Synthese von 3-DBU-*closo*-2-CB₆H₆ und [3-Cl-*closo*-2-CB₆H₆]⁻ – eine erste einfache Synthese für [CB₆]-*closo*-Cluster

Syntheses of 3-DBU-*closo*-2-CB₆H₆ and $[3-Cl-closo-2-CB_6H_6]^-$ – a First Straightforward Syntheses of $[CB_6]$ -*closo*-Clusters

Florian Schlüter^[a] und Eduard Bernhardt^{*[a]}

Keywords: Boron; Carboranes; X-ray diffraction; DBU (= 1,8-Diazabicyclo[5.4.0]undec-7-en); Monocarboranes

Abstract. The closo-*hydro*-borate $[B_6H_6]^{2-}$ reacts with DBU (= 1,8-Diazabicyclo[5.4.0]undec-7-en) in chloroform to give a mixture of two different seven-vertex monocarboranes, 3-DBU-*closo*-2-CB₆H₆ and [3-Cl-*closo*-2-CB₆H₆]⁻. Dichlorocarbene, which is generated in situ by the reaction of DBU with chloroform at elevated temperatures, subsequently inserts into the $[B_6H_6]$ -*closo*-cluster to result in 3-DBU-*closo*-

Einleitung

Aus der Serie der Monocarboratanionen $[CB_{n-1}H_n]^-$ mit n = 6 bis 12 [1-5] wurden $[CB_6H_7]^-$ und einige seiner Derivate erst kürzlich synthetisiert [6-8]. Bis heute sind aber nur wenige Derivate des Monocarborans $[CB_6H_7]^-$ bekannt, was unter anderem auf die mehrstufige, komplexe Synthese der Ausgangsverbindungen zurückzuführen ist.

Das Anion [closo-2-CB₆H₇]⁻ wurde erstmals 2002 mit einer Ausbeute von 6 %, ausgehend von nido-1-CB₈H₁₂ [9, 10] synthetisiert [6]. Durch die Umsetzung von $[closo-2-CB_6H_7]^-$ mit elementaren Iod konnte das Diiododerivat [4,5-I2-closo-2-CB₆H₅]⁻ erhalten werden [6]. Verbesserte Syntheseführungen führten zunächst zu einer Ausbeute von 24 % für [closo-2-CB₆H₇]⁻ [11]. 2008 wurde schließlich eine Synthese publiziert, in der eine Ausbeute von 66 % angegeben wird. Die Protonierung des genannten Anions durch konzentrierte H₂SO₄ oder CF₃COOH führt zu der ungeladenen Spezies 2-CB₆H₈, welche jedoch äußerst flüchtig und luftempfindlich ist [7]. Alle hier genannten Synthesen sind mehrstufig, verlaufen über nido-1-CB₈H₁₂ als Intermediat und gehen von Decaboran aus [7]. Ein Gemisch (2:3) aus [2-Ph-closo-2-CB₆H₆]⁻ [8] und [1-Ph-closo- $1-CB_6H_6$ [8] wurde ausgehend von [4-Ph-arachno-4-CB₈H₁₃] [12] mit einer Gesamtausbeute von 82 % synthetisiert.

Wir berichten über eine vereinfachte Synthese für Derivate des [*closo*-2-CB₆H₇]⁻-Anions ausgehend von [TBA]₂[B₆H₆]

E-Mail: edbern@uni-wuppertal.de

 [a] FB C - Anorganische Chemie Bergische Universität-GH Wuppertal Gaußstraße 20 42097 Wuppertal, Germany [13–15]. 3-DBU-*closo*-2-CB₆H₆ (DBU = 1,8-Diazabicy-clo[5.4.0]undec-7-en) wird in sehr guter Ausbeute erhalten und als Nebenprodukt werden Salze mit dem Anion [3-Cl-*closo*-2-CB₆H₆]⁻ isoliert, die beide sowohl durch NMR-spektroskopische Untersuchungen als auch durch Röntgenstrukturanalaysen charakterisiert werden konnten (Abbildung 1).

2-CB₆H₆ as main product [3-Cl-closo-2-CB₆H₆]⁻ was obtained as a

byproduct. Both novel carboranes were isolated and characterized by

 ^{1}H , $^{1}H{^{11}B}$, ^{11}B , $^{11}B{^{1}H}$ and ^{13}C NMR spectroscopy. The structures

of 3-DBU-closo-2-CB₆H₆ as well as [3-Cl-closo-2-CB₆H₆]⁻ were de-

termined by single-crystal X-ray diffraction.

$$[B_6H_6]^{2-} \xrightarrow{\text{CHCl}_3, \Delta} 3\text{-DBU-2-CB}_6H_6 \xrightarrow{\text{CI}^-} [3\text{-CI-2-CB}_6H_6]^{-}$$

Abbildung 1. Reaktion von $[B_6H_6]^{2-}$ mit DBU in CHCl₃ zu 3-DBUcloso-2-CB₆H₆ und $[3-Cl-closo-2-CB_6H_6]^-$.

Ergebnisse und Diskussion

Synthese

Die Synthese von 3-DBU-*closo*-2-CB₆H₆ und [3-Cl-*closo*-2-CB₆H₆]⁻ gelingt durch die Reaktion von [TBA]₂[B₆H₆] mit DBU und Chloroform. Die Bildung des Monocarborans DBU*closo*-2-CB₆H₆ erfolgt durch das aus DBU und Chloroform in situ erzeugte Dichlorcarben. Der DBU-Rest addiert an das Boratom in der 3-Position des Clusters. Die Verbindung 3-DBU*closo*-2-CB₆H₆ wird in Ausbeuten zwischen 65 % und 90 % erhalten, während [3-Cl-*closo*-2-CB₆H₆]⁻ in geringeren Ausbeuten von 5 % bis 27 % als Nebenprodukt isoliert wird. Die chlorierte Spezies [3-Cl-*closo*-2-CB₆H₆]⁻ wird wahrscheinlich durch das in Chloroform gelöste HCl gebildet, was auch die unterschiedlichen Ausbeuten, in Abhängigkeit von der HCl-Konzentration, erklärt. So wurden bei der Reaktion von gereinigtem Chloroform Ausbeuten von 90 % für das 3-DBU-

^{*} Prof. Dr. E. Bernhardt

 $closo-2-CB_6H_6$ erreicht und $[3-Cl-closo-2-CB_6H_6]^-$ wurde NMR-spektroskopisch nicht gefunden.

Säulenchromatographisch werden mit basischem Aluminiumoxid polymere Verunreinigungen, die bei der Synthese gebildet werden, entfernt. Das so erhaltene Produktgemisch von 3-DBU-*closo*-2-CB₆H₆ und [TBA][3-Cl-*closo*-2-CB₆H₆] kann erst nach einem Kationenaustausch zu [PPh₄][3-Cl-*closo*-2-CB₆H₆] getrennt werden. Hierzu wird das Produktgemisch in Diethylether suspendiert, wobei sich 3-DBU-*closo*-2-CB₆H₆ löst und [PPh₄][3-Cl-*closo*-2-CB₆H₆] als Feststoff zurückbleibt. [TBA][3-Cl-*closo*-2-CB₆H₆] dagegen ist ebenfalls in Diethylether löslich. Die Syntheseroute, ausgehend von dem [TBA]₂[B₆H₆], zu den Monocarboranen 3-DBU-*closo*-2-CB₆H₆ und [3-Cl-*closo*-2-CB₆H₆]⁻ ist das erste Beispiel einer einfachen Synthese zu [CB₆]-*closo*-Derivaten [6, 7, 11].

NMR Spektroskopie

Die ¹¹B- und ¹¹B{¹H}-NMR-Spektren eines Produktgemisches sind in Abbildung 2 gezeigt. Die Zuordnung der Signale, die in Tabelle 1 aufgelistet sind, erfolgte durch den Vergleich zu Daten aus DFT-GIAO-Rechnungen.

Abbildung 2. ¹¹B- und ¹¹B $\{^{1}H\}$ -NMR-Spektren des Produktgemisches von 3-DBU-*closo*-2-CB₆H₆ und [TBA][3-Cl-*closo*-2-CB₆H₆] (Aufnahme erfolgte in CD₃CN).

Eine Unterscheidung der beiden Verbindungen ist im ${}^{11}B$ bzw. im ${}^{11}B{}^{1}H$ -Spektrum nicht möglich, da beide nahezu identische chemische Verschiebungen aufweisen. Die Signale spalten im Verhältnis 1:1:1:2 auf, wobei im ¹¹B-Spektrum das substituierte Boratom ein Singulett aufweist. Die Signale für B4 und B5 konnten, obwohl partiell überlagert, eindeutig zugeordnet werden. Die Signale der beiden axialen Boratome B1 und B7 weisen eine identische chemische Verschiebung auf. In Tabelle 1 sind die ¹H-Signale nur für das Carboran-Gerüst angegeben, während die ¹H-NMR-Daten für den DBU-Rest beziehungsweise das [PPh₄]⁺-Kation übersichtshalber nicht mit in die Tabelle aufgenommen wurden.

Eine Unterscheidung der Verbindungen kann, im Gegensatz zu den ¹¹B-NMR-Spektren, durch ¹H{¹¹B}-NMR-Untersuchungen vorgenommen werden. Aussagekräftige Ausschnitte der jeweiligen Spektren sind in Abbildung 3 dargestellt.

Abbildung 3. ${}^{1}H{B}$ -NMR-Spektren des Produktgemisches (unten), von [PPh₄][3-Cl-*closo*-2-CB₆H₆] (Mitte) und 3-DBU-*closo*-2-CB₆H₆ (oben) (Aufnahmen erfolgten jeweils in CD₃CN).

Das untere Spektrum in Abbildung 3 zeigt das ${}^{1}H{{}^{11}B}$ -NMR-Spektrum nach Einengen der Elutionslösung der säulenchromatographischen Trennung. Das mittlere Spektrum gibt [PPh₄][3-Cl-*closo*-2-CB₆H₆] und das obere Spektrum die Verbindung 3-DBU-*closo*-2-CB₆H₆ wieder. Die Signale für H6 der beiden erhaltenen Monocarborane weisen jeweils die stärkste Tieffeldverschiebung im 1 H-NMR-Spektrum auf. Im Vergleich

Tabelle 1. Berechnete und experimentelle NMR-Daten der Verbindungen 3-DBU-*closo*-2- CB_6H_6 und [PPh₄][3-Cl-*closo*-2- CB_6H_6] (Aufnahme erfolgte in CD₃CN).

	3-DBU- <i>closo</i> -2-CB ₆ H ₆ experimentell	berechnet ^{a)}	$[3-Cl-closo-2-CB_6H_6]^-$ experimentell	berechnet ^{a)}
δ (¹³ C) /ppm	78.2, s	80.75, C2	81.1, s	82.36, C2
$\delta(^{11}\text{B})$ /ppm	$14.1 \{-\}, s$	10.9, B3 {-}	$14.2 \{-\}, s$	15.4 {-}, B3
$\{^{1}J(^{11}B,^{1}H)/Hz\},\$	1.9 {156}, d	0.4 {153}, B6	2.1 {153}, d	-2.1 {143}, B6
Zuordnung	-0.4 {158}, d	-2.1 {148}, B5	0.0 {156}, d	-4.1 {137}, B5
	-1.4 {158}, d	-2.6 {140}, B4	-1.6 {152}, d	-5.0 {139}, B4
	-19.7 {151}, d	-20.9{145} B1 -22.6 {146}B7	-19.5 {151}, d	-22.1 {143}, B1, B7
$\delta(^{1}\text{H}) / \text{ppm}^{(b)}$	5.15{9.4H6}, d	4.94 H2{8.5H6}	5.00{9.2H6}, d	4.60 H2{8.4H6}
$\{{}^{3}J({}^{1}H,{}^{1}H)/Hz\},\$	3.73{9.2H2, 6.1H5}, dd	4.20 H6{8.5H2, 5.6H5}	3.63 {9.3H2, 6.2H5}, dd	3.73 H6{8.4H2, 5.4H5}
Zuordnung	3.33 {8.8H4, 6.1H6}, dd 3.28, ^{c)} -0.17, s	3.89 H5{7.8H4, 5.6H6} 3.73 H4{7.8H5} 0.22 H1, 0.13 H7	3.22 {8.6H4, 6.0H6}, dd 3.16 {8.6H5}, d -0.25 s	3.35 H5{7.8H4, 5.4H6} 3.39 H4{7.8H5} -0.01 H1, H7

a) GIAO//B3LYP/6-311++g(d,p) [26–39], referenziert auf BF₃·OEt₂ (δ (¹¹B) = 0 ppm) δ = (¹¹B) = 101.63- σ (¹¹B) und Me₄Si (δ (¹³C) = 0 ppm, δ (¹H) = 0 ppm) δ = (¹³C) = 184.07- σ (¹³C), δ (¹H) = 31.97- σ (¹H). b) ¹H{¹¹B}. c) von DBU-Signalen überlagert

der H6-Signale beider Verbindungen ist das von 3-DBU-*closo*-2-CB₆H₆ mit 5.15 ppm um 0.15 ppm mehr tieffeld-verschoben als das von [3-Cl-*closo*-2-CB₆H₆]⁻. Bei –0.18 (3-DBU-*closo*-2-CB₆H₆) bzw. bei –0.25 ppm ([3-Cl-*closo*-2-CB₆H₆]⁻) konnten die axialen Protonen gefunden und zugeordnet werden. Alle weiteren Signale konnten in ¹H{¹¹B}-NMR-Spektren mit Hilfe der DFT-GIAO-Rechnungen und der gefundenen Kopplungsmuster zugeordnet werden (Tabelle 1).

Kristallstrukturen

Von beiden Verbindungen wurden Kristalle erhalten, die für eine Strukturanalyse durch Beugungsexperimente mit Röntgenstrahlen geeignet waren. Die kristallographischen Daten von 3-DBU-*closo*-2-CB₆H₆ und [PPh₄][3-Cl-*closo*-2-CB₆H₆] sind in Tabelle 2 zusammengefasst.

Farblose Kristalle der Verbindung 3-DBU-*closo*-2-CB₆H₆ konnten durch Diffusion von *n*-Pentan in eine konzentrierte Diethyletherlösung nach drei Tagen erhalten werden. 3-DBU*closo*-2-CB₆H₆ kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit 4 Molekülen pro Elementarzelle. Die Molekülstruktur ist in der Abbildung 4 gezeigt.

Abbildung 4. Molekülstruktur von 3-DBU-*closo*-2-CB₆H₆ im Kristall (50 % Wahrscheinlichkeit). Ausgewählte Bindungslängen /Å: B1–B3 1.832(7), B1–B4 1.808(6), B1–C2 1.529(5), B3–B4 1.626(6), B3–B7 1.819(6), B3–C2 1.529(5), B3–N1 1.500(5), B4–B7 1.797(7), B6–C2 1.538(7), B7–C2 1.718(5), C3–N1 1.347(6), C3–N2 1.323(5).

Die Struktur des Carboranclusters weist eine pentagonale Bipyramide mit C_s -Symmetrie auf und stimmt mit den theoretischen Berechnungen überein [16].

Beide Kohlenstoff-Stickstoffbindungen zeigen sowohl keine echte Einfach- als auch keine Doppelbindung in dem DBU-

	3-DBU-closo-2-CB ₆ H ₆	[PPh ₄][3-Cl-closo-2-CB ₆ H ₆]
Raumgruppe	$P2_1/c$ (Nr. 14)	$P2_1/n$ (Nr. 14)
Molmasse /g·mol ⁻¹	235.16	457.77
Kristallgröße /mm	$0.06 \times 0.29 \times 0.52$	$0.06 \times 0.33 \times 0.44$
Kristallsystem	monoklin	monoklin
Temperatur /K	150(1)	150(1)
a /Å	7.448(3)	7.0070(3)
b /Å	19.413(5)	12.1072(6)
c /Å	10.001(2)	28.5827
β /°	110.07(3)	93.305(4)
Zellvolumen /Å ³	1358.2(7)	2420.78(65)
Ζ	4	4
Dichte (berechnet) /g·cm ^{-3}	1.150	1.256
Absorptionskoeffizient /mm ⁻¹	0.444	0.237
Absorptionskorrektur	numerisch	numerisch
F(000)	504	952
Wellenlänge /Å	1.54184, Cu-K _a	0.71073, Mo-K _a
Gemessener θ -Bereich /°	4.56-61.10	3.36-27.78
Completeness /%; θ /°; d /Å	98.4 / <58.90 / >0.9	99.0/ <26.4 / >0.8
Indexbereich	$-8 \le h \le 8$	$-8 \le h \le 9$
	$-20 \le k \le 21$	$-15 \le k \le 11$
	$-10 \le l \le 11$	$-21 \le l \le 37$
Reflexe: gemessen/unabhängig/beob.[$I > 2\sigma(I)$]	3383 / 2008 / 1034	9643 / 5217 / 4041
$R(int)/R(\sigma)$	0.0506 / 0.0824	0.0232 / 0.0401
Variierte Parameter/restraints	192 / 13	298 / 0
Goodness-of-fit an F^2 /Restrained Goodness-of-fit	0.878	1.018
R_1 beob./alle	0.0607 / 0.1179	0.0461 / 0.0641
wR_2	0.1866	0.1063
Größtes Maximum und Minimum /e·Å-3	0.198 und -0.261	0.513 und -0.277
Gewichtschema: a/b ^{a)}	0.1141/0	0.0453/1.4529

Tabelle 2. 3-DBU-closo-2-CB₆H₆ und [PPh₄][3-Cl-closo-2-CB₆H₆]: Kristallographische Daten und Bestimmung.

a) $w = 1 / [\sigma^2(F_o^2) + (a P)^2 + b P]$, wo $P = (Max (F_o^2, 0) + 2 F_c^2) / 3$

2464 www.zaac.wiley-vch.de

Rest (Einfachbindung: ~1.480 Å, Doppelbindung: ~1.280 Å) [17]. Eine Bindungslänge von 1.323(5) Å zwischen C3-N2 konnte bestimmt werden. Die Bindung zwischen C3-N1 weist eine ähnliche Länge mit 1.347(6) Å auf. Beide Bindungslängen sind somit kürzer als die einer Kohlenstoff-Stickstoffeinfachbindung und sind vergleichbar mit den C-N-Bindungslängen, die unter anderen in trans-[Rh(CO)(DBU)(PPh₃)₂]ClO₄ [18] und [tert-Butyl α-Cyanoacetate][DBU-H] [19] im DBU-Rest gefunden worden sind. Bei [DBU-H]⁺ ist jedoch die C3-N2-Bindung unwesentlich länger (1.322(2) Å) als die Bindung zwischen C3-N1 (1.310(3) Å). Die B3-N1-Bindungslänge zeigt mit 1.500(5) Å, wie auch zu erwarten, eine typische Länge einer Bor-Stickstoff-Einfachbindung (siehe u.a. Paetzold [20]). Das Grundgerüst {CB₆H₆} zeigt in den Bindungslängen eine große Übereinstimmung mit den bereits publizierten Kristallstrukturen des Types $\{CB_6H_6\}$ [6–8, 11].

Farblose Kristalle von $[PPh_4][3-Cl-closo-2-CB_6H_6]$ konnten durch Diffusion von Diethylether in eine konzentrierte Dichlormethanlösung der Verbindung nach 3 Tagen erhalten werden. $[PPh_4][3-Cl-closo-2-CB_6H_6]$ kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit vier Formeleinheiten pro Elementarzelle. Die Struktur des Anions $[3-Cl-closo-2-CB_6H_6]^-$ ist in Abbildung 5 gezeigt.

b Jaca

Abbildung 5. Molekülstruktur von $[3-\text{Cl-}closo-2-\text{CB}_6\text{H}_6]^-$ im Kristall (50 % Wahrscheinlichkeit). Ausgewählte Bindungslängen /Å: B1–B3 1.833(3), B1–B4 1.813(3), B1–C2 1.540(3), B3–B4 1.623(3), B3–B7 1.827(3), B3–C2 1.530(3), B3–C11 1.814(2), B4–B7 1.809(3), B6–C2 1.550(3), B7–C2 1.741(3).

Bei der anionischen Spezies $[3-Cl-closo-2-CB_6H_6]^-$ sind die Bindungslängen des Carboran-Grundgerüstes $\{CB_6H_6\}$ sehr ähnlich mit denen des Zwitterions $3-DBU-closo-2-CB_6H_6$ und denen anderer $\{CB_6H_6\}$ -Derivate [6-8, 11]. Ebenfalls konnte hier die Struktur einer pentagonalen Bipyramide mit C_8 -Symmetrie ermittelt werden. Uns sind keine weiteren literaturbekannten monosubstituierten Derivate des CB_6H_6 -Carborans, an dem der Substituent an eines der Boratome gebunden ist, bekannt.

Weitere Untersuchungen sollen zeigen, ob die selektive Synthese des monochlorierten Anions möglich ist. Die Kohlenstoffinsertion durch in situ erzeugtes Dichlorcarben soll mit weiteren *closo*-Clustern wie $[B_8H_8]^{2-}$ oder $[B_9H_9]^{2-}$ zu den entsprechenden Moncarboranen ausgenutzt werden.

Experimenteller Teil

Ausgangsverbindungen

Die Ausgangsverbindung $[TBA]_2[B_6H_6]$ wurde entsprechend einer Literaturvorschrift synthetisiert [13–15]. Die verwendeten Lösemittel (HPLC-Grade) wurden von Fisher Scientific bezogen, DBU von Alfa Aesar und [PPh₄]Cl von Fluka. Basisches Al₂O₃ der Firma CAMAG wurde verwendet.

NMR Spektroskopie

Es wurden die Geräte Bruker ARX 400 (400.13 MHz und 128.38 MHz für ¹H und ¹¹B) und Bruker ARX III 600 (150.91 MHz für ¹³C) und Acetonitril- d_3 als Lösemittel für die Aufnahmen der NMR-Spektren verwendet. Dabei dienten als externe Standards Me₄Si (δ (¹³C) = 0 ppm, δ (¹H) = 0 ppm) und BF₃·OEt₂ (δ (¹¹B) = 0 ppm).

Kristallstrukturanalysen

Zur Durchführung der Strukturuntersuchung durch Röntgenstrahlbeugung wurden geeignete Kristalle von 3-DBU-closo-2-CB₆H₆ und [PPh₄][3-Cl-closo-2-CB₆H₆] an einem Goniometerkopf befestigt. Die Datensammlung erfolgte mit einem Gemini E Ultra Diffraktometer mit einer 2K×2K EOS CCD Kamera, Vierkreisgoniometer mit kappa-Geometrie, sealed-tube Enhanced (Mo) und Enhanced Ultra (Cu) Strahlungsquellen und Oxford Instruments Cryojet der Firma Oxford Diffraction mit einem CrysAlisPro Graphical User Interface (GUI) [21]. Für die Messungen wurde eine Molybdän- (mit einem Graphitmonochromator) bzw. eine Kupfer-Strahlungsquelle benutzt. Die Bestimmung der Elementarzelle, der Orientierungsmatrix, die Datenreduktion und Absorptionskorrektur erfolgte mit dem CrysAlisPro171.33.42-Softwarepaket [21]. Die Strukturen wurden mit direkten Methoden gelöst [22, 23] und auf F^2 basierend verfeinert [22, 24] (Tabelle 2). Die Abbildungen wurden mit dem in [25] beschriebenem Programm angefertigt. Aufgrund der Auslöschungsbedingungen und der Laue-Symmetrie kamen bei 3-DBU-closo-2-CB₆H₆ nur die Raumgruppe P2₁/c (Nr. 14) und bei [PPh₄][3-Cl-closo-2-CB₆H₆] nur P2₁/n (Nr. 14) infrage. Die Struktur wurde in den entsprechenden Raumgruppen gelöst und verfeinert.

Synthesen

3-DBU-2-CB₆H₆ [PPh₄][3-Cl-2-CB₆H₆]: und $[TBA]_2[B_6H_6]$ (500 mg, 0.90 mmol) wurde in einem 250 mL Einhalskolben zunächst mit DBU (2.02 mL, 13.50 mmol) und unter Rühren mit Chloroform (75 mL) versetzt. Die Reaktionslösung wurde 17 Stunden unter Rückfluss gerührt. Das Reaktionsgemisch wurde zweimal mit H2O (je 75 mL) im Schütteltrichter gewaschen und die abgetrennte organische Phase über Natriumsulfat getrocknet. Das Produkt wurde säulenchromatographisch an Aluminiumoxid (basisch, Säule: 3 cm breit, 6 cm hoch) von den Verunreinigungen getrennt. Nach Auftragen der Reaktionslösung wurde mit weiterem Dichlormethan (175 mL) eluiert und anschließend wurden alle flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wurde in einer Lösung aus [PPh4]Cl (0.33 g, 0.90 mmol) und Acetonitril (10 mL) aufgenommen, mit Wasser

(80 mL) versetzt und zweimal mit Dichlormethan (je 50 mL) extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet und anschließend wurde nalle flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wurde für vier Stunden in Ethylether (200 mL) suspendiert. Anschließend wurde [PPh₄][3-Cl-2-CB₆H₆] abfiltriert, das Filtrat, welches 3-DBU-2-CB₆H₆ enthält, zur Trockene eingeengt und erneut in Diethylether gelöst. Das restliche [PPh₄][3-Cl-2-CB₆H₆] wurde abfiltriert und die Lösung eingeengt. 3-DBU-2-CB₆H₆ wurde mit *n*-Pentan (50 mL) gewaschen und im Vakuum getrocknet. Ausbeute: 142 mg (67 %). [PPh₄][3-Cl-2-CB₆H₆] wurde ebenfalls mit *n*-Pentan (50 mL) gewaschen und das so erhaltene farblose Salz im Vakuum getrocknet. Ausbeute: 110 mg (27 %). C₁₀H₂₂B₆N₂ (*M* = 235.26 g·mol⁻¹): ber. C 51.07, H 9.43, N 11.91 %, gef. C 53.69, H 9.72, N 8.26 %. C₂₅H₂₆B₆CIP (*M* = 457.77 g·mol⁻¹): ber. C 65.59, H 5.72 %, gef. C 68.97, H 5.32 %.

Theoretische Rechnungen

Quantenchemische Rechnungen wurden zur Unterstützung der experimentellen Ergebnisse durchgeführt. Für DFT Rechnungen [26] wurden mit der B3LYP-Methode [27–29] und mit dem Basissatz 6-311++G(d,p), die in Gaussian03 [30] implementiert sind, durchgeführt. Für das Berechnen der Abschirmungskonstanten (GIAO) [31–35] und der Kopplungskonstanten [36–38] wurden diffuse Funktionen [39] im Basissatz verwendet. Frequenzen wurden mit dem Basissatz 6-311++G(d,p) für [3-Cl-2-CB₆H₆]⁻ und mit dem Basissatz 6-311(d) für 3-DBU-2-CB₆H₆ berechnet. Es wurden keine imaginären Frequenzen gefunden, das heißt, dass es sich um Energieminima handelt.

Literatur

- J. Pleek, T. Jelínek, B. Stíbr, S. Hemánek, J. Chem. Soc., Chem. Commun. 1988, 348.
- [2] T. Jelínek, B. Stíbr, J. Pleek, J. D. Kennedy, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. 1995, 431.
- [3] T. Jelínek, C. A. Kilner, M. Thornton-Pett, J. D. Kennedy, B. Stíbr, H.-J. Schanz, B. Wrackmeyer, J. Holub, M. Bakardjiev, D. Hnyk, D. L. Ormsby, *Chem. Commun.* 2001, 1756.
- [4] T. Onak, R. Drake, G. Dunks, J. Am. Chem. Soc. 1965, 87, 2505.
- [5] S. Korbe, P. J. Schreiber, J. Michl, Chem. Rev. 2006, 106, 5208.
- [6] B. Stibr, O. L. Tok, W. Milius, M. Bakardjiev, J. Holub, D. Hnyk, B. Wrackmeyer, Angew. Chem. Int. Ed. 2002, 41, 2126.
- [7] M. Bakardjiev, J. Holub, D. Hnyk, B. Stibr, Chem. Eur. J. 2008, 14, 6529.
- [8] A. Franken, D. L. Ormsby, C. A. Kilner, W. Clegg, M. Thornton-Pett, J. D. Kennedy, J. Chem. Soc., Dalton Trans. 2002, 2807.
- [9] K. Base, S. Hermanek, B. Stibr, Chem. Ind. 1977, 23, 951.
- [10] K. Base, B. Stibr, J. Dolansky, J. Duben, Collect. Czech. Chem. Commun. 1981, 46, 2345.
- [11] B. Stibr, J. Holub, M. Bakardjiev, Z. Janousek, *Dalton Trans.* 2007, 581.
- [12] A. Franken, C. A. Kilner, M. Thornton-Pett, J. D. Kennedy, J. Organomet. Chem. 2002, 657, 180.
- [13] J. L. Boone, J. Am. Chem. Soc. 1964, 86, 5036.
- [14] R. M. Kabbani, Polyhedron 1996, 15, 1951.
- [15] W. Preetz, G. Peters, Eur. J. Inorg. Chem. 1999, 1831.

- [16] R. E. Williams, Adv. Inorg. Chem. Radiochem. 1976, 18, 67.
- [17] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, G. A. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1987, S1.
- [18] J. V. Barkley, C. J. Davies, B. T. Heaton, C. Jacob, J. Chem. Soc., Dalton Trans. 1995, 2861.
- [19] B. Gernot, L. Ira, M. Michael, H. Klaus, *Chemische Ber.* 1994, 127, 2059.
- [20] P. Paetzold, Adv. Inorg. Chem. 1987, 31, 123.
- [21] Oxford Diffraction, *CrysAlisPro CCD* and *CrysAlisPro Red*, including *ABSPACK*. Oxford Diffraction Ltd, Yarnton, Oxford, U.K, 2009.
- [22] L. J. Farrugia, WinGX v1.64.05 An integrated system of Windows programs for the solution, refinement and analysis of singlecrystal X-ray diffraction data, University Glasgow, (J. Appl. Crystallogr. 1999, 32, 837), 2003.
- [23] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Universität Göttingen, 1997.
- [24] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Universität Göttingen, 1997.
- [25] K. Brandenburg, Diamond v.3.2c, Crystal Impact GbR, 2001.
- [26] W. Kohn, L. J. Sham, Phys. Rev. A 1965, 140, 1133.
- [27] A. D. Becke, Phys. Rev. B 1988, 38, 3098.
- [28] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 41, 785.
- [29] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Ivengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 2003, Revision B.05.
- [31] F. London, J. Phys. Radium 1937, 8, 397.
- [32] R. McWeeny, Phys. Rev. 1962, 126, 1028.
- [33] R. Ditchfield, Mol. Phys. 1974, 27, 789.
- [34] J. L. Dodds, R. McWeeny, A. J. Sadlej, *Mol. Phys.* **1980**, *41*, 1419.
- [35] K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
- [36] T. Helgaker, M. Watson, N. C. Handy, J. Chem. Phys. 2000, 113, 9402.
- [37] V. Sychrovsky, J. Grafenstein, D. Cremer, J. Chem. Phys. 2000, 113, 3530.
- [38] V. Barone, J. E. Peralta, R. H. Contreras, J. P. Snyder, J. Phys. Chem. A 2002, 106, 5607.
- [39] J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schäfer, S. Nandi, G. B. Ellison, *Chem. Rev.* 2002, 102, 231.

Eingegangen: 25. März 2010 Online veröffentlicht: 6. Juli 2010