Synthesis and Glutathione Peroxidase-Like Activities of Isoselenazolines

Vijay P. Singh,^[a] Harkesh B. Singh,^{*[a]} and Ray J. Butcher^[b]

Keywords: Heterocycles / Selenium / Ebselen / Antioxidants / Enzyme mimics / Structure-activity relationships

The aromatic nucleophilic substitution (S_NAr) reactions of N-(2-bromo-3-nitrobenzyl)aniline (18), N-(2-bromo-3-nitrobenzyl)-4-methylaniline (19) and N-(2-bromo-3-nitrobenzyl)-4-nitrobenzyl]aniline (21), N-[2-(butylselanyl)-3-nitrobenzyl]-4-methylaniline (22) and N-[2-(butylselanyl)-3-nitrobenzyl]-4-methylaniline (23), respectively. The bromination of 21 results in the formation of cyclic isoselenazolines 7-nitro-2-phenyl-2,3-dihydrobenzisoselenazole (27) and 2-(4-bromophenyl)-7-nitro-2,3-dihydrobenzisoselenazole (28). The bromination of 22 affords isoselenazole (29) and 2-(2-bromo-4-methylphenyl)-7-nitro-2,3-dihydrobenzisoselenazole (29) and 2-(2-bromo-4-methylphenyl)-7-nitro-2,3-dihydrobenzisoselenazole (20) and 2-(2-bromo-4-methylphenyl)-7-nitro-2,3-dihydrobenzisoselenazole (20)

of **23** under identical conditions gave 2-(2-bromo-4-nitrophenyl)-7-nitro-2,3-dihydrobenzisoselenazole (**31**). The oxidation reaction of **21–22** with H_2O_2 yielded isoselenazoline *Se*-oxides 7-nitro-2-phenyl-2,3-dihydrobenzisoselenazole 1-oxide (**33**) and 2-(4-methylphenyl)-7-nitro-2-phenyl-2,3-dihydrobenzisoselenazole 1-oxide (**34**), respectively. The new isoselenazolines and isoselenazoline *Se*-oxides, stabilized by intramolecular secondary Se···O interactions, have been structurally characterized by single-crystal X-ray diffraction studies and investigated by computational studies. In addition to the synthesis and characterization, the glutathione peroxidase (GPx)-like activities of isoselenazolines and isoselenazoline *Se*-oxides by coupled reductase assays.

Introduction

Ebselen [2-phenyl-1,2-benzoselenzol-3(2H)-one, PZ 51, 1], a heterocyclic compound containing a selenium-nitrogen bond, exhibits both anti-inflammatory activity in vivo and glutathione peroxidase (GPx)-like activity in vitro (Figure 1).^[1] It catalytically reduces harmful peroxides by reducing glutathione (GSH) or other thiols, mimicking the activity of GPx and protecting the lipid membranes and other cellular components against oxidative damage.^[2] Due to the applications of ebselen, several methods for its synthesis have been developed.^[3,4] In the most direct approach, 2-(chlorocarbonyl)phenylselenenyl chloride obtained from 2,2'-diselenodibenzoic acid, is treated with aniline to afford ebselen.^[4b] The method developed by Engman and coworkers involves ortho-lithiation of benzanilide followed by selenium insertion and oxidative cyclization reactions.^[4c] A free radical synthesis of ebselen has been reported by intramolecular homolytic substitution with amidyl radicals.^[4d,4e]

Very recently, an efficient copper-catalyzed method has been reported for ebselen.^[5] The reactivity of ebselen could be interpolated by changing the basic structure based on

E-mail: chhbsia@chem.iitb.ac.in

- [b] Department of Chemistry, Howard University, Washington, DC 20059, USA
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100899.

Figure 1. Ebselen (1) and its analogues 2-7.

substituent effects and isosteric replacements. To understand the effects of various substituents on the GPx activity of ebselen, several ebselen analogues have been reported.^[6b,6d,6f] A pyridine-fused tocopherol and selenium containing antioxidant and anti-inflammatory agent **2** has been reported.^[7] Selenenamide **3**, without an aromatic substituent, has also been developed as a model compound for GPx.^[8] Another example of selenenamides such as **4**, containing a Se–N bond in the seven-membered ring has been reported.^[9] The internalization of a subsidiary tetrahedral carbon atom (CR₂) into the heterocycle led to compounds **5**,^[10] **6**^[11] and **7**^[12] as GPx mimics. It is worth mentioning that the introduction of an *ortho*-nitro group in 7-nitro-2phenyl-1,2-benzoselenazol-3(2*H*)-one (**8**) enhances the GPx-like activity (Figure 2).^[13] The synthesis of such eb-

 [[]a] Department of Chemistry, Indian Institute of Technology Bombay,
 Powai, Mumbai 400076, India Fax: +91-22-2572-3480

FULL PAPER

selen analogues 9,^[14a] 10^[14b] and 11^[14c] has been accomplished by ortho-lithiation and selenium insertion followed by oxidation. It has been revealed that the presence of intramolecular secondary Se-O/N interactions enhances the reactivity of the Se-N bond towards cleavage by thiols.^[14c] The cyclic isoselenazolines, with a CH₂ group as part of the five-membered heterocyclic ring, have not been studied in detail. In contrast to ebselen, the isolation of such cyclic Se-N isoselenazolines is difficult due to the flexible -CH₂-NH- bond with a sp³-hybridized carbon atom. To date, only a camphor-derived cyclic selenenamide 12, which showed good GPx-like activity, has been reported (Figure 2).^[15] Here, the cyclization could be possible due to the rigid conformation of the substrate. Furthermore, an attempted cyclization of 1-(bromomethyl)-2-(bromoseleno)benzene with methylamine did not lead to the formation of the expected isoselenazoline 13.[6d]

Figure 2. Selenenamides 8–12 and isoselenazoline 13.

Recently, we have reported the synthesis of related Se–N heterocycles with imine (–CH=N–) and nitro (–NO₂) groups *ortho* to the selenium atom.^[16] These heterocycles are closely related to ebselen and exhibit excellent GPx-like activity. We have now isolated a new range of Se–N heterocycles with a CH₂ group present in the five-membered ring. It occurred to us that such ebselen analogues might display interesting GPx-like activity due to a weaker Se–N bond. In this paper, we present our findings on the structure–property correlation as well as GPx-like activity of isoselenazolines and isoselenazoline *Se*-oxides with a CH₂ group and compare to analogues with a C=O group.

Results and Discussion

The precursor *N*-(2-bromo-3-nitrobenzylimino)benzene (**15**) was prepared from 2-bromo-3-nitrobenzaldehyde (**14**).^[16] *N*-(2-Bromo-3-nitrobenzylimino)-4-methylaniline (**16**) and *N*-(2-bromo-3-nitrobenzylimino)-4-nitroaniline (**17**) were synthesized in a similar fashion by treating **14**

with *p*-nitroaniline and *p*-toluidine, respectively (Scheme 1). Further treatment of 15-17 with NaBH₄ in ethanol afforded the expected reduced products 18-20 in good yields.

Scheme 1. i) Aniline, glacial acetic acid, r.t.; ii) p-toluidine, glacial acetic acid, r.t.; iii) p-nitroaniline, glacial acetic acid, r.t.; iv) NaBH₄, ethanol, r.t., 5 h.

Unsymmetrical selenides 21-23, the required intermediates for the synthesis of isoselenazolines 27-31, were synthesized by the aromatic nucleophilic substitution (S_NAr) reactions of 18-20 with the in situ prepared nBuSeNa (Scheme 2). Et₃N was added to a CHCl₃ solution of 21. The progress of the reaction was monitored by TLC. After the usual work up, isoselenazolines 27 and 28 were obtained by silica gel column chromatographic purification with petroleum ether/ethyl acetate. Formation of 28 was accompanied by N-phenyl ring bromination at the para-position. To prevent the N-phenyl ring bromination at the paraposition and to see the effect of the substituents when selenide 22 was treated with Br₂/Et₃N, the reaction mixture after work up and rotary evaporation afforded a black mixture of compounds, which was chromatographed on silca gel to afford isoselenazolines 29 and 30, selenide 32 and another product,^[17] respectively. A similar bromination reaction of 23 afforded isoselenazoline 31, in very low yield, and a yellow precipitate, which could not be characterized.

Scheme 2. i) [*n*BuSeNa], C₂H₅OH, 0 °C, 3 h; ii) Br₂/CHCl₃, Et₃N, 0 °C, 2 h.

To avoid bromination reactions in the cyclizations, oxidation with peroxides also leads to the cyclized products. The reaction of one equivalent as well as two equivalents of 30% H₂O₂ with selenides **21** and **22** at the room temperature did not lead to the formation of any products. Even

after adding six equivalents of H_2O_2 at room temperature with stirring for 24 h, only the starting materials were recovered. When the oxidation of **21** and **22** containing six equivalents of H_2O_2 was carried out with heating to reflux for 40–50 min, the reaction afforded the formation of overoxidized isoselenazoline *Se*-oxides **33** and **34**, respectively (Scheme 3).

Scheme 3. i) Six equiv. of H₂O₂ (excess), CHCl₃, reflux, 40–50 min.

The reaction of selenides 21 and 22 with excess H_2O_2 presumably leads to selenoxides 35 and 36, which undergo subsequent [2,3]-sigmatropic rearrangement to give selenenic acids 37 and 38 (Scheme 4). Furthermore, oxidation of 37 and 38 to seleninic acids 39 and 40 followed by condensation yields 33 and 34.

Scheme 4. Plausible mechanism for the formation of 33 and 34.

In order to determine the structure–GPx-like activity correlations of the new cyclic isoselenazolines **27–31**, the related ebselen analogue **8** has also been prepared by a modified procedure.^[13a] In our modification, 2-(butylsel-anyl)-3-nitro-*N*-phenylbenzamide (**42**), obtained by the reaction of 2-bromo-3-nitro-*N*-phenylbenzamide (**41**)^[18] with in situ generated *n*BuSeNa, was used instead of 2-(methyl-selanyl)-3-nitro-*N*-phenylbenzamide (Figure 3).^[13a] The reaction of **42** with Br₂/Et₃N in CHCl₃ solvent gave **8** in good yield.

Figure 3. Precursors 41 and 42 and *ortho*-nitro-coordinating ebselen analogue 43.

In summary, a facile synthesis of isoselenazolines and isoselenazoline *Se*-oxides incorporating a CH_2 group in the five-membered heterocyclic ring has been achieved. The in-

tramolecular coordination of the 6-nitro group to the selenium atom plays a crucial role in the cyclization process.

Spectroscopic Studies

The ¹H NMR spectroscopic studies of **33** and **34** were performed in [D₆]DMSO (see Figures S92 and S99 of the Supporting Information). Nonequivalent signals for the benzylic protons of **33** [5.19 (d, 1 H) and 5.26 (d, 1 H) ppm] and **34** [5.16 (d, 1 H) and 5.24 (d, 1 H) ppm] were observed as two doublets with vicinal coupling (J = 16.0 Hz). The doublets are due the presence of the chiral selenium centres in optically active **33** and **34**.

⁷⁷Se NMR spectroscopy is a very useful technique for probing the electronic environment around the selenium atom.^[6,8a,14–15,19a] The ⁷⁷Se NMR spectra of **27–31** exhibit signals at 974, 977, 987, 1060 and 1070 ppm (Table 1). These chemical shifts are slightly downfield compared to **1** $(\delta = 961 \text{ ppm})$,^[6b]**8** ($\delta = 953 \text{ ppm}$),^[13a]**3** ($\delta = 819 \text{ ppm}$),^[8a] **7a** ($\delta = 693 \text{ ppm}$)^[12b] and **12** ($\delta = 885 \text{ ppm}$).^[15] As expected, the spectra of **33** and **34** with selenium(IV) showed larger downfield shifts than those of **27–31**.

Table 1. GIAO 77 Se NMR chemical shifts calculated in gas phase at the B3LYP/6-311+G(d,p) level on the B3LYP/6-311+G(d) leveloptimized geometries for compounds 1, 8, 27–31 and 33–34 along with the experimental values.

Compound	⁷⁷ Se NMR ^[a] , calcd.	⁷⁷ Se NMR ^[a] , exp.	Solvents
1	988	961 ^[6b]	CDCl ₃
8	910	953 ^[13a]	CDCl ₃
27	992	974	CDCl ₃
28	998	977	CDCl ₃
29	997	987	CDCl ₃
30	1074	1060	CDCl ₃
31	1104	1070	CDCl ₃
33	1161	1182	[D ₆]DMSO
34	1158	1174	[D ₆]DMSO

[a] The values are referenced to Me₂Se ($\delta = 0$ ppm).

We performed DFT calculations on our organoselenium compounds to see the effect of a CH_2 group in place of the CO group in the five-membered heterocycle on the ⁷⁷Se NMR chemical shifts and compared the calculated values with the experimental data. The geometries were fully optimized with the B3LYP/6-311+G(d) basis sets. The NMR calculations were performed at the B3LYP/6-311+G(d,p) level on the B3LYP/6-311+G(d) level-optimized geometries by using the gauge-including atomic orbital (GIAO) method.^[20] As observed from the experimental data, the calculated ⁷⁷Se NMR chemical shifts for **27–31** are downfield shifted compared to those observed for **1** (Table 1).

This difference in the chemical shifts is probably due to the presence of intramolecular secondary Se···O interactions with the *ortho*-nitro group. It is well established that the presence of the intramolecular secondary Se···N^[6a,19b] and Se···O^[6b,6e,21,22] interactions lead to a downfield shift of the ⁷⁷Se NMR chemical shifts. Recently, we have demonstrated that the presence of Se···O interactions in selenenium cations^[16] and selenenate esters^[22] leads to the downfield shift of the ⁷⁷Se NMR chemical shifts (vide infra).

Molecular Structures of 21 and 32

The molecular structure of **21** (Figure 4) shows a Vshaped geometry around the selenium atom with a C1–Se1– C14 bond angle of 100.00(11)°. The Se···O1 distance [3.295(9) Å] is slightly less than the sum of the van der Waals radii (3.45 Å), indicating a weak secondary Se···O interaction.^[23] The geometry around the selenium atom in **32** is quite similar to that observed for **21** with a C1–Se1– C15A bond angle of 100.3(3)° (Figure 5). The Se···O2 distance [3.212(2) Å] is also similar to that observed for **21**.

Figure 4. Molecular structure of **21**. Thermal ellipsoids are set at 50% probability. Significant bond lengths [Å] and angles [°]: Se--O1 3.295(9); Se--C1 1.924(2); Se--C14 1.978(3); O1--Se--C7 115.93(6); C1--Se--C14 100.00(11).

Figure 5. Molecular structure of **32**. Thermal ellipsoids are set at 50% probability. Significant bond lengths [Å] and angles [°]: Se-.O2 3.212(2); Se-C11.926(3); Se-C15B 1.892(10); C1-Se-C14 100.3(3).

Molecular Structures of 29 and 30

The coordination geometry around the selenium atom in **29** is nearly T-shaped with a O1···Se–N2 bond angle of 156.76(11)° (Figure 6). The Se–N2 distance [1.891(3) Å] is similar to that reported for **1** [1.896(3) Å] and **8** $[1.896(3)].^{[24]}$ The Se···O1 distance [2.591(3) Å] is slightly greater than that reported for **8** $[2.573(3) \text{ Å}].^{[24b]}$ which indicates a weak intramolecular secondary Se···O interaction in **29**. The geometry around the selenium atom in **30** is similar to that observed for **29** with a O1···Se–N2 bond angle of $155.61(10)^{\circ}$ (Figure 7). The Se–N2 distance [1.905(3) Å] is similar to that observed in **29**. The Se···O1 distance [2.686(3) Å] is slightly greater than that observed in **30**, suggesting a weaker intramolecular secondary Se····O interaction.

Figure 6. Molecular structure of **29**. Thermal ellipsoids are set at 50% probability. Significant bond lengths [Å] and angles [°]: Se-O1 2.591(3); Se-N2 1.891(3); Se-C1 1.861(3); O1-Se-N2 156.76(11); C1-Se-N2 85.69(14); C7-N2-Se 114.0(2).

Figure 7. Molecular structure of **30**. Thermal ellipsoids are set at 50% probability. Significant bond lengths [Å] and angles [°]: Se···O1 2.686(3); Se–N2 1.905(3); Se–C1 1.880(3); O1···Se–N2 155.61(10); C1–Se–N2 88.11(12); C7–N2–Se 107.00(19).

Molecular Structure of 33

The molecular structure of **33** is shown in Figure 8. The geometry around the selenium shows a see-saw arrangement with a N2–Se···O2 bond angle of $152.31(16)^\circ$. This angle is quite similar to that reported for 2-(4-bro-mophenyl)-7-nitro-1,2-benzoselenazol-(*2H*)-3-one selenium oxide (**43**) [151.74(0)°].^[16] The Se–N distance [1.867(4) Å] is slightly smaller than that observed in **43** [1.888(8) Å], and

Figure 8. Molecular structure of **33**. Thermal ellipsoids are set at 50% probability. Significant bond lengths [Å] and angles [°]: Se···O2 2.742(5); Se-O1 1.645(4); Se-N2 1.867(4); Se-C1 1.938(6); N2–Se-C1 84.05(21); N2–Se···O2 152.31(16); N2–Se-O1 106.26(20); C1–Se-O1 104.33(21).

the Se···O2 distance [2.742(5) Å] is close to that observed in **43** (2.749 Å), indicating a weak secondary Se···O interaction.

Computational Studies

Effect of a CH₂ Group in Place of the CO Group in the Five-Membered Heterocycle

The reactivity of the Se-N bond in the ebselen analogues plays a crucial role in its GPx-like activity. The cleavage of the Se-N bond by the thiol leads to the formation of a Se-S bond.^[6b,14c,25] Further attack by another thiol on the Se-S bond results in the formation of reactive selenol. The reactivity of the selenosulfide intermediate is tuned by intramolecular secondary Se--O interactions.^[6,25] To study the effect of the incorporation of a CH₂ group in place of the C=O group and intramolecular secondary Se...O interactions on the nature of the Se-N bond in 27-31 and 33-34, DFT calculations have been carried out (for the optimized geometries and coordinates see Tables S1, S3, S5, S7 and S9 of the Supporting Information). The data suggest that incorporation of the CH₂ group in place of the C=O group in 27-31 leads to an increase in the Se-N and Se-O distances (Table 2). In line with this observation, the Se-N distances in 1 (1.899 Å) and 8 (1.924 Å) are shorter compared with those in 27–31 and 33–34.

Table 2. The theoretical data for 1, 8, 27–31 and 33–34 obtained by DFT calculations at the B3LYP/6-311+G(d,p) level. The NBO analysis was calculated at the B3LYP/6-311+G(d,p) level on the B3LYP/6-311+G(d) level-optimized geometries.

Compound	r _{Se-N} [Å] ^[a]	r _{SeO} [Å] ^[a]	E _{Se-O} [kcal/mol]	$q_{\rm Se}$
1	1.899 (1.896) ^[24a]	_	_	+0.661
8	1.924 (1.896) ^[24b]	2.593 (2.573)	12.63	+0.753
27	1.939	2.605	11.96	+0.706
28	1.940	2.592	12.59	+0.709
29	1.941 (1.891)	2.613 (2.591)	11.53	+0.702
30	1.966 (1.905)	2.624 (2.686)	11.28	+0.701
31	1.967	2.514	19.13	+0.754
33	1.935 (1.867)	2.805 (2.742)	04.43	+1.562
34	1.934	2.809	04.30	+1.559

[a] The experimental values are given in parentheses.

The second-order perturbation energy (E_{Se}) between the selenium and oxygen atoms was calculated at the B3LYP/6-311+G(d,p) level on the B3LYP/6-311+G(d)level-optimized geometries using the natural bond orbital (NBO) calculations.^[26] The $E_{\text{Se}\cdots\text{O}}$ due to the $n_{\text{O}} \rightarrow \sigma^*_{\text{Se}-\text{N}}$ orbital interaction was obtained by NBO analysis. These studies reveal that with the replacement of C=O with a CH₂ group in 27–30 and 33–34 the E_{Semo} decreased slightly compared with that of 8 ($E_{\text{SemO}} = 12.63 \text{ kcal/mol}$) suggesting a weaker Se--O interaction (Table 2). However, the E_{SemO} (19.13 kcal/mol) for **31** is found to be higher than for 8 and 27–30, which is due to the presence of $-NO_2$ and -Br groups at the N-phenyl ring. The interaction energies for 33 ($E_{\text{Se}} = 04.43 \text{ kcal/mol}$) and 34 ($E_{\text{Se}} = 04.30 \text{ kcal/}$ mol) are much lower compared with that of 27-31, indicating weaker Se-O interactions in 33 and 34. The NBO

analysis further shows that weaker Se…O interactions and the presence of the CH_2 group lead to an elongation of the Se–N bond length.

Furthermore, distinct bond critical point (bcp) at the Se-O interaction correlates with the strength of the interacting atoms. The presence of bcp was identified in compounds 8, 27-31 and 33-34 using Bader's theory of atoms in molecules (AIM)^[27] with AIM2000 (Table 3).^[28] The values of electron density (ρ) obtained are much smaller than that of a covalent bond (e.g., $\rho_{C-C} = 0.24 \text{ ea}_0^{-3}$) but larger than that of the practical boundary of molecules ($\rho = 0.001$ ea_0^{-3}).^[29] The values of electron density $\rho_{Se...O}$ obtained for the Se-O interaction for 8, 27-31 and 33-34 range from 0.020 to 0.034 ea_0^{-3} (see Figure S124 for AIM pictures in the Supporting Information). The trend of decreasing ρ_{SemO} from 27–30 to 33–34 is in accord with the trend of E_{SemO} obtained by the NBO analysis and the Se-O distance by quantum chemical calculation (Table 2). The Laplacian (∇ $^{2}\rho_{\text{Sem-O}}$) represents the curvature of electron density in 3D space at the bcp of the Se···O interaction. The values of ∇ $^{2}\rho_{\text{SemO}}$ obtained for the SemO interaction for 8, 27–31 and 33–34 are all positive, suggesting a dominant electrostatic character. However, the total electron energy density (H_{Serve}) is a more reliable measure for understanding the nature of secondary Se···O interactions instead of $\nabla^2 \rho_{\text{Se···O}}$. The $H_{\text{Se}\cdots\text{O}}$ values obtained for 27-30 and 33-34 are positive, which strongly suggests that the Se-O interactions are weak. It has been observed that the negative value of H_{Se} . for 31 indicates an increase in the strength of the Se-O interaction. The values obtained for 33-34 are found to be more positive than 8 and 27–30. It is evident that the values of $H_{\text{Se}\cdots\text{O}}$ become more positive with the increase in the Se-O atomic distance (i.e., weakening of the Se-O interaction). Similarly, positive values of $\nabla^2 \rho_{\text{Se}\cdots\text{O}}$ and total energy density H_{SemO} for SemO interactions have been obtained by Tomoda and coworkers.^[21a]

Table 3. Summary of properties of electron density at the bcp. Calculated at the B3LYP/6-311+G(d,p) level on the B3LYP/6-311+G(d) level-optimized geometries.

Compound	$\rho_{\text{Se}\cdots\text{O}}^{[a]}, (ea_0^{-3})$	$\nabla^2 \rho_{\text{Se} \cdots \text{O}}^{[b]}, (\text{ea}_0^{-5})$	$H_{\rm Se^{}O}^{\rm [c]}, (ea_0^{-4})$
8	0.029	0.090	+0.0004
27	0.028	0.088	+0.0004
28	0.029	0.088	+0.0004
29	0.027	0.086	+0.0005
30	0.027	0.086	+0.0005
31	0.034	0.104	-0.0002
33	0.020	0.064	+0.0008
34	0.020	0.063	+0.0008

[a] The electron density at the bcp. [b] The Laplacian of the electron density at the bcp. [c] The total energy density at the bcp.

The NBO charge calculation shows that the Se^{...}O interaction leads to an increased positive charge on the selenium atom in 8 (+0.753) than 1 (+0.661), which is due to the presence of an *ortho*-coordinating nitro group at the selenium atom. However, there is a slight decrease in the positive charge on the selenium atom of 27 (+0.706), 28 (+0.709), 29 (+0.702) and 30 (+0.701) compared to that of

FULL PAPER

8 (+0.753). It should be noted that the high positive charge on the selenium atom in 8 could be due to the delocalization of the carbonyl double bond in the five-membered heterocyclic ring as well as the ortho-coordinating nitro group. It has also been observed that the high positive charge on the selenium atom in 31 (+0.754) is due to the presence of the electron-withdrawing *para*-nitro group at the *N*-phenyl ring. Comparing 27, 28, 29, 30 and 31 to 27, with an unsubstituted N-phenyl ring, and 28, 29, 30 and 31, substituted with -Br, -Me and -NO₂ groups at the N-phenyl ring, respectively, the high positive charge in 31 is found to be higher than that of 28, 29 and 30. This increase in the positive charge on the selenium atom in 31 is due to the paranitro group at the N-phenyl ring. The positive charge on the selenium atom in 27, 28, 29 and 30 is found to be almost in the same range. As expected the NBO charges on the selenium atom in 33 (+1.562) and 34 (+1.559), which contain selenium(IV), are found to be higher than those of 1, 8 and 27-31.

The nucleus-independent chemical shift (NICS) value for 1 (-7.0 ppm) is more negative than that observed for 8 (-5.5 ppm) (see Table S19 of the Supporting Information). This significant loss in the aromatic character in the fivemembered ring is due to the presence of the Se...O interaction and the conjugated carbonyl group. The Se-O interaction enhances the electrophilicty at the selenium atom. This decrease in the aromatic character from 27 (-2.4 ppm), 28 (-2.5 ppm), 29 (-2.5 ppm) and 30 (-3.0 ppm), 31 (-1.8 ppm), **33** (-1.6 ppm) and **34** (-1.7 ppm) is due the absence of the carbonyl group. The significant decrease in the NICS(0) values of 33-34 is mainly due to high positive charge on the selenium atom. Thus, the introduction of a CH₂ group in the five-membered heterocycle leads to a decrease in the aromaticity. In our earlier report,^[22] similar behaviour for the carbonyl vs. CH₂ group has been observed in selenenate esters.

The results obtained by DFT calculations have shown that ⁷⁷Se NMR chemical shifts are shifted downfield in 27–31, with a CH₂ group as part of the heterocycle, compared to that observed for 1 and 8 with a C=O group. Although the experimental Se–N bond lengths in 1, 8, 29, 30 and 33 are in the same range, the calculated distances of 29, 30 and 33 are much longer (i.e. lengthening of the Se–N bond) than those observed for 1 and 8. These studies suggest that the introduction of a CH₂ group in place of the C=O group leads to the weakening of the Se–N bond and a decrease in the positive charge on the selenium atom as well as the aromaticity of the heterocycle.

Glutathione Peroxidase-Like Activity

The catalytic reduction of H_2O_2 using GSH as a cosubstrate in the presence and absence of catalysts **1**, **8**, **27–30** and **33–34** was studied (Table 4). The initial rates (v_0) for the reduction were determined by the coupled reductase assay from a linear fit spanning the first 5–10% of the reaction by following the oxidation of reduced nicotinamide adenine dinucleotide (NADPH) at 340 nm in phosphate buffer. Interestingly, it was found that **29** (411 \pm 1 µM min⁻¹), **33** $(425 \pm 1 \,\mu\text{M}\,\text{min}^{-1})$ and **34** $(506 \pm 4 \,\mu\text{M}\,\text{min}^{-1})$ exhibited much higher activities than the carbonyl group-based analogues 1 (133 \pm 1 μ M min⁻¹) and 8 (221 \pm 2 μ M min⁻¹). The GPx-like activity of 1 was found to be lower than 27-30, which is due the absence of ortho-nitro group in 1. The selenenyl sulfide derived from 1 has been shown to undergo thiol exchange reactions due to the presence of a strong Se-O interaction.^[6] The strong Se-O interactions in selenosulfides hamper the generation of the reactive species selenol. Compound 8 showed nearly twice the activity of 1. This enhancement in the GPx-like activity of 8 was due to the presence of an ortho-nitro group at the selenium atom.^[13b] The GPx-like activity of **28** ($204 \pm 3 \,\mu\text{M}\,\text{min}^{-1}$) was found to be higher than that of 27 $(172 \pm 5 \,\mu\text{M}\,\text{min}^{-1})$ due to the presence of a *para*-substituent at the *N*-phenyl ring. Similarly, 29 showed better activity with a para-tolyl group at the heterocyclic N atom than 8, 27-28 and 30 $(255 \pm 6 \,\mu\text{M}\,\text{min}^{-1})$. The activity of **29** decreased to nearly half with an additional bromo substituent at the ortho-position of the N-phenyl ring. The high GPx-like activities of 33 and 34 are probably due to weak secondary Se-O interactions, lengthening of the Se-N bond and high positive charge on the selenium atom. The related ebselen analogue 43^[16] also showed good activity (472.7 \pm 3.5 μ M min⁻¹). In our earlier report,^[22] it was observed that the seleninate esters exhibited much higher activity than selenenate esters. This study further suggests that the seleninamides 33-34 are even better catalysts than 27-30. Similarly, para-substituted 28 and 29 were found to be better catalysts.

Table 4. Initial rates, v_0 (μ Mmin⁻¹) for the reduction of H₂O₂ by GSH in the presence of ebselen 1, 8, 27–30 and 33–34.

Compound	$\nu_0 [\mu M min^{-1}]^{[a]}$	Compound	$v_0 \ [\mu M min^{-1}]^{[a]}$
Control ^[b,c]	31 ± 2	29	411 ± 1
1	133 ± 1	30	255 ± 6
8	221 ± 2	33	425 ± 1
27	172 ± 5	34	506 ± 4
28	204 ± 3	43	$472.7 \pm 3.5^{[d]}$

[a] Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with ethylenediaminetetraacetate (EDTA): 1 mM; GSH: 2 mM; NADPH: 0.4 mM; glutathione reductase (GR): 1.3 unit/mL; selenium compounds: 80 μ M; H₂O₂ (1.6 mM). [b] The control values were obtained from the reduction of H₂O₂ by GSH in the absence of selenium compounds. [c] All these values were triplicated for initial 10 s and average values were taken with standard deviation. [d] See ref.^[16]

Determination of the Catalytic Parameters

To further understand the catalytic behaviour of **29** and **33**, which have good catalytic activities, detailed kinetic experiments were carried out. The Lineweaver–Burk (double reciprocal) plots for **1**, **29** and **33** (see Tables S29–S34 and Figures S125–S130 of the Supporting Information) were obtained by plotting the reciprocal of the initial rate $(1/v_0)$ against the reciprocal of the substrate concentration

(1/[substrate]) and used for the determination of the catalytic parameters. The catalytic parameters, such as maximum velocity (V_{max}), Michaelis constant (K_M), catalytic constant (k_{cat}) and catalytic efficiency (η) were obtained for the reduction of H_2O_2 in the presence of 1, 29 and 33 (Table 5). It is worth mentioning that the $K_{\rm M}$ values for 29 (2.05 mM) and 33 (0.93 mM) were lower than those obtained for 1 (14.47 mm) when GSH is variable, indicating that the thiol exchange reactions significantly increase the $K_{\rm M}$ values. The poor catalytic activity of ebselen has been ascribed to thiol exchange reactions in the selenenyl sulfide due to the presence of strong Se-O interactions.[6a-6c] The catalytic efficiencies of 29 and 33 were determined to be 3.83, 3.48 and 6.74, $8.34 \text{ mm}^{-1} \text{min}^{-1}$ respectively, whereas the catalytic efficiency of 1 was only 2.21, 0.61 mm⁻¹ min⁻¹ when both H₂O₂ and GSH vary. The catalytic efficiency of 33 is ca. twice as high as that observed for 29. The higher catalytic efficiency of 33 compared with 29 suggests that 33 is a more effective GPx mimetic than 29, which may be due to fast reactions in the presence of thiol and peroxide. Moreover, in contrast to H₂O₂, typical saturation kinetics were observed at higher concentrations of GSH.

Table 5. Effect of H_2O_2 and GSH concentrations on V_{max} , K_M , k_{cat} and η for 1, 29 and 33.

Compound	$V_{\rm max}$ [$\mu M \min^{-1}$]	<i>К</i> _М (mм)	k_{cat} [min ⁻¹]	η [mM ⁻¹ min ⁻¹
Catalyst 1				<u> </u>
H ₂ O ₂ (variable) ^[a]	228.31	1.29	2.85	2.21
GSH (variable)[b]	709.22	14.47	8.86	0.61
Catalyst 29				
H ₂ O ₂ (variable) ^[a]	444.44	1.45	5.55	3.83
GSH (variable)[b]	571.43	2.05	7.14	3.48
Catalyst 33				
H ₂ O ₂ (variable) ^[a]	609.75	1.13	7.62	6.74
GSH (variable) ^[b]	621.12	0.93	7.46	8.34

[a] Assay conditions: Phosphate buffer (100 mM), pH 7.5; GSH: 2 mM; NADPH: 0.4 mM; EDTA: 1 mM; GR: 1 unit/mL; H_2O_2 (variable) and test compound: 80 μ M. [b] Assay conditions: Phosphate buffer (100 mM), pH 7.5; GSH (variable), NADPH: 0.4 mM; EDTA: 1 mM; GR: 1 unit/mL; H_2O_2 : 1.6 mM and test compound: 80 μ M. For each value atleast two readings were taken.

Consumption of H_2O_2 by GSH in the Presence of 29 and 33

In order to prove that **29** and **33** behave as catalysts, kinetic reactions were followed until the completion of the reactions (maximum 10000 sec). Control experiments were carried out in the presence of H_2O_2 and GSH. A combination of catalysts (**29/33**), GSH and H_2O_2 was taken in a cuvette (containing 100 mM phosphate buffer pH 7.5, EDTA, NADPH and GR) and the decrease in the absorbance of NADPH was measured. A graph for the consumption for H_2O_2 vs. time was plotted from the data (see Tables S35–S37, Supporting Information). Up to 65 and 60% consumptions of H_2O_2 were observed after 70 and 166.66 min for **33** and **29**, respectively (Figure 9). This observation further shows that **33** is a better catalyst than **29**.

Figure 9. Catalytic reduction of H_2O_2 by GSH in the presence and absence of selenium catalyst. The consumption of H_2O_2 was followed by micromol of NADPH utilized per min: a) control i.e. in the absence of any catalyst; b) **29** + GSH + H_2O_2 ; c) **33** + GSH + H_2O_2 . Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5; with EDTA: 1 mM; GSH: 0.25 mM; NADPH: 0.40 mM; GR: 1.3 unit/mL; H_2O_2 : 0.20 mM and selenium catalyst: 10 μ M.

In summary, structure-activity correlations reveal that isoselenazolines 27-31 and isoselenazoline *Se*-oxides 33-34with CH₂ groups are better GPx mimics than 1 and 8 with C=O groups. It has also been shown that 28 and 29 with *para*-substituents are nearly 1.5 and three times more active than 1, respectively. As expected, 33 and 34 are significantly more active than their corresponding isoselenazolines 27 and 29. To support the observations based on initial rates for 27 and 29 with a CH₂ group, further detailed kinetic studies using various concentrations of thiol and hydrogen peroxide indicate that compounds 29 and 33 are more efficient catalysts than 1.

Catalytic Mechanism for 33

⁷⁷Se NMR spectroscopy was carried out to identify the intermediates involved in the catalytic mechanism of isoselenazoline Se-oxide 33 with promising GPx-like activity (Scheme 5). When 33 ($\delta = 1182$ ppm) was treated with one equivalent of PhSH in [D₆]DMSO, a new signal was observed at δ = 973 ppm in addition to that of 33 (see Figures S131–S132, Supporting Information). The signal observed at $\delta = 973$ ppm was assigned to isoselenazoline 27. The identity of 27 was further established by its independent synthesis and complete characterization (see Experimental Section). Upon addition of one more equivalent of PhSH to the above mixture, both the signals at 1182 and 973 ppm completely disappeared and new signals were observed at 514 and 424 ppm (see Figures S133–S136 of the Supporting Information). These new signals at 514 and 424 ppm can be assigned to the corresponding selenosulfide 44 and diselenide 45, respectively. The assignment of the signals at 514 and 424 ppm was further confirmed by the addition of two equivalents of PhSH to a solution of 27 in CDCl₃ (see Figure S137, Supporting Information). A similar observation has been made by Back and coworkers for the related selenenamide 12, which follows a different catalytic mecha-

Scheme 5. Plausible catalytic cycle for the reduction of H_2O_2 by PhSH in the presence of 33.

nism.^[15] In the presence of more thiol, selenosulfide 44 was converted to disulfide (PhSSPh) and selenol 46 (Scheme 5, Cycle A). A ⁷⁷Se NMR signal for 46 was not observed in the catalytic cycle. Compound 46 probably oxidizes to selenenic acid 37. Selenenic acid 37 reacted rapidly with PhSH to regenerate 44. In the catalytic cycle, selenosulfide 44 disproportionates to the corresponding diselenide 45. With excess thiol, diselenide 45 was converted to 46 (Scheme 5, Cycle B). The reaction of diselenide 45 with H_2O_2 may also produce the mixture of selenenic acid 37 and seleninic acid **39**. The rapid reaction of **45** with H_2O_2 produces **37** and **39** (Scheme 5, Cycle C). Interestingly, we did not observe the disproportionation of diselenide 45 with H_2O_2 to form 37 and 39. Similar observations have been reported where the oxidation of diselenide with H₂O₂ produces a mixture of selenenic (ArSeOH) and seleninic acids (ArSeO₂ H).^[6c-6e] In the presence of excess PhSH, both 37 and 39 produce the corresponding selenenyl sulfide 44. The reaction of the in situ generated selenenic acids in the presence of PhSH leads to the formation of the corresponding selenenyl sulfides.^[6e,15,25] On the basis of these observations, a plausible catalytic cycle for the reduction of 33 with H₂O₂ by PhSH has been proposed. The observation of diselenide 45 is in contrast to the mechanism reported by Back and coworkers for selenenamide **12**.^[15]

Conclusions

An efficient methodology has been developed for the synthesis of new isoselenazolines incorporating a CH_2 moiety into the five-membered heterocyclic ring. The facile synthesis of isoselenazolines 27–31 and isoselenazoline *Se*-oxides 33–34 is due to the presence of an *ortho*-nitro group

at the selenium atom. Theoretical investigations suggest that the replacement of the C=O group with a CH_2 group in the five-membered heterocycle activates the Se–N bond and decreases the positive charge on the selenium atom. It was observed that the selenium centre is more deshielded in the heterocycles with a CH_2 group, which may be due to weak intramolecular secondary Se…O interactions. Isoselenazoline **29** and isoselenazoline *Se*-oxides **33–34** exhibited excellent GPx-like activity.

Experimental Section

General: 2-Bromo-3-nitrobenzoic acid^[30a] and 2-bromo-3-nitrobenzaldehyde^[30b] were prepared by the reported procedures. Selenium powder and 3-nitrophthalic acid used were purchased from Sigma Aldrich. All the reactions were performed under nitrogen or argon atmosphere by modified Schlenk techniques and monitored by TLC. Silica gel of 100-200 mesh size was purchaged from merck. Solvents were purified by standard techniques.^[31] Melting points were recorded with a VEEGO melting point (VMP1) apparatus and are uncorrected. ¹H NMR (399.88 MHz), ¹H (299.95 MHz), ¹³C (100.6 MHz) and ⁷⁷Se (57.26 MHz) NMR spectra were recorded with a Varian NMR-Mercury plus 400 MHz, Bruker Avance^{III} 400 MHz spectrometer and Varian NMR-Mercury plus 300 MHz for ⁷⁷Se NMR at the indicated frequencies. Chemicals shifts (δ) are shown with respect to SiMe₄ as internal standard for nuclei ¹H and ¹³C NMR and Me₂Se for ⁷⁷Se NMR as the external standard; s = singlet, d = doublet, t = triplet, dd =doublet of doublets, td = triplet of doublets. HRMS were recorded at room temperature with a Micro mass Q-TOF (YA 107) mass spectrometer. FTIR spectra were recorded in the range 4000-450 cm⁻¹ using KBr for solid samples and CsI plates for liquid samples with a Perkin-Elmer precisely spectrum one FTIR spectrometer. The UV/VIS spectra for GPx-like activity in solution were recorded with a JASCO, V-570 spectrometer.

N-(2-Bromo-3-nitrobenzylimino)-4-methylaniline (16): To a solution of 14 (43.4 mmol, 10.0 g) in glacial acetic acid (10 mL) was added *p*-toluidine (43.4 mmol, 4.64 g) with continuous stirring at room temperature. A curdy yellow precipitate was formed. To complete the precipitation, the reaction mixture was cooled with ice, then filtered and washed with ice-cooled ethanol. Recrystallization from hot ethanol afforded a light yellow solid; yield 8.9 g (65%); m.p. 110–112 °C. ¹H NMR (CDCl₃): δ = 2.39 (s, 3 H, CH₃), 7.19–7.24 (m, ArH), 7.52–7.56 (t, *J* = 7.9 Hz, 1 H), 7.77–7.80 (dd, *J* = 1.6, 9.51 Hz, 1 H), 8.42–8.45 (dd, *J* = 1.6, 9.5 Hz, 1 H), 8.92 (s, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 21.2, 116.7, 121.3, 126.7, 128.2, 130.1, 132.0, 137.3, 137.5, 148.2, 151.5, 156.4 ppm. IR (KBr): \tilde{v} = 2918, 1616 (C=N), 1534 (NO₂), 1426, 1366, 1029, 829, 818, 713, 529, 487 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₄H₁₁BrN₂O₂ [M + H]⁺: 319.0082; found 319.0088.

N-(2-Bromo-3-nitrobenzylimino)-4-nitroaniline (17): Compound 17 was synthesized from 14 (8.69 mmol, 2.0 g) in glacial acetic acid (50 mL) and *p*-nitroaniline (8.69 mmol, 1.2 g) according to the procedure described for the preparation 16; yield 1.6 g (53%); m.p. 195 °C. ¹H NMR (CDCl₃): δ = 7.30–7.32 (d, *J* = 1.9, 6.73 Hz, 2 H), 7.58–7.62 (t, *J* = 7.1 Hz, 1 H), 7.62–7.89 (dd, *J* = 1.6, 7.9 Hz, 1 H), 8.33–8.34 (d, *J* = 2.8 Hz, 2 H), 8.43–8.46 (dd, *J* = 1.6, 7.9 Hz, 2 H), 8.91 (s, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 117.5, 121.7, 125.3, 127.9, 128.6, 132.4, 136.4, 146.4, 151.7, 156.6, 160.3 ppm. IR (KBr): \tilde{v} = 1601, 1582, 1532, 1514, 1341, 1107, 858, 738, 701 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₃H₈BrN₃O₄ [M + H]⁺: 349.9776; found 349.9768.

General Procedure for the Synthesis of sec-Amine-Based Compounds 18–20: To a suspension of compounds 15–17 in ethanol (50 mL) was added NaBH₄ (4 equiv.) portionwise. The mixture was stirred for 5 h at room temperature under an inert atmosphere. The solvent was reduced to give a semisolid. The usual work up using water/ chloroform afforded a yellow solution. The solvent was evaporated under reduced pressure to give yellow oil, which was solidified in the deep freeze to afford a crystalline solid.

N-(2-Bromo-3-nitrobenzyl)aniline (18): Starting from 15 (9.8 mmol, 3.0 g); yield 2.4 g (80%); m.p. 110 °C. ¹H NMR (CDCl₃): δ = 4.34, (br. s, 1 H, NH), 4.48–4.49 (d, *J* = 4.9 Hz, 2 H, CH₂), 6.54–6.56 (dd, *J* = 1.0, 7.7 Hz, 2 H), 6.73–6.77 (td, *J* = 1.0, 7.4 Hz, 1 H), 7.16–7.20 (t, *J* = 7.7 Hz, 2 H), 7.35–7.39 (t, *J* = 7.7 Hz, 1 H), 7.59–7.62 (t, *J* = 6.6 Hz, 2 H) ppm. ¹H NMR (D₂O exchange): δ = 4.48 (s, 2 H, CH₂), 6.54–6.56 (m, 1 H), 6.73–6.74 (t, *J* = 7.7 Hz, 1 H), 7.16–7.20 (t, *J* = 7.7 Hz, 2 H), 7.35–7.39 (t, *J* = 7.7 Hz, 1 H), 7.16–7.20 (t, *J* = 7.7 Hz, 2 H), 7.35–7.39 (t, *J* = 7.7 Hz, 1 H), 7.16–7.20 (t, *J* = 6.6 Hz, 2 H) ppm. ¹³C NMR (CDCl₃): δ = 48.9, 112.9, 114.0, 118.4, 123.6, 128.1, 129.5, 131.7, 141.7, 147.0, 151.2 ppm. IR (KBr): \tilde{v} = 3412 (N–H), 3075, 3046, 3013, 2899, 1601, 1533, 1375, 1270, 755, 699 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₃H₁₁BrN₂O₂ [M + H]⁺: 307.0082; found 307.0087.

N-(2-Bromo-3-nitrobenzyl)-4-methylaniline (19): Starting from 16 (15.7 mmol, 5.0 g); yield 3.95 g (78%); m.p. 99–92 °C. ¹H NMR (CDCl₃): δ = 2.23 (s, 3 H, CH₃), 4.21 (br. s, 1 H, NH), 4.46 (s, 2 H, CH₂), 6.46–6.48 (d, *J* = 8.4 Hz, 2 H), 6.98–6.99 (d, *J* = 8.1 Hz, 2 H), 7.34–7.38 (t, *J* = 7.8 Hz, 1 H), 7.58–7.62 (t, *J* = 7.8 Hz, 2 H) ppm. ¹H NMR (D₂O exchange): δ = 2.23 (s, 3 H, CH₃), 4.46 (s, 2 H, CH₂), 4.80 (due to H₂O in D₂O), 6.46–6.48 (d, *J* = 8.4 Hz, 2 H), 6.98–6.99 (d, *J* = 8.1 Hz, 2 H), 7.34–7.38 (t, *J* = 7.8 Hz, 1 H), 7.58–7.62 (t, *J* = 7.8 Hz, 2 H) ppm. ¹³C NMR (CDCl₃): δ = 20.5, 49.1, 113.0, 114.0, 123.6, 127.6, 128.1, 130.0, 131.7, 141.9, 144.8, 151.3 ppm. IR (KBr): \tilde{v} = 3402, 3077, 2919, 1611, 1534, 1522, 1372, 1303, 1271, 825, 810, 797, 789 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₄H₁₃BrN₂O₂ [M + H]⁺: 321.0239; found 321.0224.

N-(2-Bromo-3-nitrobenzyl)-4-nitroaniline (20): Starting from 17 (5.2 mmol, 2.2 g); yield 1.35 g (61%); m.p. 162 °C. ¹H NMR (CDCl₃): δ = 4.60–4.62 (d, *J* = 6.3 Hz, 2 H, CH₂), 5.12–5.14 (t, NH), 6.54–6.57 (d, *J* = 7.9 Hz, 2 H), 7.42–7.45 (t, *J* = 7.4 Hz, 1 H), 7.50–7.52 (dd, 1 H), 7.65–7.67 (dd, 1 H), 8.08–8.11 (d, *J* = 8.9 Hz, 2 H) ppm. ¹³C NMR (CDCl₃): δ = 48.3, 111.7, 144.4, 124.3, 126.5, 128.5, 131.2, 139.2, 139.8, 151.6, 152.4 ppm. IR (KBr): \hat{v} = 3364, 1601, 1529, 1309, 1284, 1112, 844 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₃H₁₀BrN₃O₄ [M + H]⁺: 351.9933; found 351.9926.

General Method for the Synthesis of Unsymmetrical Sclenides 21– 23: To a solution of in situ prepared *n*BuSeNa (6.5 mmol) was added 18–20 (6.5 mmol) at 0 °C. The mixture was stirred for 3 h at room temperature under an inert atmosphere. The excess of the solvent was removed under reduced pressure to yield a yellow viscous solid, which was dissolved in CHCl₃ and then worked up. The combined organic layers were dried with anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the product purified on silica gel column using ethyl acetate and petroleum ether (4%) as eluent to give an orange liquid.

N-[2-(Butylselanyl)-3-nitrobenzyl]aniline (21): The compound was solidified in open air to afford yellow crystals; yield 0.85 g (36%); m.p. 63 °C. ¹H NMR (CDCl₃): δ = 0.86–0.90 (t, J = 7.3 Hz, 3 H), 1.33-1.42 (sext, J = 7.3 Hz, 2 H), 1.52-1.64 (quint, J = 7.3 Hz, 2 H), 2.84–2.88 (t, J = 7.3 Hz, 2 H), 4.30 (br. s, 1 H, NH), 4.65 (s, 2 H, CH₂), 6.56–6.58 (d, J = 8.1 Hz, 2 H), 6.72–6.76 (t, J = 7.3 Hz, 1 H), 7.16–7.20 (t, J = 7.3 Hz, 2 H), 7.37–7.41 (t, J = 7.7 Hz, 1 H), 7.48-7.50 (d, J = 6.9 Hz, 1 H), 7.64-7.66 (d, J = 7.3 Hz, 1 H) ppm. ¹H NMR (D₂O exchange): $\delta = 0.86-0.90$ (t, J = 7.3 Hz, 3 H), 1.33-1.42 (sext, J = 7.3 Hz, 2 H), 1.52–1.64 (quint, J = 7.3 Hz, 2 H), 2.84–2.88 (t, J = 7.3 Hz, 2 H), 4.65 (s, 2 H, CH₂), 4.80 (due to H₂O in D₂O), 6.56–6.58 (d, J = 8.1 Hz, 2 H), 6.72–6.76 (t, J = 7.3 Hz, 1 H), 7.16–7.20 (t, J = 7.3 Hz, 2 H), 7.37–7.41 (t, J = 7.7 Hz, 1 H), 7.48–7.50 (d, J = 6.9 Hz, 1 H), 7.64–7.66 (d, J = 7.3 Hz, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 13.6, 22.9, 30.3, 32.5, 49.2, 112.9, 113.0, 118.1, 121.3, 121.9, 129.5, 130.6, 146.2, 147.4, 156.8 ppm. ⁷⁷Se NMR (CDCl₃): δ = 203 ppm. IR (KBr): \tilde{v} = 3422, 2958, 2930, 1603, 1530, 1370, 1321, 1265, 802, 751 cm⁻¹. HRMS (TOF MS ES⁺) m/z: calcd. for C₁₇H₂₀N₂O₂Se [M + H]⁺: 365.0768; found 365.0771.

N-[2-(Butylselanyl)-3-nitrobenzyl]-4-methylaniline (22): Yield 1.46 g (78%). ¹H NMR (CDCl₃): δ = 0.86–0.90 (t, J = 0.1 Hz, 3 H), 1.34– 1.39 (sext, J = 7.3 Hz, 2 H), 1.56–1.63 (quint, J = 7.9 Hz, 2 H), 2.23 (s, 3 H, CH₃), 2.84–2.88 (t, J = 7.5 Hz, 2 H), 4.17 (br. s, 1 H, NH), 4.62 (s, 2 H, CH₂), 6.48–6.51 (d, J = 8.3 Hz, 2 H), 6.97–6.99 (d, J = 8.3 Hz, 2 H), 7.38–7.47 (t, J = 6.2 Hz, 1 H), 7.46–7.49 (dd, J = 1.1, 7.9 Hz, 1 H), 7.63–7.65 (d, J = 7.5 Hz, 1 H) ppm. ¹H NMR $(D_2O \text{ exchange}): \delta = 0.86-0.90 (t, J = 0.1 \text{ Hz}, 3 \text{ H}), 1.34-1.39 (sext, J = 0.1 \text{ Hz}, 3 \text{ H})$ J = 7.3 Hz, 2 H), 1.56–1.63 (quint, J = 7.9 Hz, 2 H), 2.23 (s, 3 H, CH₃), 2.84–2.88 (t, J = 7.5 Hz, 2 H), 4.62 (s, 2 H, CH₂), 4.80 (due to H₂O in D₂O), 6.48–6.51 (d, J = 8.3 Hz, 2 H), 6.97–6.99 (d, J =8.3 Hz, 2 H), 7.38–7.47 (t, J = 6.2 Hz, 1 H), 7.46–7.49 (dd, J = 1.1, 7.9 Hz, 1 H), 7.63–7.65 (d, J = 7.5 Hz, 1 H) ppm. ¹³C NMR $(CDCl_3): \delta = 13.6, 20.5, 22.9, 30.3, 32.5, 49.5, 113.1, 121.2, 121.8,$ 127.3, 129.4, 129.9, 130.6, 145.1, 146.3, 156.8 ppm. ⁷⁷Se NMR (CDCl₃): δ = 203 ppm. IR (neat): \tilde{v} = 3420 (N–H), 2958, 2929, 2870, 1617, 1523, 1370, 808 cm⁻¹. HRMS (TOF MS ES⁺) m/z: calcd. for C₁₈H₂₂N₂O₂Se [M + H]⁺: 379.0925; found 379.0916.

N-[2-(Butylselanyl)-3-nitrobenzyl]-4-nitroaniline (23): Compound 23 was purified on silica gel column using ethyl acetate and petroleum ether (10%) as eluent to give an orange liquid. This was solidified in open air to give a dark green solid; yield 0.80 g (46\%); m.p.

88 °C. ¹H NMR (CDCl₃): δ = 0.86–0.90 (t, *J* = 7.3 Hz, 3 H), 1.32– 1.40 (sext, *J* = 7.3 Hz, 2 H), 1.56–1.64 (quint, *J* = 7.6 Hz, 2 H), 2.85–2.89 (t, *J* = 7.6 Hz, 2 H), 4.77 (s, 2 H, CH₂), 5.31 (br. s, 1 H, NH), 6.55–6.57 (d, *J* = 9.2 Hz, 2 H), 7.42–7.46 (t, *J* = 7.6 Hz, 1 H), 7.52–7.54 (d, *J* = 7.6 Hz, 1 H), 7.57–7.59 (d, *J* = 7.6 Hz, 1 H), 8.05–8.05 (d, *J* = 8.9 Hz, 2 H) ppm. ¹³C NMR (CDCl₃): δ = 13.6, 22.9, 30.7, 32.5, 48.6, 111.7, 121.7, 122.5, 126.5, 129.9, 130.5, 138.8, 144.7, 152.7, 157.0 ppm. ⁷⁷Se NMR (CDCl₃): δ = 206 ppm. IR (KBr): \tilde{v} = 3354, 2950, 2926, 2868, 1602, 1525, 1300, 1105, 834 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₇H₁₉N₃O₄Se [M + H]⁺: 410.0619; found 410.0631.

General Procedure for the Synthesis of 27 and 28: To a solution of 21 (2.75 mmol, 1.0 g), in dry CHCl₃ (2 mL) was added Br_2 (0.18 mL, 3.30 mmol) in CHCl₃ (2 mL) over 30 min at 0 °C under an inert atmosphere. After the bromination was complete, triethylamine (2.75 mmol, 0.27 g, 0.38 mL) was added to the reaction mixture. The reaction was stirred at room temperature for 2 h. The mixture was extracted into CHCl₃ by adding water (10 mL). The organic layers were combined and dried with anhydrous Na₂SO₄. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 2% ethyl acetate/petroleum ether mixture) afforded 27 and 28.

7-Nitro-2-phenyl-2,3-dihydro-1,2-benzoselenazole (27): Compound **27** was recrystallized from dichloromethane/diethyl ether to give a dark purple solid; yield 0.06 g (7%); m.p. 146 °C (dec.). ¹H NMR (CDCl₃): δ = 5.04 (s, 2 H), 6.70–6.99 (m, 2 H), 7.27–7.29 (m, 1 H), 7.38–7.42 (t, *J* = 7.9 Hz, 1 H), 7.59–7.61 (d, *J* = 7.3 Hz, 1 H), 8.19– 8.21 (d, *J* = 8.3 Hz, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 60.0, 116.6, 120.2, 123.5, 127.2, 128.3, 129.5, 139.1, 141.7, 143.1, 151.2 ppm. ⁷⁷Se NMR (CDCl₃): δ = 974 ppm. IR (KBr): \tilde{v} = 2925, 1595, 1511, 1293, 733 cm⁻¹. HRMS (TOF MS ES⁺) *m/z* calcd. for C₁₃H₁₀N₂O₂Se [M + H]⁺: 306.9986; found 306.9977.

2-(4-Bromophenyl)-7-nitro-2,3-dihydro-1,2-benzoselenazole (28): Recrystallization from dichloromethane/diethyl ether afforded **28** as a dark purple solid; yield 0.37 g (35%); m.p. 155 °C (dec.). ¹H NMR (CDCl₃): δ = 5.00 (s, 2 H, CH₂), 6.67–6.69 (d, *J* = 8.8 Hz, 2 H), 7.33–7.36 (d, *J* = 9.2 Hz, 2 H), 7.39–7.44 (t, *J* = 7.7 Hz, 1 H), 7.58–7.61 (d, *J* = 8.3 Hz, 1 H), 8.19–8.21 (d, *J* = 8.1 Hz, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 59.9, 112.3, 117.9, 123.6, 127.4, 128.4, 132.2, 138.6, 141.2, 142.9, 150.0 ppm. ⁷⁷Se NMR (CDCl₃): δ = 977 ppm. IR (KBr): \tilde{v} = 1589, 1570, 1514, 1286, 801 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₃H₉BrN₂O₂Se [M + H]⁺: 384.9091; found 384.9091.

General Procedure for the Synthesis of 29–30 and 32: To a solution of 22 (4.29 mmol, 1.62 g) in dry CHCl₃ (20 mL) was added bromine (4.29 mmol, 0.68 g, 222 μ L) and Et₃N (4.29 mmol, 0.433 g, 594 μ L) at 0 °C according to the procedure described for the preparation of 27. Removal of the solvent and purification of the residue by silica gel column chromatography (eluted with 2–6% ethyl acetate/ petroleum ether) afforded 29–30 and 32.

7-Nitro-2-*p***-tolyl-2,3-dihydro-1,2-benzoselenazole (29):** Recrystallization from dichloromethane/ether afforded a dark black compound; yield 0.05 g (3%); m.p. 140 °C. ¹H NMR (CDCl₃): δ = 2.27 (s, 3 H, CH₃), 4.99 (s, 2 H, CH₂), 6.7–6.8 (d, *J* = 8.5 Hz, 2 H), 7.05–7.07 (d, *J* = 8.6 Hz, 2 H), 7.37–7.41 (t, *J* = 7.9 Hz, 1 H), 7.60–7.62 (d, *J* = 7.3 Hz, 1 H), 8.17–8.19 (d, *J* = 7.3 Hz, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 20.6, 61.0, 117.3, 123.4, 127.2, 128.2, 129.9, 130.5, 139.3, 142.1, 143.3, 149.7 ppm. ⁷⁷Se NMR (CDCl₃): δ = 987 ppm. IR (KBr): \tilde{v} = 2916, 2855, 1615, 1511, 1287, 799, 730 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₄H₁₃N₂O₂Se [M + H]⁺: 321.0142; found 321.0145.

2-(2-Bromo-4-methylphenyl)-7-nitro-2,3-dihydro-1,2-benzoselenazole (30): Recrystallization from chloroform/ether afforded orange crystals; yield 0.05 g (3%); m.p. 165 °C. ¹H NMR (CDCl₃): δ = 2.24 (s, 3 H, CH₃), 4.98 (s, 2 H, CH₂), 6.79–6.87 (m, 2 H), 7.42 (s, 1 H), 7.44–7.47 (t, *J* = 7.3 Hz, 1 H), 7.69–7.72 (dd, *J* = 1.1, 7.3 Hz, 1 H), 8.17–8.19 (d, *J* = 7.7 Hz, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 20.5, 63.3, 119.2, 119.6, 123.6, 127.5, 127.9, 128.7, 134.3, 135.5, 139.8, 143.7, 144.2, 150.8 ppm. ⁷⁷Se NMR (CDCl₃): δ = 1060 ppm. IR (KBr): \tilde{v} = 3082, 2919, 1598, 1508, 1315, 824 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₄H₁₁BrN₂O₂Se [M + H]⁺: 398.9247; found 398.9232.

2-Bromo-N-[2-(butylselanyl)-3-nitrobenzyl]-4-methylaniline (32): Recrystallization from chloroform/ether afforded yellow crystals; yield 0.35 g (19%); m.p. 58 °C. ¹H NMR (CDCl₃): $\delta = 0.86-0.91$ (t, J = 7.4 Hz, 3 H), 1.32–1.43 (sext, J = 7.2 Hz, 2 H), 1.56–1.64 (quint, J = 5.4 Hz, 2 H), 2.21 (s, 3 H, CH₃), 2.84–2.87 (t, J =7.6 Hz, 2 H), 4.68-4.69 (s, 2 H, CH₂), 4.82-4.85 (br. s, 1 H, NH), 6.33-6.35 (d, J = 8.2 Hz, 1 H), 6.89-6.92 (dd, J = 1.5, 8.2 Hz, 1 H), 7.28–7.30 (dd, J = 0.6, 1.0 Hz, 1 H), 7.37–7.41 (t, J = 7.9 Hz, 1 H), 7.47–7.50 (dd, J = 1.8, 7.8 Hz, 1 H), 7.57–7.59 (dd, J = 0.7, 7.8 Hz, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 13.6, 20.2, 22.9, 30.4, 32.5, 49.2, 109.8, 111.7, 121.4, 122.0, 128.3, 129.2, 129.6, 130.3, 133.0, 141.9, 145.7, 156.9 ppm. ⁷⁷Se NMR (CDCl₃): δ = 203 ppm. IR (KBr): $\tilde{v} = 3394$ (N–H), 2967, 2925, 1606, 1509, 1365, 803 cm⁻¹. HRMS (TOF MS ES⁺) m/z: calcd. for C₁₈H₂₁N₂O₂SeBr [M + H]+: 457.0030; found 457.0016.

2-(2-Bromo-4-nitrophenyl)-7-nitro-2,3-dihydro-1,2-benzoselenazole (31): To a solution of **23** (1.95 mmol, 0.8 g), in dry CHCl₃ (210 mL) was added bromine (1.9 mmol, 0.31 g, 100 µL) and Et₃N (1.95 mmol, 0.19 g, 270 µL) at 0 °C according to the procedure described for the preparation of **27**. The reaction mixture was filtered and the filtrate was reduced to give a dark red semisolid, which was purified by column chromatography with silica gel (eluted with 10% ethyl acetate/petroleum ether) to afford **31** as a brown powder; yield 0.005 g (0.6%); m.p. 170–174 °C. ¹H NMR (CDCl₃): $\delta = 5.04$ (s, 2 H, CH₂), 7.00–7.02 (d, J = 8.8 Hz, 1 H), 7.49–7.53 (t, J = 7.6 Hz, 1 H), 7.76–7.79 (d, J = 7.4 Hz, 1 H), 7.98–8.01 (dd, J = 2.2 Hz, 1 H) ppm. ⁷⁷Se NMR (CDCl₃): $\delta = 1070$ ppm. IR (KBr): $\tilde{v} = 1591$, 1495, 1315, 1112, 735 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₃H₈BrN₃O₄Se [M + H]⁺: 429.8940; found 429.8942.

7-Nitro-2-phenyl-2,3-dihydro-1,2-benzoselenazole 1-Oxide (33): To a solution of **21** (3.30 mmol, 1.20 g) in CHCl₃ (5 mL) was added 30% H_2O_2 (19.82 mmol, 2.2 mL) at room temperature. The reaction was stirred for 25 min at room temperature and then heated at 55-60 °C for 40-50 min. The orange precipitate formed was collected by filtration and dried under vacuum to give orange solid 33. The product was recrystallized from DMSO/diethyl ether to afford dark red needle-like crystals; yield 0.42 g (40%); m.p. 164 °C. ¹H NMR ([D₆]DMSO): δ = 5.17–5.22 (d, J = 16.0 Hz, 1 H), 5.24–5.29 (d, J = 16.0 Hz, 1 H), 6.98–7.03 (t, J = 7.3 Hz, 1 H), 7.21–7.24 (d, J = 7.7 Hz, 2 H), 7.35–7.40 (t, J = 7.3 Hz, 2 H), 7.93–7.98 (t, J =7.7 Hz, 1 H), 8.13–8.15 (d, J = 7.7 Hz, 1 H), 8.37–8.40 (d, J =8.1 Hz, 1 H) ppm. ¹³C NMR ([D₆]DMSO): δ = 55.9, 116.8, 121.3, 123.8, 129.9, 132.1, 133.2, 140.5, 144.0, 144.6, 145.2 ppm. ⁷⁷Se NMR ([D₆]DMSO): δ = 1182 ppm. IR (KBr): \tilde{v} = 3081, 2823, 1594, 1531, 1341, 823, 814, 748 cm⁻¹. HRMS (TOF MS ES⁺) *m*/*z*: calcd. for $C_{14}H_{10}N_2O_3Se [M + H]^+$: 322.9935; found 322.9932.

7-Nitro-2-*p*-tolyl-2,3-dihydro-1,2-benzoselenazole **1-Oxide** (34): Compound 34 was synthesized from 22 (1.32 mmol, 0.50 g), CHCl₃ (2 mL) and 30% H₂O₂ (7.96 mmol, 0.90 mL) according to the procedure described for the preparation of 33. The red precipitate obtained was collected by filtration and dried under vacuum. The product was recrystallized from DMSO/diethyl ether to afford dark red crystals; yield 0.18 g (38%); m.p. 156–158 °C. ¹H NMR ([D₆] DMSO): δ = 2.27 (s, 3 H, CH₃), 5.14–5.19 (d, *J* = 16.0 Hz, 1 H), 5.22–5.27 (d, *J* = 16.0 Hz, 1 H), 7.12–7.15 (d, *J* = 8.7 Hz, 2 H), 7.18–7.21 (d, *J* = 8.7 Hz, 2 H), 7.95–7.97 (t, *J* = 7.8 Hz, 1 H), 8.12–8.15 (d, *J* = 7.8 Hz, 1 H), 8.37–8.39 (d, *J* = 7.8 Hz, 1 H) ppm. ¹³C NMR ([D₆]DMSO): δ = 20.1, 55.9, 117.2, 123.6, 130.1, 130.4, 131.9, 132.9, 142.8, 141.9, 143.9, 145.3 ppm. ⁷⁷Se NMR ([D₆]-DMSO): δ = 1174 ppm. IR (KBr): \tilde{v} = 3091, 2824, 1570, 1530, 1340, 1280, 827, 733 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₄H₁₂N₂O₃Se [M + H]⁺: 337.0091; found 337.0087.

2-Bromo-3-nitro-N-phenylbenzamide (41): To a mixture of thionyl chloride (50 mL) and DMF (1 mL) was added 2-bromo-3-nitrobenzoic acid^[30a] (40.0 mmol, 10.0 g) and the mixture was heated to reflux for 3-4 h. The excess thiony chloride was removed under vacuum applying a liquid N2 trap. The brown precipitate obtained was dissolved in dichloromethane. Aniline (100 mmol, 10 mL) in dry dichloromethane was added dropwise to a suspension of the brown precipitate at room temperature over 2–3 h, and the reaction was stirred at room temperature for overnight. The mixture was extracted into dichloromethane by adding water (10 mL). The organic layers were combined and dried with anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure to give yellow oil, which was solidified in the deep freeze to give a crystalline solid **41**; yield 6.5 g (50%); m.p. 153–155 °C. ¹H NMR (CDCl₃): δ = 7.18–7.23 (t, J = 7.3 Hz, 1 H), 7.36–7.41 (t, J = 7.3 Hz, 2 H), 7.50– 7.55 (t, J = 7.8 Hz, 1 H), 7.59–7.61 (d, J = 7.3 Hz, 2 H), 7.68–7.71 (dd, J = 1.5, 7.8 Hz, 1 H), 7.45-7.78 (dd, J = 1.5, 7.8 Hz, 1 H)ppm. ¹³C NMR (CDCl₃): δ = 111.6, 120.4, 125.6, 126.2, 128.9, 129.4, 131.9, 137.2, 141.2, 151.2, 164.4 ppm. IR (KBr): $\tilde{v} = 3289$ (NH), 1661, 1528, 1369, 1326, 755 cm⁻¹. HRMS (TOF MS ES⁺) m/z: calcd. for C₁₃H₉BrN₂O₃ [M + H]⁺: 320.9875; found 320.9873.

2-(Butylselanyl)-3-nitro-N-phenylbenzamide (42): Compound 42 was synthesized from 41 (6.22 mmol, 2.0 g) with in situ prepared nBuSeNa (6.22 mmol, 0.24 g) in deoxygenated ethanol according to the procedure described for the preparation of 21-23. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 10% ethyl acetate/petroleum ether mixture) afforded 42 as a yellow solid; yield 1.2 g (53%); m.p. 98 °C. ¹H NMR (CDCl₃): $\delta = 0.74-0.79$ (t, J = 7.3 Hz, 3 H),1.19-1.31 (sext, J = 7.3 Hz, 2 H), 1.45–1.55 (quint, J = 7.3 Hz, 2 H), 2.85-2.89 (t, J = 7.3 Hz, 2 H), 7.18-7.22 (t, J = 7.3 Hz, 1 H), 7.38-7.227.43 (t, J = 8.3 Hz, 2 H), 7.49–7.54 (t, J = 7.8 Hz, 1 H), 7.64–7.66 (d, J = 6.8 Hz, 2 H), 7.82-7.87 (dd, J = 1.5, 6.8 Hz, 1 H), 7.88-7.91 (dd, J = 1.5, 6.8 Hz, 1 H), 8.35 (s, 1 H, NH) ppm. ¹³C NMR $(CDCl_3): \delta = 13.5, 22.7, 31.1, 31.9, 119.9, 122.4, 125.3, 125.6, 128.9,$ 129.4, 133.3, 137.6, 142.8, 155.0, 165.4 ppm. ⁷⁷Se NMR (CDCl₃): δ = 276 ppm. IR (KBr): \tilde{v} = 3294 (NH), 1658 (CO), 1520, 1436, 1324, 748, 713 cm⁻¹. HRMS (TOF MS ES⁺) m/z: calcd. for $C_{17}H_{18}N_2O_3$ Se [M + H]⁺: 379.0561; found 379.0546.

7-Nitro-2-phenyl-1,2-benzoselenazol-3(2*H***)-one (8): To a solution of 42** (0.53 mmol, 0.40 g), in dry CHCl₃ (5 mL) was added bromine (0.53 mmol, 0.084 g, 0.027 mL) and triethylamine (0.53 mmol, 0.053 g, 0.072 mL) according to the procedure described for the preparation of **27**. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 10% ethyl acetate/petroleum ether mixture) afforded **8**; yield 0.31 g (92%, lit.^[13a] 78%); m.p. 168–170 °C (lit. 160–163 °C). ¹H NMR (CDCl₃): $\delta = 7.30-7.35$ (t, J = 7.3 Hz, 2 H), 7.45–7.50 (t, J = 8.6 Hz, 2 H) 7.63–7.65 (d, J = 7.3 Hz, 1 H), 7.71–7.76 (t, J = 7.8 Hz, 1 H), 8.46–8.49 (dd, J = 1.0, 7.7 Hz, 1 H), 8.57–8.60 (dd, J = 1.0, 8.3 Hz, 1

H) ppm. ¹³C NMR (CDCl₃): δ = 125.1, 127.2, 127.7, 127.9, 129.7, 131.5, 135.3, 136.4, 138.5, 142.1, 163.9 ppm. ⁷⁷Se NMR (CDCl₃): δ = 924 ppm. IR (KBr): \tilde{v} = 1650 (CO), 1607, 1518 (NO₂), 1298, 751, 736 cm⁻¹. HRMS (TOF MS ES⁺) *m/z*: calcd. for C₁₃H₈N₂O₃Se [M + H]⁺: 320.9778; found 320.9769.

Coupled Reductase Assay: GPx-like activity of the organoselenium compounds was determined by a spectrophotometric method at 340 nm described by Wilson et al.^[32] The test mixture contained GSH (2 mM), EDTA (1 mM), glutathione reductase (1.3 unit/mL) and NADPH (0.4 mM) in 100 mM potassium phosphate buffer, pH 7.5. GPx samples (80μ M) were added to the test mixture at 25 °C and the reaction was started by the addition of H₂O₂ (1.6 mM). The initial reduction rates were calculated from the oxidation rate of NADPH at 340 nm. The initial reduction rate was determined at least 3–4 times and calculated from the first 5–10% of the reaction using 6.22 mm⁻¹ cm⁻¹ as the extinction coefficient for NADPH.

X-ray Crystallographic Analysis: X-ray crystallographic studies were carried out for **21**, **29–30** and **32–33** with a Oxford Diffraction Gemini diffractometer using graphite-monochromatized Mo- K_{α} radiation $\lambda = 1.54184$ Å for **21**, **29–30** and **32–33**. The diffraction measurements were performed at 295(2) K. The structures were solved by direct method and refined by a full-matrix least-squares procedure on F^2 for all reflections with SHELXL-97 software.^[33] Hydrogen atoms were localized by geometrical means. A riding model was chosen for refinement. The isotropic thermal parameters of hydrogen atoms were fixed at 1.5 times for (CH₃ groups) or 1.2 times U(eq) (Ar-H) of the corresponding carbon atoms. Some details of the refinement are given in Tables 6 and 7.

Table 6. Crystal data and structure refinement for 21, 29 and 30.

	21	29	30
Empirical formula	C ₁₇ H ₂₀ N ₂ O ₂ Se	$C_{14}H_{12}N_2O_2Se$	C ₁₄ H ₁₁ BrN ₂ O ₂ Se
Formula weight	363.31	319.22	398.12
Crystal system	triclinic	monoclinic	monoclinic
Space group	$P\overline{1}$	$P12_{1}/c1$	$P12_{1}/c1$
a [Å]	8.1599(5)	13.6944(6)	13.0789(2)
b [Å]	10.1630(6)	6.3988(3)	7.80369(12)
c [Å]	11.0254(8)	15.6904(8)	13.9947(2)
a [°]	93.953(6)	90	90
β [°]	107.286(6)	106.224(5)	98.9459(16)
γ [°]	99.356(5)	90	90
V [Å ³]	854.71(10)	1320.17(11)	1410.97(4)
Ζ	2	4	4
$D_{\text{calcd.}}$ [Mg/m ³]	1.412	1.606	1.874
Abs. coeff. [mm ⁻¹]	3.041	3.854	6.951
Obsd. reflections	6633	5302	6152
$[I > 2\sigma(I)]$			
Final $R(F)$	0.0381	0.0503	0.0325
$[I \ge 2\sigma(I)]^{[a]}$			
$wR(F^2)$ indices	0.1071	0.1404	0.0848
$[I > 2\sigma(I)]$			
Data / restraints /	3567 / 0 / 204	2736 / 0 / 173	2942 / 0 / 183
parameters			
Goodness of fit on	1.039	1.060	1.043
F^2			

[a] Definitions: $R(F_o) = ||F_o| - |F_c||/|F_o|$ and $wR(F_o^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/[w(F_c^2)^2\}^{1/2}$.

CCDC-808887 (for 21), -808888 (for 33), -808890 (for 32), -808891 (for 29) and -808892 (for 30) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

FULL PAPER

Table 7. Crystal data and structure refinement for 32 and 33.

	32	33
Empirical formula	C ₁₈ H ₂₁ BrN ₂ O ₂ Se	C ₁₃ H ₁₀ N ₂ O ₃ Se
Formula weight	456.24	321.19
Crystal system	monoclinic	orthorhombic
Space group	P12 ₁ 1	Pbcn
a [Å]	10.9761(5)	13.1780(4)
<i>b</i> [Å]	8.0108(2)	8.4675(3)
c [Å]	11.7412(5)	22.6182(8)
a [°]	90	90
β [°]	113.054(5)	90
γ [°]	90	90
$V[Å^3]$	949.93(7)	2523.85(15)
Z	2	8
$D_{\text{calcd.}}$ [Mg/m ³]	1.595	1.691
Abs. coeff. [mm ⁻¹]	5.240	4.100
Obsd. reflections $[I > 2\sigma(I)]$	6828	21353
Final $R(F)$ $[I > 2\sigma(I)]^{[a]}$	0.0333	0.0635
$wR(F^2)$ indices $[I > 2\sigma(I)]$	0.0937	0.1407
Data / restraints / parameters	3575 / 1 / 238	2659 / 0 / 172
Goodness of fit on F^2	1.062	1.179

[a] Definitions: $R(F_o) = ||F_o| - |F_c||/|F_o|$ and $wR(F_o^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/[w(F_c^2)^2\}^{1/2}$.

Computational Methods: All theoretical calculations were executed using the Gaussian 03 suite of quantum chemical programs.^[34] The hybrid Becke 3-Lee–Yang–Parr (B3LYP) exchange correlation functional was implemented for DFT calculations.^[35] The geometry optimizations were carried out at the B3LYP level of DFT by using the 6-311+G(d) basis sets. The total energies of the optimized geometries were computed based on with inclusion of zero-point corrections. The ⁷⁷Se NMR calculations were performed at B3LYP/6-311+G(d,p) level on B3LYP/6-311+G(d)-level optimized geometries using the gauge-including atomic orbital (GIAO) method (referenced with respect to the peak of Me₂Se).^[20] The quantifications of orbital interaction were preformed by NBO analysis at the B3LYP/6-311+G(d,p) level.^[26] AIM^[27–29] calculations were used to confirm distinct bond critical point. NICS^[36] were carried out at the B3LYP/6-311+G(d)//6-311+G(d,p) level.

Supporting Information (see footnote on the first page of this article): ¹H NMR, ¹³C NMR, ⁷⁷Se NMR, HR mass and IR spectra of all the newly synthesized compounds, tables for GPx-like activity, coordinates, NBO charges, NBO second-order perturbation energies, AIM pictures for optimized geometries of compounds **8**, **27**–**31** and **33–34**.

Acknowledgments

This work was supported by the Department of Science and Technology (DST), New Delhi. We are thankful to the Sophisticated Analytical Instrument facility (SAIF), Indian Institute of Technology (IIT), Bombay, for performing 300 MHz NMR spectroscopic analyses for ⁷⁷Se NMR spectroscopy. V. P. S. wishes to thank IIT Bombay for a teaching assistantship.

 a) A. Müller, E. Cadenas, P. Graf, H. Sies, *Biochem. Pharmacol.* **1984**, *33*, 3235–3239; b) A. Wendel, M. Fausel, H. Safayhi, G. Tiegs, R. Otter, *Biochem. Pharmacol.* **1984**, *33*, 3241–3245; c) M. J. Parnham, S. Kindt, *Biochem. Pharmacol.* **1984**, *33*, 3247– 3250; d) A. Müller, H. Gabriel, H. Sies, *Biochem. Pharmacol.* **1985**, *34*, 1185–1189; e) H. Safayhi, G. Tiegs, A. Wendel, *Biochem. Pharmacol.* **1985**, *34*, 2691–2694; f) A. Wendel, European Patent 0–165–534, **1985**; g) A. Wendel, G. Tiegs, *Biochem.* *Pharmacol.* **1986**, *35*, 2115–2118; h) T. Schewe, *Gen. Pharmacol.* **1995**, *26*, 1153–1169; i) M. J. Parnham, H. Sies, *Expert Opin. Invest. Drugs* **2000**, *9*, 607–619; j) G. Mugesh, H. B. Singh, *Chem. Soc. Rev.* **2000**, *29*, 347–357; k) G. Mugesh, W.-W. du Mont, H. Sies, *Chem. Rev.* **2001**, *101*, 2125–2179.

- [2] a) L. Flohè, E. A. Günzler, H. H. Schock, *FEBS Lett.* 1973, 32, 132–134; b) J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, W. G. Hoekstra, *Science* 1973, 179, 588–590; c) C. Jacob, G. I. Giles, N. M. Giles, H. Sies, *Angew. Chem. Int. Ed.* 2003, 42, 4742–4758.
- [3] R. Lesser, R. Weiss, Ber. Dtsch. Chem. Gen. 1924, 57, 1077– 1082.
- [4] a) R. Weber, M. Renson, *Bull. Soc. Chim. Fr.* 1976, 1124–1126;
 b) A. Welter, L. Christiaens, P. Wirtz, Eur. Pat. Appl. EP 44453, 1982;
 c) L. Engman, A. Hallberg, *J. Org. Chem.* 1989, 54, 2964–2966;
 d) M. C. Fong, C. H. Schiesser, *Tetrahedron Lett.* 1995, 36, 7329–7332;
 e) M. C. Fong, C. H. Schiesser, *J. Org. Chem.* 1997, 62, 3103–3108.
- [5] S. J. Balkrishna, B. S. Bhakuni, D. J. Chopra, K. Sangit, Org. Lett. 2010, 12, 5394–5397.
- [6] a) B. K. Sarma, G. Mugesh, J. Am. Chem. Soc. 2005, 127, 11477–11485; b) K. P. Bhabak, G. Mugesh, Chem. Eur. J. 2007, 13, 4594–4601; c) B. K. Sarma, G. Mugesh, Chem. Eur. J. 2008, 14, 10603–10614; d) K. P. Bhabak, G. Mugesh, Chem. Eur. J. 2009, 15, 9846–9854; e) K. P. Bhabak, G. Mugesh, Chem. Asian J. 2009, 4, 974–983; f) K. Satheeshkumar, G. Mugesh, Chem. Eur. J. 2011, 17, 4849–4857.
- [7] T. Fenner, C. H. Schiesser, *Molecules* 2004, 9, 472–479.
- [8] a) H. J. Reich, C. P. Jasperse, J. Am. Chem. Soc. 1987, 109, 5549–5551; b) P. Cotelle, P. Chan, N. Cotelle, J. L. Bernier, J. P. Henichart, J. Chim. Phys.-Chim. Biol. 1992, 89, 191–198.
- [9] A. Mohsine, L. Christiaens, Heterocycles 1996, 43, 2567-2593.
- [10] P. V. Jacquemin, L. E. Christiaens, M. J. Renson, M. J. Evers, N. Dereu, *Tetrahedron Lett.* 1992, 33, 3863–3866.
- [11] J. Chaudiere, I. Erdelmeier, M. Moutet, J.-C. Yadan, *Phosphorus Sulfur Silicon Relat. Elem.* **1998**, *136*, *137 & 138*, 467–470.
- [12] a) J. Chaudière, J.-C. Yadan, I. Erdelmeier, C. Tailhan-Lomont, M. Moutet, in: Oxidative processes and Antioxidants (Ed.: R. Paoletti), Ravan Press, New York, **1994**, p. 165; b) I. Erdelmeier, M. Moutet, J.-C. Yadan, J. Org. Chem. **2000**, 65, 8152– 8157.
- [13] a) C. Lambert, L. Christiaens, *Tetrahedron* 1991, 47, 9053–9060; b) M. J. Parnham, J. Biedermann, Ch. Bittner, N. Dereu, S. Leyck, H. Wetzig, *Agents Actions* 1989, 27, 306–308; c) B. Dakova, L. Lamberts, M. Evers, N. Dereu, *Electrochim. Acta* 1991, 36, 631–637; d) J. K. Pearson, R. J. Boyd, *J. Phys. Chem. A* 2008, *112*, 1013–1017.
- [14] a) B. Kersting, M. DeLion, Z. Naturforsch., Teil B 1999, 54, 1042–1047; b) S. S. Zade, S. Panda, S. K. Tripathi, H. B. Singh, G. Wolmershauser, Eur. J. Org. Chem. 2004, 3857–3864; c) G. Roy, G. Mugesh, J. Am. Chem. Soc. 2005, 127, 15207–15217.
- [15] T. G. Back, B. P. Dyck, J. Am. Chem. Soc. 1997, 119, 2079–2083.
- [16] V. P. Singh, H. B. Singh, R. J. Butcher, Eur. J. Inorg. Chem. 2010, 637–647.
- [17] V. P. Singh, H. B. Singh, R. J. Butcher, Chem. Commun. 2011, 47, 7221–7223.
- [18] A. Burger, A. C. Schmalz, J. Org. Chem. 1954, 19, 1841-1846.
- [19] a) M. Iwaoka, T. Katsuda, H. Komatsu, S. Tomoda, J. Org. Chem. 2005, 70, 321–327; b) M. Iwaoka, S. Tomoda, J. Am. Chem. Soc. 1996, 118, 8077–8084.
- [20] C. A. Bayse, Inorg. Chem. 2004, 43, 1208–1210.
- [21] a) M. Iwaoka, H. Komatsu, T. Katsuda, S. Tomoda, J. Am. Chem. Soc. 2004, 126, 5309–5317; b) W. Nakanishi, S. Hayashi, S. Toyota, Chem. Commun. 1996, 371; c) W. Nakanishi, S. Hayashi, A. Sakaue, G. Ono, Y. Kwada, J. Am. Chem. Soc. 1998, 120, 3635–3640.
- [22] V. P. Singh, H. B. Singh, R. J. Butcher, Chem. Asian J. 2011, 6, 1431–1442 and references cited therein.
- [23] A. Bondi, J. Phys. Chem. 1964, 68, 441-445.

- [24] a) L. Dupont, O. Dideberg, P. Jacqemin, Acta Crystallogr., Sect. C 1990, 46, 484–486; b) L. Dupont, O. Dideberg, M. Sbit, N. Dereu, Acta Crystallogr., Sect. C 1988, 44, 2159–2161.
- [25] K. P. Bhabak, G. Mugesh, Chem. Eur. J. 2008, 14, 8640-8651.
- [26] a) A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* 1988, 88, 899–926; b) F. Weinhold, *Natural Bond Orbital (NBO)*, version 5.0
- [27] R. W. F. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990.
- [28] F. Beigler-Konig, J. Schonbohm, D. Bayles, J. Comput. Chem. 2001, 22, 545–559.
- [29] P. Popelier, Atoms In Molecules: An Introduction; Pearson, Harlow, 2000.
- [30] a) F. C. Whitmore, P. J. Culhane, J. Am. Chem. Soc. 1929, 51, 602–605; b) L. K. A. Rahman, R. M. Scrowston, J. Chem. Soc. Perkin Trans. 1 1984, 385–390.
- [31] D. D. Perrin, W. L. F. Armarego, *Purification of Labratory Chemicals*, Pergamon Press, 4th ed., 1996.
- [32] S. R. Wilson, P. A. Zucker, R.-R. C. Huang, A. Spector, J. Am. Chem. Soc. 1989, 111, 5936–5939.
- [33] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1974.
- [34] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.

Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nikai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Commi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrazewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghabachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03*, rev. C.02, Gaussian, Inc., Wallingford, CT, 2004.

- [35] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- [36] a) P. von Rague Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318; b) P. von Rague Schleyer, M. Manoharan, Z.-X. Wang, B. Kiran, H. Jiao, R. Puchta, N. J. R. van Eikema Hommes, Org. Lett. 2001, 3, 2465–2468; c) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von Rague Schleyer, Chem. Rev. 2005, 105, 3842–3888; d) E. Kleinpeter, S. Klod, A. Koch, THEOCHEM 2007, 811, 45–60.

Received: June 20, 2011 Published Online: August 10, 2011