugs containing azacycles

Due to a variety of applications involving azacycle structures, several synthetic methods were 

reported to prepare N-substituted azacycle compounds: the reaction of primary arylamines with 

dihalides or diols,3 reduction of tertiary lactams or azacyclodienes formed by cyclocondensation 

between dicarbonyl compounds and an amine,4 and a cross-coupling reaction of N-unsubstituted 

azacycles and aryl halides.5 An intramolecular C(sp3)-N coupling reaction was also reported to 

prepare N-substituted azacycles.6  The reaction of a primary amine with cyclic ethers to prepare 

azacycles is an attractive method, as water is the co-product formed during condensation. Several 

protocols using arylamines and cyclic ethers have been described; the first method to synthesize 

N-phenylpyrollidine was the reaction of tetrahydrofuran and aniline, using activated alumina at 

400 °C.7 Other metal-based approaches have been utilized for the synthesis of N-substituted 
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azacycles, including Al2O3, AlCl3, TiCl4 or AlMe3.8 Recently, several methods were developed 

using non-metal catalysts. Zhang and co-workers employed B(C6F5)3 and pTSA.H2O to 

synthesize N-substituted azacycles via a frustrated Lewis pairs pathway.9 Other metal-free 

protocols using HI or BF3.Et2O were also developed.10 However, these methods employ acid or 

Lewis acid catalysts that may be incompatible with acid-sensitive functional groups. To 

overcome the issues of previously reported azacycle syntheses, herein we report a metal-free and 

efficient base-mediated synthesis of five- or six-membered ring azacycle compounds (Scheme 

1).
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Scheme 1. Synthesis of N-substituted azacycles.
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RESULTS AND DISCUSSION

Synthetic chemistry of target products utilizing metal-free methods is a highly desirable green 

methodology. For the development of a novel metal-free reaction, phosphoramidates can be 

attractive intermediates for the preparation of target products since they are known precursors 

that have been practically used to synthesize amines, imines, and heterocycles such as 

aziridines.11 Thus, we envisioned that a synthesis of azacycles utilizing phosphoramidic 

dichloride intermediates starting from amines would be realizable, and we hypothesized that 

reactions of amines with POCl3 could be employed for in situ generation of phosphoramidic 

dichloride, which are active intermediates leading to azacycles. Such utilization of this base 

reaction system could be a novel approach to prepare N-unsubstituted azacycles. To test our 

hypothesis, aniline was selected as a model substrate in the initial study. Reaction with 

tetrahydrofuran (THF) was performed in xylene at 110 °C for 15 h, and the yield of the 

corresponding azacycle was investigated. First, reactions with a series of Lewis acids including 

CuCl2, FeCl3, ZnCl2, ZrCl4, and BiCl2 were surveyed. However, the product was not obtained in 

most of the experiments (Table 1). When SnCl2 was employed, the product was obtained in low 

yield. In addition, treatment with CaI2, or CaBr2 did not produce the azacycle. In this study, 

POCl3 were employed for the synthesis of N-aryl substituted azacycle, and it was found that the 

reaction with POCl3 provided the target azacycle with an improved yield (35%). Next, we 

investigated the base effect on the synthesis of N-substituted azacycles. Employment of K2CO3, 

NaHCO3, triethylamine, 4-dimethylaminopyridine (DMAP), KOH, and NaOH resulted in low 

yields of azacycles. When Cs2CO3 was used as a base, the yield of azacycle increased to 70%, 

but was still unsatisfactory. However, when DBU was used in the reaction, the desired azacycle 

was prepared in significantly increased yield (95%). Screening of solvents was also performed to 
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further optimize the reaction conditions. Reactions in MeCN, DMF, and DCE resulted in no 

reaction. When toluene and PhCF3 were used as the reaction solvent, the yield of the azacycle 

was enhanced to 44% and 45%, respectively. When xylene was employed in the reaction, the 

yield of the corresponding azacycle increased significantly (95%).

Table 1. Screening of reaction conditions for the preparation of azacyclesa.

1a 2a 3a

Solvent
110 oC, 15 h

Reagents,
Base

NH2

+
O N

Entry Reagents Base Solvent Yieldb (%)

1 CuCl2 - xylene NRc

2 FeCl3 - xylene NRc

3 ZnCl2 - xylene NRc

4 ZrCl4 - xylene NRc

5 BiCl2 - xylene NRc

6 MnCl2 - xylene NRc

7 SnCl2 - xylene 24

8 CaI2 - xylene NRc

9 CaBr2 - xylene NRc

10 POCl3 - xylene 35

11 POCl3 K2CO3 xylene 44

12 POCl3 CsCO3 xylene 70

13 POCl3 NaHCO3 xylene 41

14 POCl3 Et3N xylene 42
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15 POCl3 DMAP xylene NRc

16 POCl3 KOH xylene 23

17 POCl3 NaOH xylene 22

18 POCl3 DBU xylene 95

19 POCl3 DBU toluene 44

20 POCl3 DBU PhCF3 45

21 POCl3 DBU MeCN NRc

22 POCl3 DBU DMF NRc

23 POCl3 DBU DCE NRc

24d POCl3 DBU xylene 91

25e POCl3 DBU xylene 88

a Reaction conditions: compound 1a (1 mmol), THF 2a (20 mmol), reagents (1.5 mmol), Base (2 

mmol), solvent (3 mL), 110 oC, 15 h; b Isolated yield after purification of flash column 

chromatography; c No reaction; d compound 1a (1 mmol), THF 2a (10 mmol), POCl3 (1.5 

mmol), DBU (2 mmol), xylene (3 mL), 110 oC, 15 h; e compound 1a (1 mmol), THF 2a (5 

mmol), POCl3 (1.5 mmol), DBU (2 mmol), xylene (3 mL), 110 oC, 15 h

To better understand the effect of reagents and base on the reaction, reactions of aniline with a 

series of equivalents of POCl3 and DBU were performed to produce the desired azacycle (see 

Table S1 in supporting information). The reaction results indicated that the highest yield of 

azacycle was observed in the presence of 1.5 equiv. of POCl3 and 2.0 equiv. of DBU (95%), but 
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further addition of POCl3 and DBU did not enhance the yield. In addition, we further investigated 

the use of different amounts of THF in the synthesis of azacycle. The yield of azacycle product 

increased in proportion to the amount of reagent (88% for 5 equiv. of THF and 91% for 10 equiv. 

of THF). In particular, employment of 20 equiv. of THF produced the target azacycle in high 

yield, although there was no significant difference in yield between employment of 20 equiv., 30 

equiv., and 40 equiv. of THF.

With optimized reaction conditions in hand, the scope of this protocol for the synthesis of 

azacycles from arylamines and cyclic ethers was explored (Scheme 2). Most of the target 

azacycles were prepared in high yields via treatment of various arylamines with cyclic ethers. 

The synthesis of azacycles from arylamines and cyclic ethers was not significantly influenced by 

the electronic properties of substituents on the aromatic ring. Arylamines bearing electron-

donating groups (methyl-, methoxyl-) and electron-withdrawing groups (nitro-, chloro-, fluoro-) 

reacted well with cyclic ethers under the optimal reaction conditions, yielding the desired N-aryl-

substituted azacycles in high yields (Scheme 2, 3b-j). Naphthylamine, 3,4-

(methylenedioxy)amine, and 1,4-benzodioxan-6-amine were also employed with 

tetrahydrofuran, affording the corresponding azacycles in 92%, 82%, and 80% yield, 

respectively (Scheme 2, 3k-m). Besides, N,N-dimethyl-p-phenylenediamine bearing a nitrogen 

and 2-aminopyridine, a hetrocyclic amine, were used with tetrahydrofuran, yielding the 

corresponding azacycles in 76%, and 55% yield, respectively (Scheme 2, 3n-o).  It was 

noteworthy that mono-substitution of the aniline such as p-t-Bu-substituted arylamine did not 

result in a big difference from that of aniline in the reaction. However, the reaction of 3,5- and 

2,6-disubstituted anilines provided the desired products in lower yields (Scheme 2, 3e-f).  The 

tolerance of different cyclic ethers was also explored. Even though 2-methyltetrahydrofuran is 
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more sterically hindered than THF, it successfully reacted with various aryl amines (such as 

aniline, amines containing electron-donating and electron-withdrawing groups, and 

naphthylamine) to yield the corresponding products in high yields (Scheme 2, 3p-s). In addition, 

tetrahydropyran, a six-membered cyclic ether, and oxepane, a seven-membered cyclic ether, 

were employed for the synthesis of azacycles, and the yields were somewhat lower (Scheme 2, 

3t-u). 1,4-Dioxane, a heterocyclic compounds, was also used to react with tetrahydrofuran, 

giving the corresponding azacycles in 57% yield (Scheme 2, 3v).
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Scheme 2. Scope of synthesis of azacycloalkanesa
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DBU (2 mmol), xylene (3 mL), 110 °C, 15 h

Page 10 of 29

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



From these positive synthesis results, the scope of utilizing POCl3 was extended to the synthesis 

of nitrogen-containing fused heterocyclic ring materials from arylamines. In particular, 

tetrahydroisoquinolines and isoindolines are important azacycle motifs in many biological active 

pharmaceuticals and natural products.12 The treatment of aniline with phthalan readily resulted in 

successful synthesis of the corresponding azacycle in 93% yield (Scheme 3, 5a). Furthermore, 

the electronic effect of substituents on the aryl amine was not significantly different from those 

shown in Scheme 3. The reaction of various arylamines bearing electron-donating groups or 

electron-withdrawing groups with phthalan also produced the corresponding isoindolines in 

satisfactory yields (Scheme 3, 5b-e). In addition, the reaction of arylamines with isochroman 

under the same reaction conditions produced tetrahydroisoquinolines in high yields (Scheme 3, 

5f-i). These results suggest that POCl3 and DBU could serve as an important reagent combination 

for the efficient conversion of arylamines to N-aryl substituted five- and six-membered 

azacycles.
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Scheme 3. Scope of synthesis of isoindolines and tetrahydroisoquinolinesa
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+ O NR1

R1

n n

n = 1, 2
51 4

5a, 93%

N N
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5g, 88% 5h, 85% 5i, 83%

a Reaction conditions: compound 1 (1 mmol), cyclic ethers 4 (1.5 mmol), POCl3 (1.5 mmol), 

DBU (2 mmol), xylene (3 mL), 110 °C, 15 h

To gain a mechanistic insight into this method, control experiments were performed. When 

POCl3 and DBU were employed, the reaction successfully produced phosphoramidic dichloride 

6, while employment of POCl3 alone or employment of DBU alone did not yield the 

phosphoramidic dichloride. Besides, the controlled experiment using the prepared 

phosphoramidic dichloride was performed. It was found that the reaction of the prepared 

phosphoramidic dichloride 6 with THF under the same condition produced the corresponding 
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product successfully. Thus, a plausible reaction pathway based on our results can be proposed, as 

shown in Scheme 4. The initial addition of POCl3 and DBU to arylamine 1 probably affords 

phosphoramidic dichloride 6. Then, THF reacts with phosphoramidic dichloride 6 to provide 7. 

Intramolecular attack of the nitrogen on the carbon near phosphorus atom gives the desired 

product, 1-phenyl-pyrrolidine 3a.

NH2

DBU

H
N

P
Cl

O
Cl

O H
N

O
P

Cl

O

Cl

6 7

H
N

8

OP
O

Cl Cl

N

1a

3a

POCl3

DBU HCl

Scheme 4. Proposed reaction mechanism for N-heterocyclization from arylamine.

CONCLUSION

In summary, a novel metal-free method for the synthesis of N‑aryl-substituted azacycles from 

arylamines and cyclic ethers has been developed. In the present study, the combination of POCl3 

and DBU is crucial to produce the desired products. Using this method, N-aryl substituted five- 

and six-membered azacycles were prepared in high yields. Moreover, the reaction protocol is 
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simple and efficient. We expect that this novel method will be useful for the synthesis of a 

variety of five- and six-membered azacycles from cyclic ethers.

Experimental section

General Information

All reactions were performed in 20-mL vials with Teflon caps. Commercial chemicals and 

solvents were used without any purification. Reaction progress was analyzed by thin-layer 

chromatography (TLC) using silica gel 60 F254 pre-coated aluminum plate from Merck and 

TLC spots were observed under UV light (254nm) exposure. Flash chromatography was carried 

out using 230–400 mesh silica gel and analytical grade solvents. Stuart SMP10 Melting Point 

Apparatus was used to record melting points of products. Structure elucidation by NMR (1H and 

13C NMR) was performed on Bruker Avance 400 MHz spectrometer. The chemical shifts were 

reported in δ units (ppm) relative to the residual protonated solvent resonance, the coupling 

constants (J) quoted in Hz, and multiplicity of signals was abbreviated as follows: singlet (s); 

doublet (d); doublet of doublet (dd); triplet (t); multiplet (m). The high resolution mass spectra 

(HRMS) were analyzed on 6200 series TOF/6500 series Q-TOF B.08.00.

General procedure of the synthesis of azacyles 3a-3r

To a 20 mL vial containing a stirring mixture of aniline (1a) (0.093 g, 1.00 mmol) and DBU 

(0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl3 (0.230 g, 1.50 mmol) at room 

temperature. The mixture was then heated at 90 °C for 15 min. Tetrahydrofuran (1.6 mL, 20 

mmol) were added to the reaction mixture and the vial was closed tightly with Teflon cap. The 

reaction mixture was allowed to heat at 110 °C for 15 h. The reaction was cooled down to the 

ambient temperature, then saturated aqueous NaHCO3 (10 mL) and brine (10mL) were added to 
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the mixture. The aqueous mixture was extracted with Et2O and the organic layer was dried over 

anhydrous sodium sulfate and subsequently concentrated under reduced pressure. The crude 

product was then purified by flash column chromatography on silica gel with 2% diethyl ether in 

n-hexane as eluent to afford the desired product 3a (0.140 g, 95% yield).

1-phenylpyrrolidine (3a).8e Light yellow oil (0.140 g, 95% yield); 1H NMR (400 MHz, CDCl3) δ 

7.29 (t, J = 7.2 Hz, 2H), 6.72 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 3.39-3.29 (m, 4H), 

2.11-2.00 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 148.0, 129.1 (2C), 115.4, 111.7 (2C), 47.6 

(2C), 25.5 (2C); HRMS (ESI) m/z (M+H)+ calcd for C10H14N = 148.1126; found 148.1129..

1-p-tolylpyrrolidine (3b).8e White solid (0.147 g, 91% yield); m.p. 41-43 °C; 1H NMR (400 MHz, 

CDCl3) δ 7.09 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 8.0 Hz, 2H), 3.35-3.25 (m, 4H), 2.31 (s, 3H), 

2.10-2.00 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 146.1, 129.6 (2C), 124.5, 111.8 (2C), 47.9 

(2C), 25.4 (2C), 20.3; HRMS (ESI) m/z (M+H)+ calcd for C11H16N = 162.1283; found 162.1285.

1-(3-methoxyphenyl)pyrrolidine (3c).8e Colorless oil (0.160 g, 90% yield);  1H NMR (400 MHz, 

CDCl3) δ 7.17 (t, J = 8.0 Hz, 1H), 6.27 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 6.24 (dd, J = 8.0 Hz, 2.0 Hz, 

1H), 6.16 (t, J = 2.0 Hz, 1H), 3.84 (s, 3H), 3.35-3.26 (m, 4H), 2.07-2.00 (m, 4H); 13C NMR (100 

MHz, CDCl3) δ 160.7, 149.3, 129.8, 104.9, 100.5, 97.9, 55.1, 47.7 (2C), 25.5 (2C); HRMS (ESI) 

m/z (M+H)+ calcd for C11H16NO = 178.1232; found 178.1237.

1-(4-tert-butylphenyl)pyrrolidine (3d).9 White solid (0.189 g, 93% yield);  m.p. 40-42 °C; 1H 

NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 8.8 Hz, 2H), 3.35-3.27 (m, 4H), 

2.05-2.00 (m, 4H), 1.34 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 145.9, 137.9, 125.9 (2C), 111.3 

(2C), 47.7 (2C), 33.7, 31.6 (3C), 25.5 (2C); HRMS (ESI) m/z (M+H)+ calcd for C14H22N = 

204.1752; found 204.1751..
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1-(3,5-dimethylphenyl)pyrrolidine (3e).13 Colorless oil (0.137 g, 78% yield); 1H NMR (400 MHz, 

CDCl3) δ 6.38 (s, 1H), 6.26 (s, 2H), 3.35-3.29 (m, 4H), 2.32 (s, 6H), 2.05-1.97 (m, 4H); 13C 

NMR (100 MHz, CDCl3) δ 148.2, 138.7 (2C), 117.5, 109.7 (2C), 47.6 (2C), 25.5 (2C), 21.7 (2C); 

HRMS (ESI) m/z (M+H)+ calcd for C12H18N = 176.1439; found 176.1441..

1-(2,6-diisopropylphenyl)pyrrolidine (3f).9 Colorless oil (0.146 g, 63% yield); 1H NMR (400 

MHz, CDCl3) δ 7.23 (t, J = 7.2 Hz, 1H), 7.15 (d, J = 7.2 Hz, 2H), 3.36-3.20 (m, 6H), 2.11-2.00 

(m, 4H), 1.25 (d, J = 6.0 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 150.1, 142.9, 126.3 (2C), 

123.9 (2C), 52.8 (2C), 28.0 (2C), 26.6 (2C), 24.5 (4C); HRMS (ESI) m/z (M+H)+ calcd for 

C16H26N = 232.2065; found 232.2067.

1-(4-nitrophenyl)pyrrolidine (3g).9 Yellow solid (0.162 g, 84% yield); m.p. 167-169 °C; 1H 

NMR (400 MHz, CDCl3) δ 8.13 (d, J = 9.2 Hz, 2H), 6.49 (d, J = 9.2 Hz, 2H), 3.37-3.29 (m, 4H), 

2.15-2.05 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 151.9, 136.6, 126.3 (2C), 110.4 (2C), 47.9 

(2C), 25.4 (2C); HRMS (ESI) m/z (M+H)+ calcd for C10H13N2O2 = 193.0977; found 193.0978..

1-(3-chlorophenyl)pyrrolidine (3h).9 Colorless oil (0.165 g, 91% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.14 (t, J = 8.0 Hz, 1H), 6.64 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 6.55 (t, J = 2.0 Hz, 1H), 

6.45 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 3.32-3.25 (m, 4H), 2.07-2.00 (m, 4H); 13C NMR (100 MHz, 

CDCl3) δ 148.8, 134.9, 130.0, 115.1, 111.4, 109.8, 47.6 (2C), 25.4 (2C); HRMS (ESI) m/z 

(M+H)+ calcd for C10H13ClN = 182.0737; found 182.0736.

1-(4-fluorophenyl)pyrrolidine (3i).8e Colorless oil (0.153 g, 92% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.03-6.93 (m, 2H), 6.55-6.47 (m, 2H), 3.33-3.20 (m, 4H), 2.10-2.00 (m, 4H); 13C NMR 

(100 MHz, CDCl3) δ 156.0&153.6 (d, 1JC-F = 231.8 Hz, 1C), 144.8, 115.5&115.3 (d, 2JC-F = 21.9 

Hz, 2C), 112.1&112.0 (d, 3JC-F = 4.6 Hz, 2C), 48.1 (2C), 25.5 (2C); HRMS (ESI) m/z (M+H)+ 

calcd for C10H13FN = 166.1032; found 166.1037.
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1-(2,4-difluorophenyl)pyrrolidine (3j).8e Colorless oil (0.166 g, 90% yield); 1H NMR (400 MHz, 

CDCl3) δ 6.85-6.72 (m, 2H), 6.70-6.59 (m, 1H), 3.30-3.20 (m, 4H), 2.07-1.90 (m, 4H); 13C NMR 

(100 MHz, CDCl3) δ 156.0-153.5 (dd, 1JC-F = 238.3 Hz, 3JC-F = 12.4 Hz, 1C), 153.1-150.5 (dd, 

1JC-F = 243.4 Hz, 3JC-F = 10.9 Hz, 1C), 134.3, 115.2, 110.5&110.3 (d, 2JC-F = 18.2 Hz, 1C), 104.7-

104.2 (t, 2JC-F = 25.5 Hz, 1C), 50.0 (2C), 25.0 (2C); HRMS (ESI) m/z (M+H)+ calcd for 

C10H12F2N = 184.0938; found 184.0940.

1-(naphthalen-1-yl)pyrrolidine (3k).8e Light yellow oil (0.182 g, 92% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.29-8.22 (m, 1H), 7.88-7.82 (m, 1H), 7.52-7.45 (m, 3H), 7.40 (t, J = 7.6 Hz, 1H), 7.01 

(d, J = 7.6 Hz, 1H), 3.48-3.38 (m, 4H), 2.12-2.02 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 147.7, 

135.0, 128.3, 128.2, 125.9, 125.5, 124.8, 124.3, 121.3, 111.4, 52.7 (2C), 24.8 (2C); HRMS (ESI) 

m/z (M+H)+ calcd for C14H16N = 198.1283; found 198.1284.

1-(benzo[d][1,3]dioxol-5-yl)pyrrolidine (3l).14 Light yellow solid (0.157 g, 82% yield); m.p. 68-

70 °C; 1H NMR (400 MHz, CDCl3) δ 6.74 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 1.6 Hz, 1H), 5.99 (d, 

J = 7.2 Hz, 1H), 5.87 (s, 2H), 3.30-3.20 (m, 4H), 2.07-1.97 (m, 4H); 13C NMR (100 MHz, CDCl3) 

δ 148.3, 144.5, 138.1, 108.7, 103.0, 100.4, 94.5, 48.4 (2C), 25.4 (2C); HRMS (ESI) m/z (M+H)+ 

calcd for C11H14NO2 = 192.1025; found 192.1028.

1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidine (3m).15 Yellowish oil (0.165 g, 80% yield); 

1H NMR (400 MHz, CDCl3) δ 6.79 (dd, J = 9.2 Hz, J = 3.2 Hz, 1H), 6.14 (d, J = 6.8 Hz, 2H), 

4.28 – 4.20 (m, 4H), 3.22(t, J = 6.8 Hz, 4H), 2.01 -1.96 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 

143.94, 143.73, 117.51,  105.42, 105.23, 100.36, 64.86, 64.24, 48.14 (2C), 25.38 (2C); HRMS 

(ESI) m/z (M+H)+ calcd for C12H16NO2 = 206.1181; found 206.1182.

N,N-dimethyl-4-(pyrrolidin-1-yl)aniline (3n).16  White solid (0.145 g, 76% yield); m.p. 68-70 °C 

1H NMR (400 MHz, (CD3)2CO) δ 6.73 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 8.5 Hz, 2H), 3.30-3.00 
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(m, 4H), 2.75 (s, 6H), 1.97-1.91 (m, 4H); 13C NMR (100 MHz, (CD3)2CO) δ 142.84, 141.74, 

115.69 (2C), 112.71 (2C), 47.85 (2C), 41.50 (2C), 24.95 (2C); HRMS (ESI) m/z (M+H)+ calcd 

for C12H19N2 = 191.1548; found 191.1547.

2-(pyrrolidin-1-yl)pyridine (3o).17 Yellow oil (0.082 g, 55% yield); 1H NMR (400 MHz, CDCl3) 

δ 8.17 (d, J = 4.8 Hz, 1H), 7.48-7.41 (m, 1H), 6.52 (t, J = 6.0 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 

3.50-3.40 (m, 4H), 2.09-2.00 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 157.2, 148.1, 136.9, 111.0, 

106.5, 46.6 (2C), 25.5 (2C); HRMS (ESI) m/z (M+H)+ calcd for C9H13N2 = 149.1079; found 

149.1080.

2-methyl-1-phenylpyrrolidine (3p).8e Light yellow oil (0.151 g, 93% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.30-7.23 (m, 2H), 6.84 (t, J = 8.8 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 3.96-3.87 (m, 1H), 

3.51-3.43 (m, 1H), 3.25-3.16 (m, 1H), 2.19-1.97 (m, 3H), 1.79-1.70 (m, 1H), 1.22 (d, J = 6.4 Hz, 

3H); 13C NMR (100 MHz, CDCl3) δ 147.2, 129.2 (2C), 115.1, 111.8 (2C), 53.6, 48.2, 33.1, 23.3, 

19.4; HRMS (ESI) m/z (M+H)+ calcd for C11H16N = 162.1283; found 162.1285.

2-methyl-1-p-tolylpyrrolidine (3q).8e Colorless oil (0.159 g, 90% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.06 (d, J = 6.4 Hz, 2H), 6.55 (d, J = 6.0 Hz, 2H), 3.90-3.80 (m, 1H), 3.47-3.38 (m, 

1H), 3.23-3.10 (m, 1H), 2.28 (s, 3H), 2.15-1.95 (m, 3H), 1.75-1.65 (m, 1H), 1.20 (d, J = 5.6 Hz, 

3H); 13C NMR (100 MHz, CDCl3) δ 145.3, 129.7 (2C), 124.2, 111.9 (2C), 53.7, 48.5, 33.2, 23.4, 

20.3, 19.5; HRMS (ESI) m/z (M+H)+ calcd for C12H18N = 176.1439; found 176.1438.

1-(4-chlorophenyl)-2-methylpyrrolidine (3r).9 White solid (0.167 g, 85% yield); m.p. 41-43 °C; 

1H NMR (400 MHz, CDCl3) δ 7.15 (d, J = 8.8 Hz, 2H), 6.51 (t, J = 6.0 Hz, 2H), 3.90-3.80 (m, 

1H), 3.47-3.38 (m, 1H), 3.23-3.10 (m, 1H), 2.28 (s, 3H), 2.15-1.95 (m, 3H), 1.75-1.65 (m, 1H), 

1.20 (d, J = 5.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 145.7, 128.9 (2C), 119.9, 112.8 (2C), 
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53.8, 48.3, 33.1, 23.3, 19.1; HRMS (ESI) m/z (M+H)+ calcd for C11H15ClN = 196.0893; found 

196.0894.

2-methyl-1-(naphthalen-1-yl)pyrrolidine (3s).18 Light yellow oil (0.176 g, 83% yield); 1H NMR 

(400 MHz, CDCl3) δ 8.30-8.25 (m, 1H), 7.88-7.82 (m, 1H), 7.55-7.40 (m, 4H), 7.07 (t, J = 7.6 

Hz, 1H), 3.92-3.75 (m, 2H), 3.00-2.90 (m, 1H), 2.32-2.13 (m, 1H), 2.10-2.00 (m, 1H), 1.95-1.82 

(m, 1H), 1.80-1.70 (m, 1H), 1.11 (d, J = 5.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 146.9, 

134.8, 130.1, 128.1, 125.8, 125.6, 124.7, 124.5, 122.0, 114.1, 55.7, 55.4, 33.6, 23.5, 18.7; HRMS 

(ESI) m/z (M+H)+ calcd for C15H18N = 212.1439; found 212.1437.

1-phenylpiperidine (3t).9 Colorless oil (0.105 g, 65% yield); 1H NMR (400 MHz, CDCl3) δ 7.33-

7.24 (m, 2H), 6.98 (d, J = 7.6 Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H), 3.30-3.15 (m, 4H), 1.85-1.72 (m, 

4H), 1.68-1.55 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 152.3, 129.0 (2C), 119.2, 116.6 (2C), 

50.7 (2C), 25.9 (2C), 24.3; HRMS (ESI) m/z (M+H)+ calcd for C11H16N = 162.1283; found 

162.1283.

1-phenylazepane (3u).19 Light yellow oil (0.111 g, 63% yield); 1H NMR (400 MHz, CDCl3) δ 

7.28-7.20 (m, 2H), 6.72 (d, J = 8.0 Hz, 2H), 6.64 (t, J = 7.2 Hz, 1H), 3.47 (t, J = 9.2 Hz, 4H), 

1.85- 1.75 (m, 4H), 1.59 -1.55 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 148.86, 129.24 (2C), 

115.08, 111.17 (2C), 49.04 (2C), 27.79 (2C), 27.17 (2C); HRMS (ESI) m/z (M+H)+ calcd for 

C12H18N = 176.1439; found 176.1440.

4-phenylmorpholine (3v).20 Light brown solid (0.093 g, 57% yield); m.p. 52-54 °C; 1H NMR 

(400 MHz, CDCl3) δ 7.38-7.28 (m, 2H), 7.03-6.90 (m, 3H), 3.90 (t, J = 4.4 Hz, 4H), 3.19 (t, J = 

4.8 Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 151.2, 129.2 (2C), 120.1, 115.7 (2C), 67.0 (2C), 

49.4 (2C); HRMS (ESI) m/z (M+H)+ calcd for C10H14NO = 164.1075; found 164.1078.
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General procedure of the synthesis of azacyles 5a-5e

To a 20 mL vial containing a stirring mixture of aniline (1a) (0.093 g, 1.00 mmol) and DBU 

(0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl3 (0.230 g, 1.50 mmol) at room 

temperature. The mixture was then heated at 90 °C for 15 min. Phthalan (0.180 g, 1.50 mmol) 

was added to the reaction mixture and the vial was closed tightly with Teflon cap. The reaction 

mixture was allowed to heat at 110 °C for 15 h. The reaction was cooled down to the ambient 

temperature, then saturated aqueous NaHCO3 (10 mL) and brine (10mL) were added to the 

mixture. The aqueous mixture was extracted with Et2O and the organic layer was dried over 

anhydrous sodium sulfate and subsequently concentrated under reduced pressure. The crude 

product was then purified by flash column chromatography on silica gel with 2% diethyl ether in 

n-hexane as eluent to afford the desired product 5a (0.181 g, 93% yield).

2-phenylisoindoline (5a).8e White solid (0.181 g, 93% yield); m.p. 171-173 °C; 1H NMR (400 

MHz, CDCl3) δ 7.43-7.32 (m, 6H), 6.80 (t, J = 7.2 Hz, 1H), 6.73 (d, J = 8.0 Hz, 2H), 4.70 (s, 4H); 

13C NMR (100 MHz, CDCl3) δ 147.1, 137.9 (2C), 129.4 (2C), 127.2 (2C), 122.6 (2C), 116.2, 

111.4 (2C), 53.8 (2C); HRMS (ESI) m/z (M+H)+ calcd for C14H14N = 196.1126; found 196.1129.

2-p-tolylisoindoline (5b).21 White solid (0.197 g, 94% yield); m.p. 196-198 °C; 1H NMR (400 

MHz, CDCl3) δ 7.41-7.30 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 4.67 (s, 

4H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 145.2, 138.1 (2C), 129.9 (2C), 127.1 (2C), 

125.3, 122.6 (2C), 111.7 (2C), 54.0 (2C), 20.3; HRMS (ESI) m/z (M+H)+ calcd for C15H16N = 

210.1283; found 210.1285.

2-(4-chlorophenyl)isoindoline (5c).8e White solid (0.214 g, 93% yield); m.p. 170-172 °C; 1H 

NMR (400 MHz, CDCl3) δ 7.40-7.30 (m, 4H), 7.26 (d, J = 9.2 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 

4.65 (s, 4H); 13C NMR (100 MHz, CDCl3) δ 145.7, 137.6 (2C), 129.2 (2C), 127.3 (2C), 122.6 
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(2C), 121.1, 112.6 (2C), 53.9 (2C); HRMS (ESI) m/z (M+H)+ calcd for C14H13ClN = 230.0737; 

found 230.0738.

2-(4-nitrophenyl)isoindoline (5d).22 Yellow solid (0.222 g, 92% yield); m.p. 266-268 °C; 1H 

NMR (400 MHz, CDCl3) δ 8.23 (d, J = 9.2 Hz, 2H), 7.43-7.35 (m, 4H), 6.64 (d, J = 9.2 Hz, 2H), 

4.80 (s, 4H); 13C NMR (100 MHz, CDCl3) δ 151.3, 137.5, 136.3 (2C), 127.8 (2C), 126.4 (2C), 

122.7 (2C), 110.5 (2C), 54.0 (2C); HRMS (ESI) m/z (M+H)+ calcd for C14H13N2O2 = 241.0977; 

found 241.0975.

2-(2,6-dimethylphenyl)isoindoline (5e).23 White solid (0.186 g, 83% yield); m.p. 60-62 °C; 1H 

NMR (400 MHz, CDCl3) δ 7.40-7.30 (m, 4H), 7.15-7.05 (m, 3H), 4.69 (s, 4H), 2.32 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 145.1, 140.1 (2C), 138.9 (2C), 128.7 (2C), 126.7 (2C), 126.9, 122.5 

(2C), 57.2 (2C), 18.7 (2C); HRMS (ESI) m/z (M+H)+ calcd for C16H18N = 224.1439; found 

224.1438.

General procedure of the synthesis of azacyles 5f-5i

To a 20 mL vial containing a stirring mixture of aniline (1a) (0.093 g, 1.00 mmol) and DBU 

(0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise POCl3 (0.230 g, 1.50 mmol) at room 

temperature. The mixture was then heated at 90 °C for 15 min. Isochroman (0.201 g, 1.50 mmol) 

was added to the reaction mixture and the vial was closed tightly with Teflon cap. The reaction 

mixture was allowed to heat at 110 °C for 15 h. The reaction was cooled down to the ambient 

temperature, then saturated aqueous NaHCO3 (10 mL) and brine (10mL) were added to the 

mixture. The aqueous mixture was extracted with Et2O and the organic layer was dried over 

anhydrous sodium sulfate and subsequently concentrated under reduced pressure. The crude 

product was then purified by flash column chromatography on silica gel with 2% diethyl ether in 

n-hexane as eluent to afford the desired product 5f(0.136 g, 65% yield).
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2-phenyl-1,2,3,4-tetrahydroisoquinoline (5f).8e White solid (0.136 g, 65% yield); m.p. 45-47 °C; 

1H NMR (400 MHz, CDCl3) δ 7.37-7.31 (m, 2H), 7.26-7.18 (m, 4H), 7.03 (d, J = 8.0 Hz, 2H), 

6.89 (t, J = 7.6 Hz, 1H), 4.46 (s, 2H), 3.61 (t, J = 6.0 Hz, 2H), 3.03 (t, J = 5.6 Hz, 2H); 13C NMR 

(100 MHz, CDCl3) δ 150.5, 134.9, 134.4, 129.2 (2C), 128.5, 126.5, 126.3, 126.0, 118.7, 115.2 

(2C), 50.8, 46.6, 29.1; HRMS (ESI) m/z (M+H)+ calcd for C15H16N = 210.1283; found 210.1284.

2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (5g).8e White solid (0.215 g, 88% yield); m.p. 

69-71 °C; 1H NMR (400 MHz, CDCl3) δ 7.30-7.25 (m, 6H), 6.91 (d, J = 9.2 Hz, 2H), 4.41 (s, 

2H), 3.56 (t, J = 6.0 Hz, 2H), 3.01 (t, J = 6.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 149.0, 

134.7, 134.0, 129.0 (2C), 128.5, 126.5 (2C), 126.1, 123.4, 116.2 (2C), 50.7, 46.5, 28.9; HRMS 

(ESI) m/z (M+H)+ calcd for C15H15ClN = 244.0893; found 244.0895..

2-(2,4-difluorophenyl)-1,2,3,4-tetrahydroisoquinoline (5h).8e White solid (0.209 g, 85% yield); 

m.p. 85-87 °C; 1H NMR (400 MHz, CDCl3) δ 7.25-7.15 (m, 3H), 7.15-7.10 (m, 1H), 7.05-6.96 

(m, 1H), 6.92-6.78 (m, 2H), 4.29 (s, 2H), 3.42 (t, J = 5.6 Hz, 2H), 3.02 (t, J = 6.0 Hz, 2H); 13C 

NMR (100 MHz, CDCl3) δ 159.1-156.9 (dd, 1JC-F = 211.4 Hz, 3JC-F = 11.6 Hz, 1C), 156.8-154.4 

(dd, 1JC-F = 217.3 Hz, 3JC-F = 11.7 Hz, 1C), 136.4&136.3 (d, 3JC-F = 8.8 Hz, 1C), 134.2 (2C), 

128.9, 126.4, 126.3, 125.9, 120.1&120.0 (d, 3JC-F = 5.1 Hz, 1C), 110.8-110.5 (dd, 2JC-F = 21.1 Hz, 

4JC-F = 3.6 Hz, 1C), 105.0-104.5 (t, 2JC-F = 25.5 Hz, 1C), 53.1, 49.3 (d, 4JC-F = 3.7 Hz, 1C), 28.8; 

HRMS (ESI) m/z (M+H)+ calcd for C15H14F2N = 246.1094; found 246.1097.

2-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinoline (5i).24 White solid (0.197 g, 83% yield); 

m.p. 49-51 °C; 1H NMR (400 MHz, CDCl3) δ 7.25-7.15 (m, 4H), 6.67 (s, 2H), 6.55 (s, 1H), 4.43 

(s, 2H), 3.57 (t, J = 5.6 Hz, 2H), 3.02 (t, J = 6.0 Hz, 2H), 2.35 (s, 6H); 13C NMR (100 MHz, 

CDCl3) δ 150.8, 138.7 (2C), 134.9, 134.6, 128.5, 126.5, 126.3, 126.0, 120.8, 113.2 (2C), 51.0, 

46.7, 29.3, 21.8 (2C); HRMS (ESI) m/z (M+H)+ calcd for C17H20N = 238.1596; found 238.1597.
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Phenylphosphoramidic dichloride (6).25 To a 20 mL vial containing a stirring mixture of aniline 

(1a) (0.093 g, 1.00 mmol) and DBU (0.304 g, 2.00 mmol) in xylene (3 mL) was added dropwise 

POCl3 (0.230 g, 1.50 mmol) at room temperature. The mixture was then stirred at 90 °C for 30 

min, quenched with saturated ammonium chloride, and extracted with CH2Cl2 (2 × 10 mL). The 

organic layer was dried over sodium sulfate and concentrated under reduced pressure. The 

resulting residue was then purified by flash column chromatography on silica gel with hexane-

EtOAc as eluent to afford the desired product 6 (0.178 g, 85%). White solid (0.178 g, 85% yield); 

m.p. 80-82 °C; 1H NMR (400 MHz, CDCl3) δ 7.39 (t, J = 8.4 Hz, 2H), 7.27-7.20 (m, 3H), 7.11-

7.00 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 136.3, 129.7 (2C), 125.2, 121.1 (2C); 31P NMR 

(CDCl3) δ 8.43; HRMS (ESI) m/z (M+H)+ calcd for C6H7Cl2NOP = 209.9642; found 209.9645. 
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