CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014

Phormidolides B and C, Cytotoxic Agents from the Sea: Enantioselective Synthesis of the Macrocyclic Core

Adriana Lorente,^[a, b] Alejandro Gil,^[a, b] Rogelio Fernández,^[f] Carmen Cuevas,^[f] Fernando Albericio,^[a, b, c, d] and Mercedes Álvarez^{*[a, b, e]}

chem_201404341_sm_miscellaneous_information.pdf

TABLE OF CONTENTS

1.	General Procedures	SI 1
2.	Isolation of phormidolides B and C	SI 2
3.	NMR data table and characterization of phormidolides B and C	SI 3
4.	J-based configuration analysis	SI 5
5.	Experimental procedures and characterization	SI 7
6.	NMR data table of macrocycles 1a-c	SI 26
7.	NMR spectra of compounds	SI 27
8.	References	SI 165

1. General Procedures

Tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) were dried using a PureSolv solvent purification system. All other solvents and reagents were used as purchased without further purification, unless otherwise indicated. Flash column chromatography was performed on silica gel (60A 35-70 µm) as stationary phase. Analytical TLC was performed on pre-coated silica gel 60 F254 plates (0.2 mm thick, 20x20 cm) and visualized under UV light (254 and 360 nm), with anisaldehyde in conc. H₂SO₄ or with phosphomolybdic acid in ethanol. Polarimetry studies were performed on a Perkin-Elmer 241 or JascoP-2000 polarimeter equipped with a Na-lamp. IR spectra were recorded on a Thermo Nicolet FT-IR Nexus spectrometer. For the isolation ¹H and ¹³C-NMR were recorded on a Varian Unity 300MHz or a Varian Unity 500MHz; for the synthesis were recorded on a Varian Mercury 400MHz or a Varian VNMRS500 500MHz. Chemical shifts are reported in ppm referenced to the appropriate residual solvent peaks (CDCl₃) and coupling constants are reported in Hz. Multiplicity of the carbons was assigned with gHSQC experiments. Standard abbreviations for off-resonance decoupling were employed: s = singlet, d = doublet, t = triplet, q = quadruplet, bs = broad singlet, bd = broad singletbroad doublet, m = multiplet. The same abbreviations were also used for the multiplicity of signals in ¹H-NMR. High Resolution Mass Spectroscopy (HRMS) was performed an Agilent LC/MSD-TOF 2006 system using the ESI-MS technique.

2. Isolation of Phormidolides B and C

Phormidolides B and C

Scheme 1. Isolation of phormidolides B and C.

The frozen sponge (146 g, ORMA 41004) was triturated and extracted with a mixture of MeOH-CH₂Cl₂ (50:50, 3×500 mL) at 23 °C (Scheme 1). The organic extract was evaporated under reduced pressure to yield a crude of 6.7 g. This material was chromatographed (VLC) on Lichroprep RP-18 with a stepped gradient from H₂O to MeOH and then to CH₂Cl₂. The fraction eluted with MeOH (340 mg) was subjected to flash Silica gel CC eluting with a gradient of hexane:EtOAc:MeOH to yield 4 fractions (S1 to S4). Fraction S3 (hexane:EtOAc 20:80) was subjected to semipreparative reversed phase HPLC (SunFire, 10 ×150 mm, 100% of CH₃CN in 30 min, UV detection, flow 3.8 mL/min) to yield **phormidolide B** (34.7 mg) and **phormidolide C** (8.3 mg).

Table 1. GI₅₀ values for Phormidolides B and C.

Compound	A-549	HT-29	MDA-MB-231
Phormidolide B	1.4 μM	1.3 μM	1.0 μM
Phormidolide C	1.3 μM	0.8 μM	0.5 μM

Lung (A-549), colon (HT-29) and breast (MDA-MB-231) cancer cell lines.

3. NMR data table of phormidolides B and C. Spectra recorded in $CDCI_3$

(500MHz)

	Phormidolide B		Phormidolide C		
	δ _H , mult, J (Hz)	δ _c , mult	δ _H , mult, J (Hz)	δ _c , mult	
1	-	171.1, s	-	171.1, s	
2	2.72, dd, 13.5, 11.9 2.34, dd 13.5, 3.0	39.5, t	2.73, dd, 13.5, 12.2 2.36, dd, 13.5, 3.0	39.5, t	
3	4.74, brd, 11.8	71.9, d	4.75, brd, 12.2	71.9, d	
4	5.36, brs	121.6, d	5.37, brs	121.5, d	
5	-	133.1, s	-	133.2, s	
6	1.91, dd, 16.8, 10.9 1.76, dd, 16.8, 2.5	36.4, t	1.90, brd, 16.1, 11.2 1.78, dd, 16.1, 2.9	36.4, t	
7	3.86, m	63.3, d	3.85, m 63.		
8	1.45, ddd, 13.2, 13.2, 3.6 1.30, ddd, 13.2, 13.2, 3.5	43.2, t	1.46, dd, 13.5, 13.5 1.31, dd, 13.5, 13.5 43.		
9	1.71, m	24.9, d	1.72, m	24.9, d	
10	1.94, dd, 12.4, 12.4 1.15, ddd, 12.4, 12.4, 4.9	39.6, t	1.95, dd, 12.4, 12.4 1.17, ddd, 12.4, 12.4, 4.9 39.6		
11	4.34, ddd, 12.4, 8.4, 4.9	77.6, d	4.36, ddd, 12.4, 8.3, 4.9 77.6, d		
12	2.41, d, 14.4 2.09, ddd 13.4, 8.0, 4.0	34.3, t	2.43, d, 14.4 2.11, ddd 13.7, 7.8, 3.9 34.3, 1		
13	5.22, dd, 3.4, 3.4	75.2, d	5.24, dd, 3.9, 3.9 75.3, d		

14	3.81,dd, 8.6, 3.4	83.9, d	3.84, dd, 8.3, 3.4	83.8, d
15	4.59, dd, 8.6, 8.6	66.6, d	4.64, dd, 8.3, 8.3	66.8, d
16	5.36, d, 8.6	129.0, d	5.37, d, 8.3	128.9, d
17	-	137.6, s	-	137.8, s
18	2.30, brd, 13.4 2.05, dd, 13.4, 10.9	42.0, t	2.32, d, 13.2 2.06, dd, 13.2, 10.8	41.9, t
19	3.67, dd, 10.9, 2.0	77.3, d	3.68, brd, 10.8	77.2, d
20	-	40.3, s	-	40.4, s
21	3.83, brd, 10.9	81.6, d	3.83, d, 10.7	81.6, d
22	1.63, m 1.44, m	35.1, t	1.62, m 1.43, m	35.1, t
23	4.06, brd, 10.4	77.8, d	4.07, brd, 9.8	77.8, d
24	1.47, m	41.5, d	1.44, m	41.5, d
25	3.95, ddd, 6.5, 6.5, 1.0	74.0, d	3.97, dd, 8.5, 8.5	74.0, d
26	1.80, m 1.74, m	39.3, t	1.80, m 1.74, m	39.4, t
27	4.95, dddd, 6.8, 6.8, 6.8, 6.8	70.6, d	4.96, dddd, 6.8, 6.8, 6.8, 6.8	70.6, t
28	2.57, dd, 14.4, 6.8 2.53, dd, 14.4, 6.8	39.3, t	2.58, dd, 14.2, 7.3 2.53, dd, 14.2, 5.9	39.4, t
29	-	138.2, s	-	138.2, s
30	-	158.3, s	-	158.3, s
31	5.33, s	78.9, d	5.33, s	78.6, d
32	1.69, s	23.0, q	1.70, s	23.0, q
33	0.83, d, 6.4	20.6, q	0.84, d, 6.9	20.6, q
34	1.77, s	17.0, q	1.79, s	17.2, q
35	0.73, s	21.7, q	0.74, s	21.6, q
36	0.88, s	13.8, q	0.90, s	13.8, q
37	0.91, d, 7.0	5.0, q	0.93, d, 7.5	4.9, q
38	5.41, d, 1.0 5.36, d, 1.0	122.1, d	5.42, d, 0.9 5.37, d, 0.9	122.2, t
39	-	173.7, s	-	173.8, s
40	2.27, t, 7.0	34.6, t	2.27, dd, 7.8, 7.3	34.6, t
41	1.58, m	24.8, t	1.58, m	24.9, t

42- 46	1.27, m	28.5, t	1.27, m	28.6, t
47	1.40, m	29.1-29.0, t	1.27, m	29.4-28.4, t
48	2.14, ddd, 6.7, 6.7, 6.7	33.0, t	1.39, m	28.4, t
49	6.01, ddd, 15.4, 6.7, 6.7	140.4, d	1.62, m	29.5, t
50	6.06, d, 15.4	116.7, d	2.91, dd, 7.8, 6.8	33.3, t
51	-	129.7, s	-	131.3, s
52	6.36, s	116.5, d	6.53, s	105.7, d
ОМе	3.58, s	3.58, s 55.6, q 3.59, s		55.6, q

Phormidolide B: [α]_D = -6.4 (c 0.4, CHCl₃). IR (KBr film) v 3397 (br), 2930, 2855, 1732, 1607, 1457, 1377, 1277, 1179, 1150 cm⁻¹. MS (API-ES) 1103 (M+Na, 100), 1105 (M+Na, 45), 1102 (M+Na, 37), 1107 (M+Na, 8).

Phormidolide C: [α]_D = +12.3 (c 0.1, CHCl₃). IR (KBr film) v 3377 (br), 2925, 2854, 1732, 1679, 1607, 1440, 1378, 1277, 1200, 1121 cm⁻¹. MS (API-ES) 1149 (M+Na, 100), 1150 (M+Na, 58), 1152 (M+Na, 40) 1148 (M+Na, 25), 1154 (M+Na, 9)

Fatty acid of phormidolide B: . ¹H NMR (400 MHz, CDCl₃) δ 1.27–1.37 (m, 10H); 1.39–1.45 (m, 2H); 1.59–1.67 (m, 2H); 2.13–2.18 (m, 2H); 2.35 (t, *J* = 7.4 Hz, 2H); 6.02 (dt, *J* = 14.9, 6.0 Hz, 1H); 6.07 (d, *J* = 14.9 Hz, 1H); 6.37 (s) . ¹³C NMR (100.6 MHz, CDCl₃) δ 24.8 (t); 28.7 (t); 29.0 (t); 29,1 (t); 29,3 (t); 33.1 (t); 34.1 (t); 116.7 (d); 116.9 (d); 129.9 (s); 140.6 (d); 179.9 (s). MS (API-ES) 311 (M+H₂O+H, 100), 313 (M+H₂O+H, 65), 312 (M+H₂O+H, 15).

4. J-based configuration analysis

Determination of the relative stereochemistry of C9 and C7 to C11:

Protons ¹⁰CH₂ and ⁸CH₂ are systems with the characteristic of having two large *J*-coupling constants and one small, meaning each one has a proton in an anti-relationship^[1](*J*-coupling constants were determined based on 1D-TOCSY experiments).

As an example, assuming that $H10_L$ has H11 in an anti-relationship, and $H10_H$ has H9 in an anti-relationship, for those two cases, two dispositions are possible. With the aid of ROESY experiments, the right relative disposition is revealed for each case. Combination of the two relative dispositions C11-C10 and C10-C9 provides the relative disposition of C11-C9 (Figure 1). Same procedure is followed to obtain the relative stereochemistry of C9-C7 (Figure 2).

Figure 1. Determination of relative stereochemistry of C9-C11.

Figure 2. Determination of relative stereochemistry of C7-C9.

Determination of the relative stereochemistry of C14-C15:

Protons H14 and H15 exist on a conformation where their coupling constant value is that of $J_{(H14,H15)} = 8.6$ Hz, indicating a dominant anti disposition for those protons.^[2] A single conformer with a correct configuration can be deduced based on the lack of observation of correlation signal in the ROESY spectra, given that in the case of the H/H-anti and C/C-gauche conformation, if present, H-13 and H-16 should come within the range of NOE.^[2]

Figure 3. Determination of relative stereochemistry of C14-C15.

5. Experimental procedures and characterization

General procedure for the preparation of triol S1:^[3]

Ethyl (triphenylphosphoranylidene)acetate (1.1 eq.) was added to a solution of sugar (1 eq.) in THF. The solution was stirred at reflux temperature for 5 h and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with CH_2Cl_2 -MeOH (95:5 to 90:10) yielded the corresponding triol **S1** as a colorless oil.

Ethyl (5*S*,6*R*,*E*)-5,6,7-trihydroxyhept-2-enoate (S1a).

O 2-Deoxy-D-ribose (3.40 g, 25.5 mmol) led to triol **S1a** (4.9 g, 94%). IR (KBr film) v 3380, 2981, 2936, 1701, 1654, 1370, 1270, 1173 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.1 Hz, 3H); 2.33–2.52 (m, 2H);

3.55–3.61 (m, 1H); 3.66–3.72 (m, 2H); 3.74–3.82 (m, 1H); 3.93–4.13 (m, 3H, OH); 4.15 (q, J = 7.1, 2H); 5.91 (d, J = 15.7, 1H); 6.98 (dt, J = 15.7, 7.5 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.2 (q); 35.8 (t); 60.5 (t); 63.1 (t); 71.5 (d); 74.0 (d); 123.6 (d); 145.8 (d); 166.9 (s). HRMS (+ESI): m/z calcd. for C₉H₁₇O₅ (M+H) 205.1076, found 205.1068.

Ethyl (5*R*,6*S*,*E*)-5,6,7-trihydroxyhept-2-enoate (S1b).

2-Deoxy-L-ribose (627 mg, 4.67 mmol) led to triol **1b** (875 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.1 Hz, 3H); 2.33–2.52 (m, 2H); 3.55–3.61 (m, 1H); 3.66–3.72 (m, 2H); 3.74–3.82 (m, 1H);

3.93–4.13(m, 3H, OH); 4.15 (q, *J* = 7.1, 2H); 5.91 (d, *J* = 15.7, 1H); 6.98 (dt, *J* = 15.7, 7.5 Hz, 1H).

General procedure for the preparation of the tetrahydrofuran ring: ^[3]

NaEtO (0.1 eq.) was added to a solution of **S1** (1 eq.) in EtOH. The reaction mixture was stirred at r.t. for 24 h. The solvent was removed under reduced pressure and the residue was filtered through a pad of silica with CH_2Cl_2 -MeOH (90:10) to yield the corresponding tetrahydrofuran **4** as a mixture of diastereomers A:B (60:40).

Ethyl 2-[(2RS,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]acetate (4a).

 $\begin{array}{c} \text{CO}_{2}\text{Et} & \text{Triol S1a (13.50 g, 64.4 mmol) led to tetrahydrofuran 4a (10.56 g, 80\%) as a} \\ \text{mixture of diastereomers A:B (60:40). IR (KBr film) v 3409, 2981, 2935, 1731, 1370, 1303, 1197 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 1.26 (t, *J* = 7.1 Hz, 3H_{A+B}); 1.80 and 1.92 (ddd, *J* = 13.1, 6.5, 5.4 Hz and ddd, *J* = 13.1, 9.4, 6.4 Hz, 1H_{A+B}); 2.04 and 2.44 (ddd, *J* = 13.1, 5.8, 2.6 Hz and dt, *J* = 13.1, 7.1 Hz, 1H_{B+A}); 2.59–2.66 and 2.71–2.78 (2m, 2H_{A+B}); 3.58–3.57 (m, 2H_{A+B}); 3.85–3.96 (m, 1H_{A+B}); 4.16 (q, *J* = 7.1 Hz, 2H_{A+B}); 4.31–4.40 (m, 1H_{A+B}); 4.45–4.57 (m, 1H_{A+B}). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.1 (q_A+q_B); 39.9 (t_B); 40.0 (t_A); 40.6(t_B); 40.8 (t_A); 60.7 (t_A); 60.8 (t_B); 62.3 (t_A); 62.9 (t_B); 72.6 (d_A); 73.1 (d_B); 74.4 (d_A); 74.5(d_B); 85.4 (d_A); 87.1 (d_B); 171.3 (s_B); 171.6 (s_A). HRMS (+ESI): *m/z* calcd. for C₉H₁₇O₅ (M+H) 205.1076, found 205.1065.

Ethyl 2-[(2RS,4R,5S)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]acetate (4b).

Triol **S1b** (280 mg, 2.8 mmol) led to tetrahydrofuran **4b** (517 mg, 89%) as a mixture of diastereomers A:B (60:40). IR (KBr film) v 3340 (bs), 2980, 2935, 1730, 1304, 1094 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.1 Hz, 3H_{A+B}); 1.80 and 1.92 (ddd, *J* = 13.1, 6.5, 5.4 Hz and ddd, *J* = 13.1, 9.4, 6.4 Hz, 1H_{A+B}); 2.04 and 2.44 (ddd, *J* = 13.1, 5.8, 2.6 Hz and dt, *J* = 13.1, 7.1 Hz, 1H_{B+A}); 2.59–2.66 and 2.71–2.78 (2m, 2H_{A+B}); 3.58–3.67 (m, 2H_{A+B}); 3.85–3.96 (m, 1H_{A+B}); 4.16 (q, *J* = 7.1 Hz, 2H_{A+B}); 4.31–4.40 (m, 1H_{A+B}); 4.45–4.57 (m, 1H_{A+B}). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.2 (q_A+q_B); 40.0 (t_B); 40.2 (t_A); 40.7 (t_B); 40.9 (t_A); 60.8 (t_A+t_B); 62.4 (t_A); 63.0 (t_B); 72.7 (d_A); 73.2 (d_B); 74.5 (d_A); 74.6 (d_B); 85.5 (d_A); 87.2 (d_B); 171.4 (s_B); 171.7 (s_A). HRMS (+ESI): *m/z* calcd. for C₉H₁₇O₅ (M+H) 205.1076, found 205.1065.

General procedure for TBDPS protection:

TBDPSCl (0.95 eq) was added to a solution of diol **4a** or **4b** (1 eq.), Et_3N (2 eq.) and DMAP (0.1 eq.) in CH₂Cl₂. The reaction mixture was stirred at r.t. for 48 h. After this time, the reaction mixture was washed with 1M aqueous HCl, dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-CH₂Cl₂-Et₂O (50:30:20) yielded **5a** (45%) and **5b** (28%) or **5c** (28%) and **5d** (48%) respectively as colorless oils.

Ethyl 2-[(2*S*,4*S*,5*R*)-5-(*tert*-butyldiphenylsilyloxymethyl)-4-hydroxytetrahydrofuran-2-yl]acetate (5a).

TBDPSO I_{A}^{O} $CO_{2}Et$ $[\alpha]_{D} = +14.0$ (c 1.0, CHCl₃). IR (KBr film) v 3450, 2931, 2857, 1735, 1427, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 9H); 1.25 (t, J = 7.1 Hz, 3H); 1.79 (ddd, J = 13.2, 6.3, 4.6 Hz, 1H); 2.47 (dt, J = 13.2, 7.2 Hz, 1H); 2.63 (dd, J = 15.7, 6.0 Hz, 1H); 2.72 (dd, J = 15.7, 6.4 Hz, 1H); 3.62 (dd, J = 10.6, 6.0 Hz, 1H); 3.75 (dd, J = 10.6, 3.9 Hz, 1H); 3.98 (dt, J = 6.0, 3.9 Hz, 1H); 4.15 (q, J = 7.1 Hz, 2H); 4.42–4.53 (m, 2H); 7.35–7.45 (m, 6H); 7.63–7.69 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.2 (q); 19.2 (s); 26.8 (q); 39.9 (t); 40.9 (t); 60.5 (t); 64.8 (t); 74.5 (d); 75.0 (d); 85.7 (d); 127.7 (d); 129.8 (d); 133.1 (s); 135.5 (d); 171.4 (s). HRMS (+ESI): m/z calcd. for C₂₅H₃₄O₅NaSi (M+Na) 465.2073, found 465.2083.

Ethyl 2-[(2*R*,4*S*,5*R*)-5-(*tert*-butyldiphenylsilyloxymethyl)-4-hydroxytetrahydrofuran-2-yl]acetate (5b).

Ethyl 2-[(2*S*,4*R*,5*S*)-5-(*tert*-butyldiphenylsilyloxymethyl)-4-hydroxytetrahydrofuran-2-yl]acetate (5c).

 $[\alpha]_{D} = -11.2 (c 1.0, CHCl_3). IR (KBr film) v 3449 (br), 2931, 2857, 1736, 1428, 1113 cm^{-1}. ^{1}H NMR (400 MHz, CDCl_3) \delta 1.06 (s, 9H); 1.25 (t,$ *J*= 7.1 Hz, 3H); 1.84 (ddd,*J*= 13.1, 9.6, 6.2 Hz, 1H); 2.07 (ddd,*J*= 13.1, 5.8, 2.3 Hz, 1H); 2.48 (dd,*J*= 15.4, 5.8 Hz, 1H); 2.64 (dd,*J*= 15.4, 7.1 Hz, 1H); 3.59 (dd,*J*= 10.6, 6.0 Hz, 1H); 3.76 (dd,*J*= 10.6, 3.8 Hz, 1H); 3.86-3.90 (m, 1H); 4.14 (q,*J*= 7.1 Hz, 2H); 4.43-4.47 (m, 1H); 4.55 (ddt,*J* $= 9.6, 7.1, 5.8 Hz, 1H); 7.35-7.45 (m, 6H); 7.63-7.69 (m, 4H). ¹³C NMR (100.6 MHz, CDCl_3) \delta 14.2 (q); 19.2 (s); 26.8 (q); 40.6 (t); 40.6 (t); 60.5 (t); 64.6 (t); 74.3 (d); 74.6 (d); 86.9 (d); 127.7 (d); 129.7 (d); 133.1 (s); 133.2 (s); 135.5 (d); 135.6 (d); 171.0 (s). HRMS (+ESI): <math>m/z$ calcd. for C₂₅H₃₄O₅NaSi (M+Na) 465.2073, found 465.2067.

Ethyl 2-[(2*R*,4*R*,5*S*)-5-(*tert*-butyldiphenylsilyloxymethyl)-4-hydroxytetrahydrofuran-2-yl]acetate (5d).

 $[\alpha]_{D} = -15.1 \text{ (c } 1.0, \text{ CH}_2\text{Cl}_2\text{). IR (KBr film) } \vee 3449 \text{ (br), } 2931, 2857, \\ 1736, 1428, 1113 \text{ cm}^{-1} \text{ }^{1}\text{H NMR} \text{ (400 MHz, CDCl}_3\text{) } \delta 1.06 \text{ (s, 9H)}; \\ 1.25 \text{ (t, } J = 7.1, 3\text{H}\text{); } 1.70 \text{ (ddd, } J = 13.5, 6.2, 4.7 \text{ Hz, 1H}\text{); } 2.48 \text{ (dt, } J = 13.5, 7.2 \text{ Hz, 1H}\text{); } 2.55 \text{ (dd, } J = 15.6, 6.0 \text{ Hz, 1H}\text{); } 2.75 \text{ (dd, } J = 15.6, 7.6 \text{ Hz, 1H}\text{); } 3.62 \text{ (dd, } J = 10.5, 10.5 \text{ (dd, } J = 10.5 \text{ (dd, } J = 10.5, 10.5 \text{ (dd, } J = 10.5 \text{ (dd, } J = 10.5, 10.5 \text{ (dd, } J = 10.5 \text{ (dd, } J =$

13.5, 7.2 Hz, HI); 2.55 (dd, J = 15.6, 0.6 Hz, HI); 2.75 (dd, J = 15.6, 7.6 Hz, HI); 3.62 (dd, J = 10.5, 6.1 Hz, 1H); 3.76 (dd, J = 10.5, 4.1 Hz, 1H); 3.97 (m, 1H); 4.15 (q, J = 7.1 Hz, 2H); 4.45–4.52 (m, 2H); 7.35–7.45 (m, 6H); 7.63–7.69 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.3 (q); 19.3 (s); 27.0

(q); 40.0 (t); 41.0 (t); 60.7 (t); 65.0 (t); 74.8 (d); 75.1 (d); 85.9 (d); 127.9 (d); 129.9 (d); 133.2 (s); 135.7 (d); 171.6 (s). HRMS (+ESI): *m/z* calcd. for C₂₅H₃₈NO₅Si (M+NH₄) 460.2514, found 460.2511.

Ethyl 2-[(2S,5S)-5-(tert-butyldiphenylsilyloxymethyl)-4-oxotetrahydrofuran-2-yl]acetate (S2).

творео

-CO₂Et DMP (10.4 g, 24.5 mmol) was added to a solution of alcohol **5c** (8.35 g, 18.8 mmol) in CH₂Cl₂ (100 mL) and was stirred for 2 h. The reaction mixture was dissolved with sat. Na₂S₂O₃ and sat. NaHCO₃ and

the residue was extracted with Et₂O. The organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (80:20) yielded **S2** (7.45 g, 90%) as a colorless oil. $[\alpha]_D = -94.4$ (c 1.0, CHCl₃). IR (KBr film) v 2931, 2858, 1762, 1737, 1472, 1428, 1194, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.03 (s, 9H); 1.29 (t, *J* = 7.1 Hz, 3H); 2.32 (dd, *J* = 17.7, 10.3 Hz, 1H); 2.69–2.77 (m, 2H); 2.94 (dd, *J* = 15.8, 6.7 Hz, 1H); 3.87 (dd, *J* = 11.6, 2.8 Hz, 1H); 3.90–3.94 (m, 2H); 4.21 (qd, *J* = 7.1, 1.8 Hz, 2H); 4.65 (dtd, *J* = 10.3, 6.7, 5.8 Hz, 1H); 7.36–7.45 (m, 6H); 7.65–7.74 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.2 (q); 19.2 (s); 26.7 (q); 40.9 (t); 43.5 (t); 60.8 (t); 63.0 (t); 72.2 (d); 82.2 (d); 127.7 (d); 129.7 (d); 132.7 (s); 132.9 (s); 135.6 (d); 170.3 (s); 213.7 (s). HRMS (+ESI): *m*/*z* calcd. for C₂₅H₃₂O₅NaSi (M+Na) 463.1911, found 463.1910.

Ethyl 2-[(2*S*,4*S*,5*S*)-5-(*tert*-butyldiphenylsilyloxymethyl)-4-hydroxytetrahydrofuran-2-yl]acetate (5e).

TBDPSO HO CO₂Et NaBH₄ (953 mg, 25.2 mmol) was added to a solution of ketone S2 (5.56 g, 12.6 mmol) and CeCl₃·7H₂O (5.16 g, 13.9 mmol) in EtOH (200 mL) at -20 °C. The reaction mixture was stirred at this

temperature for 40 min. After this time, NH₄Cl was added and the solvent was removed under reduced pressure. The residue was extracted with EtOAc, and the organic layer was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (80:20) yielded **5e** (4.8 g, 86%) as a colorless oil. $[\alpha]_D = -5.0$ (c 1.0, CHCl₃). IR (KBr film) v 3469, 2932, 2858, 1735, 1472, 1428, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 9H); 1.24 (t, J = 7.1 Hz, 3H); 1.80 (ddd, J = 13.4, 6.0, 3.1 Hz, 1H); 2.42 (ddd, J = 13.4, 7.9, 6.2 Hz, 1H); 2.65 (dd, J = 16.0, 6.0 Hz, 1H); 2.77 (dd, J = 16.0, 6.9 Hz, 1H); 3.81 (dt, J = 5.7, 4.2 Hz, 1H); 3.96 (dd, J = 10.9, 4.2 Hz, 1H); 4.00 (dd, J = 10.9, 5.7 Hz, 1H); 4.14 (q, J = 7.1 Hz, 2H); 4.34 (ddt, J = 7.9, 6.9, 6.0 Hz, 1H); 4.48–4.53 (m, 1H); 7.36–7.45 (m, 6H); 7.65–7.73 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.2 (q); 19.1 (s); 26.8 (q); 40.5 (t); 40.8 (t); 60.5 (t); 63.1 (t); 73.6 (d); 74.0 (d); 81.5 (d); 127.8 (d); 129.9 (d); 133.5 (s); 133.8 (s); 135.5 (d); 135.6 (d); 171.4 (s). HRMS (+ESI): m/z calcd. for C₂₅H₃₅O₅Si (M+H) 443.2248, found 443.2251.

General procedure for TBS protection:

TBSCl (1.2 eq.) was added to a solution of alcohol **5** (1 eq.) and imidazole (1 eq.) in CH_2Cl_2 (180 mL). The reaction mixture was stirred at r.t. for 6 or 48 h. After this time, the mixture was washed with water, dried over MgSO₄, filtered and the solvent was removed under reduced pressure.

Purification by silica gel column chromatography with hexane-EtOAc (90:10) yielded the corresponding protected adduct **S3** as a colorless oil.

Ethyl 2-[(2*S*,4*S*,5*R*)-4-(*tert*-butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]acetate (S3a).

Alcohol **5a** (8.8 g, 20 mmol) led to **S3a** (9.99 g, 90%). $[\alpha]_D = +26.0$ (c 1.0, CHCl₃). IR (KBr film) v 2955, 2930, 2857, 1737, 1471, 1428, 1256, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.05 (s, 3H); 0.06 (s, 3H); 0.88 (s, 9H); 1.05 (s, 9H); 1.25 (t, J = 7.1 Hz, 3H); 1.71 (dt, J = 13.0, 4.4 Hz, 1H); 2.29 (dt, J = 13.0, 6.7 Hz, 1H); 2.60 (dd, J = 15.3, 6.7 Hz, 1H); 2.78 (dd, J = 15.3, 7.1 Hz, 1H); 3.57 (dd, J = 11.0, 5.2 Hz, 1H); 3.64 (dd, J = 11.0, 3.8 Hz, 1H); 3.94–3.98 (m, 1H); 4.15 (q, J = 7.1 Hz, 2H); 4.45–4.49 (m, 1H); 4.57–4.50 (m, 1H); 7.34–7.45 (m, 6H); 7.64–7.69 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ -4.7 (q); -4.8 (q); 14.2 (q); 17.9 (s); 19.2 (s); 25.7 (q); 26.8 (q); 40.2 (t); 41.6 (t); 60.3 (t); 64.2 (t); 73.6 (d); 75.4 (d); 86.8 (d); 127.7 (d); 129.6 (d); 129.7 (d); 133.2 (s); 133.4 (s); 135.6 (d); 171.5 (s). HRMS (+ESI): m/z calcd. for C₃₁H₄₈O₅NaSi₂ (M+Na) 579.2938, found 579.2922.

Ethyl 2-[(2*S*,4*S*,5*S*)-4-(*tert*-butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]acetate (S3b).

 $\begin{array}{c} \text{CO}_2\text{Et} & \text{Alcohol 5e } (9.14 \text{ g}, 20.6 \text{ mmol}) \text{ led to } \text{S3b } (10.7 \text{ g}, 94\%). [\alpha]_D = +17.2 \\ & (\text{c} 1.0, \text{CHCl}_3). \text{ IR } (\text{KBr film}) \vee 2950, 2931, 2857, 1735, 1471, 1428, \\ & 1255, 1112 \text{ cm}^{-1}. \ ^1\text{H } \text{NMR } (400 \text{ MHz}, \text{CDCl}_3) \ \delta -0.01 \ (\text{s}, 3\text{H}); 0.04 \ (\text{s}, 3\text{H}); 0.83 \ (\text{s}, 9\text{H}); 1.07 \ (\text{s}, 9\text{H}); 1.24 \ (\text{t}, J = 7.1 \text{ Hz}, 3\text{H}); 1.73 \ (\text{ddd}, J = 13.2, 4.7, 2.7 \text{ Hz}, 1\text{H}); 2.28 \\ & (\text{ddd}, J = 13.2, 8.0, 5.4 \text{ Hz}, 1\text{H}); 2.58 \ (\text{dd}, J = 15.5, 7.4 \text{ Hz}, 1\text{H}); 2.77 \ (\text{dd}, J = 15.5, 6.6 \text{ Hz}, 1\text{H}); \\ & 3.73-3.81 \ (\text{m}, 1\text{H}); 3.83-3.90 \ (\text{m}, 2\text{H}); 4.09-4.17 \ (\text{m}, 2\text{H}); 4.33-4.52 \ (\text{m}, 2\text{H}); 7.34-7.45 \ (\text{m}, 6\text{H}); \\ & 7.64-7.69 \ (\text{m}, 4\text{H}). \ ^{13}\text{C} \text{NMR} \ (100.6 \text{ MHz}, \text{CDCl}_3) \ \delta -5.2 \ (\text{q}); -4.7 \ (\text{q}); 14.2 \ (\text{q}); 17.9 \ (\text{s}); 19.2 \ (\text{s}); 25.7 \\ & (\text{q}); 26.9 \ (\text{q}); 40.1 \ (\text{t}); 41.8 \ (\text{t}); 60.2 \ (\text{t}); 63.3 \ (\text{t}); 72.4 \ (\text{d}); 74.1 \ (\text{d}); 83.9 \ (\text{d}); 127.6 \ (\text{d}); 129.5 \ (\text{d}); 133.6 \\ & (\text{s}); 133.8 \ (\text{s}); 135.6 \ (\text{d}); 135.7 \ (\text{d}); 171.5 \ (\text{s}). \text{ HRMS} \ (+\text{ESI}): m/z \ \text{calcd. for } \text{C}_{31}\text{H}_{48}\text{O}_5\text{NaSi}_2 \ (\text{M}+\text{Na}) \\ & 579.2938, \text{found } 579.2932. \end{aligned}$

General procedure for ester reduction:

A 1 M solution of DIBALH in heptane (1 eq.) was added to a solution of ester S3 (1 eq.) in CH_2Cl_2 at -78 °C. The reaction mixture was stirred at this temperature for 15 min and MeOH and a saturated solution of NaK tartrate were added, the mixture was stirred at r.t. for further 2 h. After this time, water was added and the residue was extracted with CH_2Cl_2 . The organic solution was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (90:10) yielded the corresponding aldehyde **6** as a colorless oil.

2-[(2*S*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]acetaldehyde (6a).

Ester **S3a** (1.65 g, 2.96 mmol) led to aldehyde **6a** (1.43 g, 94%). $[\alpha]_D$ = +28.9 (c 1.0, CHCl₃). IR (KBr film) v 2955, 2930, 2857, 1726, 1471, 1428, 1256, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.06 (s, 3H); 0.07 (s, 3H); 0.89 (s, 9H); 1.07 (s, 9H); 1.69 (ddd, *J* = 13.0, 5.3, 4.0 Hz, 1H);

2.34 (ddd, J = 13.0, 7.4, 6.2 Hz, 1H); 2.66 (ddd, J = 16.7, 5.3, 2.0 Hz, 1H); 2.90 (ddd, J = 16.7, 7.4, 2.0 Hz, 1H); 3.61 (dd, J = 11.0, 5.0 Hz, 1H); 3.66 (dd, J = 11.0, 3.8 Hz, 1H); 3.95–3.99 (m, 1H); 4.48–4.52 (m, 1H); 4.60 (tt, J = 7.4, 5.3 Hz, 1H); 7.36–7.46 (m, 6H); 7.66–7.70 (m, 4H); 9.82 (t, J = 2.0, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.7 (q); –4.8 (q); 17.9 (s); 19.2 (s); 25.7 (q); 26.8 (q); 40.5 (t); 50.5 (t); 64.1 (t); 73.5 (d); 73.9 (d); 86.8 (d); 127.7 (d); 129.7 (d); 133.2 (s); 133.3 (s); 135.6 (d); 201.6 (s). HRMS (+ESI): m/z calcd. for C₂₉H₄₄O₄NaSi₂ (M+Na) 535.2670, found 535.2672.

2-[(2*S*,4*S*,5*S*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]acetaldehyde (6b).

Ester **S3b** (7.0 g, 12.6 mmol) led to aldehyde **6b** (6.43 g, 99%). $[\alpha]_D =$ +22.9 (c 1.0, CHCl₃). IR (KBr film) v 2955, 2930, 2857, 1726, 1472, 1428, 1256, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ -0.02 (s, 3H); 0.02 (s, 3H); 0.81 (s, 9H); 1.07 (s, 9H); 1.66 (ddd, *J* = 13.4, 4.9, 2.5 Hz, 1H);

2.33 (ddd, J = 13.4, 8.2, 5.5 Hz, 1H); 2.63 (ddd, J = 16.8, 5.6, 1.8 Hz, 1H); 2.85 (ddd, J = 16.8, 7.1, 2.1 Hz, 1H); 3.74–3.82 (m, 1H); 3.83–3.90 (m, 2H); 4.33–4.37 (m, 1H); 4.38–4.47 (m, 1H); 7.36–7.46 (m, 6H); 7.66–7.70 (m, 4H); 9.78 (t, J = 1.9 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); -4.7 (q); 17.9 (s); 19.2 (s); 25.7 (q); 26.9 (q); 41.0 (t); 50.7 (t); 63.4 (t); 72.4 (d); 72.6 (d); 84.1(d); 127.6 (d); 129.5 (d); 129.6 (d); 133.5 (s); 133.8 (s); 135.6 (d); 135.7 (d); 201.7 (s). HRMS (+ESI): *m/z* calcd. for C₂₉H₄₄O₄NaSi₂ (M+Na) 535.2670, found 535.2673.

Diethyl (R)-2-oxo-2-(2-oxo-4-phenyloxazolidin-3-yl)ethylphosphonate (7).^[4]

was added, and the solution was treated with a 20% solution of NaOH until pH = 6. The organic phase was washed with water, dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (50:50 to 30:70) yielded **7** (4.78 g, 94%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.28 (dt, *J* = 10.3, 7.0 Hz, 6H); 3.76 (dd, *J* = 22.2, 13.9 Hz, 1H); 3.81 (dd, *J* = 22.6, 13.9 Hz, 1H); 3.71–3.86 (m, 4H); 4.11 (m, 2H); 4.28 (dd, *J* = 8.8, 3.9 Hz, 1H); 4.70 (t, *J* = 8.8 Hz, 1H); 5.46 (dd, *J* = 8.8, 3.9 Hz, 1H); 7.30–7.41 (m, 5H).

General procedure for HWE reaction:

A 1 M solution of NaHMDS in THF (1.3 eq.) was added to a solution of phosphonate 7 (1.4 eq.) in THF. After 10 min, a solution of aldehyde **6** (1 eq.) in THF was added dropwise, and the mixture was stirred at r.t. for 2 h. After this time, KH_2PO_4 -NaOH pH =7 buffer was added and the solvent was removed under reduced pressure. The residue was disolved in water and extracted with EtOAc. The organic layer was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (90:10 to 80:20) yielded the corresponding olefin **S3** as a colorless oil.

(*R*)-3-[(*E*)-4-((2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)but-2-enoyl]-4-phenyloxazolidin-2-one (S4a).

Aldehyde **6a** (4.18g, 8.15 mmol) led to olefin **S4a** (4.46 g, 78%). $[\alpha]_D = -14.1$ (c 1.0, CHCl₃). IR (KBr film) v 2954, 2929, 2857, 1781, 1689, 1636, 1383, 1347, 1196, 1256, 1252, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H);

0.05 (s, 3H); 0.87 (s, 9H); 1.04 (s, 9H); 1.66 (ddd, J = 12.8, 5.9, 4.7 Hz, 1H); 2.21 (dt, J = 12.8, 6.4 Hz, 1H); 2.49–2.59 (m, 1H); 2.64–2.73 (m, 1H); 3.59 (dd, J = 11.0, 4.3 Hz, 1H); 3.63 (dd, J = 11.0, 3.8 Hz, 1H); 3.91 (dt, J = 4.3, 3.8 Hz, 1H); 4.14–4.20 (m, 1H); 4.28 (dd, J = 8.8, 3.9 Hz, 1H); 4.46 (ddd, J = 6.4, 4.7, 3.8 Hz, 1H); 4.69 (t, J = 8.8 Hz, 1H); 5.49 (dd, J = 8.8, 3.9 Hz, 1H); 7.09 (dt, J = 15.4, 7.3, 1H); 7.30–7.45 (m, 12H); 7.64–7.68 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); 17.9 (s); 19.2 (s); 25.8 (q); 26.8 (q); 39.7 (t); 40.2 (t); 57.7 (d); 64.1 (t); 69.9 (t); 73.3 (d); 77.5 (d); 86.5 (d); 121.9 (d); 126.0 (d); 127.6 (d); 128.6 (d); 129.1 (d); 129.6 (d); 133.2 (s); 133.4 (s); 135.6 (d); 139.0 (s); 148.2 (d); 153.6 (s); 164.3 (s). HRMS (+ESI): m/z calcd. for C₄₀H₅₃O₆NNaSi₂ (M+Na) 722.3304, found 722.3309.

(*R*)-3-[(*E*)-4-((2*R*,4*S*,5*S*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)but-2-enoyl]-4-phenyloxazolidin-2-one (S4b).

Aldehyde **6b** (5.0 g, 9.8 mmol) led to **S4b** (6.66 g, 95%). $[\alpha]_D = -14.8$ (c 1.0, CHCl₃). IR (KBr film) v 2954, 2930, 2857, 1781, 1689, 1637, 1384, 1346, 1197, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ -0.03 (s, 3H); 0.02 (s, 3H); 0.81

(s, 9H); 1.07 (s, 9H); 1.65 (ddd, J = 13.2, 5.1, 2.7 Hz, 1H); 2.20 (ddd, J = 13.2, 7.9, 5.6 Hz, 1H); 2.47–2.56 (m, 1H); 2.64–2.73 (m, 1H); 3.77 (dd, J = 9.8, 5.6 Hz, 1H); 3.80–3.84 (m, 1H); 3.88 (dd, J = 9.8, 4.4 Hz, 1H); 4.04 (dtd, J = 7.9, 6.6, 5.1 Hz, 1H); 4.28 (dd, J = 8.8, 3.9 Hz, 1H); 4.33 (ddd, J = 5.6, 3.9, 2.7 Hz, 1H); 4.68 (t, J = 8.8 Hz, 1H); 5.48 (dd, J = 8.7, 3.9 Hz, 1H); 7.08 (ddd, J = 15.4, 7.7, 6.6 Hz, 1H); 7.30–7.45 (m, 12H); 7.64–7.68 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.3 (q); –4.7 (q); 17.9 (s); 19.2 (s); 25.7 (q); 26.9 (q); 39.9 (t); 40.5 (t); 57.7 (d); 63.4 (t); 69.9 (t); 73.4 (d); 76.4 (d); 83.9 (d); 121.8 (d); 126.0 (d); 127.5 (d); 128.6 (d); 129.1 (d); 129.5 (d); 133.6 (s); 133.9 (s); 135.6 (d); 139.0 (s); 148.2 (d); 153.6 (s); 164.3 (s). HRMS (+ESI): m/z calcd. for C₄₀H₅₃O₆NNaSi₂ (M+Na) 722.3304, found 722.3300.

General procedure for 1,4-addition:

A 1.4 M solution of MeMgBr in THF (1.1 eq.) was added to a solution of CuBr·Me₂S (1.1 eq.) in THF at -40 °C, and the mixture was stirred at -40 °C for 1 h. The solution was cooled to -78 °C and BF₃·Et₂O (1.1 eq.) was added, followed by a solution of oxazolidinone **S4** (1 eq.) in THF. The reaction mixture was stirred at -78 °C for 1 h, slowly warmed to r.t. during 2 h and stirred at r.t. for further 1 hour. After this time, sat. NH₄Cl was added and the solvent was removed under reduced pressure. The residue was diluted in sat. NH₄Cl and extracted with Et₂O. The organic solution was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Qurification by silica gel column chromatography with hexane-EtOAc (90:10 to 80:20) yielded the corresponding methylated **8a** as a colorless oil.

(*R*)-3-[(*S*)-4-((2*R*,4*S*,5*R*)-4-(tert-Butyldimethylsilyloxy)-5-(tert-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)-3-methylbutanoyl]-4-phenyloxazolidin-2-one (8a).

Olefin **S4a** (4.27 g, 6.1 mmol) led to methylated **8a** (3.67 g, 84%). [α]_D = -40.0 (c 1.0, CHCl₃). IR (KBr film) v 2956, 2930, 2857, 1784, 1707, 1471, 1428, 1384, 1322, 1252, 1196, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 3H); 0.06

(s, 3H); 0.88 (s, 9H); 0.94 (d, J = 6.7 Hz, 3H); 1.05 (s, 9H); 1.46–1.69 (m, 3H); 2.09–2.25 (m, 2H); 2.85 (dd, J = 16.7, 7.4 Hz, 1H); 2.96 (dd, J = 16.7, 6.2 Hz, 1H); 3.64 (dd, J = 11.0, 3.9 Hz, 1H); 3.69 (dd, J = 11.0, 3.9 Hz, 1H); 3.81 (dt, J = 4.5, 3.9 Hz, 1H); 4.07–4.16 (m, 1H); 4.24 (dd, J = 8.8, 3.6 Hz, 1H); 4.47 (td, J = 6.4, 4.5 Hz, 1H); 4.62 (t, J = 8.8 Hz, 1H); 5.40 (dd, J = 8.8, 3.6 Hz, 1H); 7.27–7.45 (m, 11H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); -4.6 (q); 17.9 (s); 19.2 (s); 20.1 (q); 25.8 (q); 26.8 (q); 27.5 (d); 41.4 (t); 42.3 (t); 42.9 (t); 57.6 (d); 64.0 (t); 69.8 (t); 72.9 (d); 76.8 (d); 85.5 (d); 125.8 (d); 127.6 (d); 129.1 (d); 128.6 (d); 129.1 (d); 129.5 (d); 129.6 (d); 133.4 (s); 133.5 (s); 135.6 (d); 139.3 (s); 153.6 (s); 171.9 (s). HRMS (+ESI): m/z calcd. for C₄₁H₅₇O₆NNaSi₂ (M+Na) 738.3617, found 738.3614.

(*R*)-3-[(*S*)-4-((2*R*,4*S*,5*S*)-4-(tert-Butyldimethylsilyloxy)-5-(tert-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)-3-methylbutanoyl]-4-phenyloxazolidin-2-one (8b).

Olefin **S4b** (8.0 g, 11.4 mmol) led to methylated **8b** (7.73 g, 81%). $[\alpha]_D = -11.1$ (c 1.0, CHCl₃). IR (KBr film) v 2956, 2930, 2857, 1783, 1707, 1471, 1428, 1384, 1325, 1252, 1198, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ -0.04 (s,

3H); 0.01 (s, 3H); 0.80 (s, 9H); 0.92 (d, J = 6.7 Hz, 3H); 1.06 (s, 9H); 1.49 (dt, J = 13.6, 5.9 Hz, 1H); 1.53 (ddd, J = 16.6, 6.3, 3.8 Hz, 1H); 1.67 (dt, J = 13.6, 7.5 Hz, 1H); 2.10–2.22 (m, 2H); 2.80 (dd, J = 16.7, 7.6 Hz, 1H); 2.96 (dd, J = 16.7, 6.1 Hz, 1H); 3.71–3.79 (m, 2H); 3.81–3.94 (m, 2H); 4.23 (dd, J = 8.8, 3.6 Hz, 1H); 4.31 (dt, J = 6.0, 3.8 Hz, 1H); 4.61 (t, J = 8.8 Hz, 1H) 5.39 (dd, J = 8.8, 3.6 Hz, 1H); 7.27–7.46 (m, 11H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); -4.6 (q); 18.0 (s); 19.2 (s); 20.2 (q); 25.8 (q); 26.9 (q); 27.4 (d); 41.5 (t); 42.2 (t); 43.2 (t); 57.6 (d); 63.6 (t); 69.8 (t); 72.5 (d); 75.8 (d); 83.3 (d); 125.9 (d); 127.5 (d); 128.6 (d); 129.1 (d); 129.4 (d); 133.7 (s); 134.0 (s); 135.6 (d); 135.7 (d); 139.2 (s); 153.7 (s); 171.9 (s). HRMS (+ESI): m/z calcd. for C₄₁H₅₇O₆NNaSi₂ (M+Na) 738.3617, found 738.3612.

General procedure for oxazolidinone removal:

A 2 M solution of LiBH₄ in THF (2 eq.) was added to a solution of olefin **8** (1 eq.) in Et₂O at -10 °C and the reaction mixture was stirred at 0 °C for 1 h. After this time, a 1 M solution of NaOH was added and the mixture was extracted with EtOAc, dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (90:10 to 85:15) yielded the corresponding alcohol **S5** as a colorless oil.

(*R*)-4-[(2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-3-methylbutan-1-ol (S5a).

MHz, CDCl₃) δ 0.04 (s, 3H); 0.05 (s, 3H); 0.87 (s, 9H); 0.95 (d, J = 6.6 Hz, 3H); 1.05 (s, 9H); 1.38–1.69 (m, 5H); 1.70–1.78 (m, 1H); 2.19–2.26 (m, 1H); 3.61–3.73 (m, 4H); 3.85 (dt, J = 4.2, 4.0 Hz, 1H); 4.16–4.23 (m, 1H); 4.49 (td, J = 6.3, 4.4 Hz, 1H); 7.34–7.44 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); –4.7 (q); 17.9 (s); 19.2 (s); 20.4 (q); 25.8 (q); 26.8 (q); 27.2 (d); 39.7 (t); 41.3 (t); 43.3 (t); 61.0 (t); 64.1 (t); 73.0 (d); 76.8 (d); 85.7 (d); 127.6 (d); 129.6 (d); 133.4 (s); 133.5 (s); 135.6 (d). HRMS (+ESI): m/z calcd. for C₃₂H₅₂O₄NaSi₂ (M+Na) 579.3296, found 579.3296.

(*R*)-4-[(2*R*,4*S*,5*S*)-4-(*tert*-butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-3-methylbutan-1-ol (S5b).

TBDPSOOOOTBSOOOOControlOOControlOOControlOOControlOOControlO<

MHz, CDCl₃) δ –0.04 (s, 3H); 0.01 (s, 3H); 0.80 (s, 9H); 0.93 (d, J = 6.6 Hz, 3H); 1.06 (s, 9H); 1.41 (td, J = 13.6, 6.8 Hz, 1H); 1.46–1.57 (m, 2H); 1.61–1.69 (m, 2H); 1.72–1.80 (m, 1H); 2.21 (ddd, J = 12.7, 7.2, 6.2 Hz, 1H); 3.60–3.73 (m, 2H); 3.74–3.80 (m, 2H); 3.83–3.89 (m, 1H); 3.94–4.02 (m, 1H); 4.33 (dt, J = 6.2, 3.9 Hz, 1H); 7.33–7.43 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); –4.6 (q); 18.0 (s); 19.2 (s); 20.6 (q); 25.7 (q); 26.9 (q); 27.0 (d); 39.8 (t); 41.5 (t); 43.5 (t); 61.1 (t); 63.6 (t); 72.6 (d); 75.9 (d); 83.3 (d); 127.5 (d); 129.4 (d); 129.5 (d); 133.7 (s); 133.9 (s); 135.6 (d); 135.7 (d). HRMS (+ESI): m/z calcd. for C₃₂H₅₂O₄NaSi₂ (M+Na) 579.3296, found 579.3272.

General procedure for alcohol oxidation:

Dess-Martin Periodinane (DMP, 1,1,1-Tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1*H*)one) (1.2 eq.) was added to a solution of alcohol **S5** (1 eq.) in CH_2Cl_2 and was stirred for 2 h. The reaction mixture was diluted with sat. $Na_2S_2O_3$ and sat. $NaHCO_3$ and the residue was extracted with CH_2Cl_2 . The organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (95:5) yielded the corresponding aldehyde 9 as a colorless oil.

(*S*)-4-[(2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydro-furan-2-yl]-3-methylbutanal (9a).

 $\begin{array}{l} \mbox{Alcohol $S5a$ (2.25 g, 4 mmol) led to aldehyde $9a$ (2.04 g, 92\%).} \\ \mbox{[α]_D$ = +22.2 (c 1.0, CHCl_3). IR (KBr film) v 2956, 2930, 2857, 1727, 1472, 1428, 1252, 1112 cm^{-1}. ^1H NMR (400 MHz, CDCl_3) \delta \\ \mbox{0.05 (s, 3H); 0.06 (s, 3H); 0.88 (s, 9H); 1.01 (d, J = 6.5 Hz, 3H); 1.06 (s, 9H); 1.50 (ddd, J = 14.1, 6.6, 5.1 Hz, 1H); 1.61 (ddd, J = 12.8, 7.3, 5.8 Hz, 1H); 1.73 (ddd, J = 14.1, 8.3, 6.4 Hz, 1H); 2.18-2.29 (m, 3H); 2.45-2.55 (m, 1H); 3.66 (dd, J = 11.1, 3.9 Hz, 1H); 3.70 (dd, J = 11.1, 4.1 Hz, 1H); 3.85 (dt, J = 4.1, 3.9 Hz, 1H); 4.11-4.19 (m, 1H); 4.47-4.53 (m, 1H); 7.34-7.44 (m, 6H); 7.66-7.72 (m, 4H); 9.74 (t, J = 2.0 Hz, 1H). $^{13}C NMR (100.6 MHz, CDCl_3) \delta -4.8 (q); -4.7 (q); 17.9 (s); 19.2 (s); 20.5 (q); 25.8 (q); 25.8 (d); 26.8 (q); 41.4 (t); 43.2 (t); 50.6 (t); 64.1 (t); 73.0 (d); 76.4 (d); 85.8 (d); 127.6 (d); 129.6 (d); 133.4 (s); 133.5 (s); 135.6 (d); 202.9 (d). HRMS (+ESI): m/z calcd. for $C_{32}H_{50}O_4NaSi_2 (M+Na) 577.3140, found 577.3142. \\ \end{array}$

(S)-4-[(2R,4S,5S)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-3-methylbutanal (9b)

TBDPSOAlcohol S5b (5.70 g, 10.24 mmol) led to aldehyde 9b (5.2 g,
92%). $[\alpha]_D = +11.9$ (c 1.0, CHCl₃). IR (KBr film) v 2955, 2930,
2857, 1726, 1472, 1428, 1255, 1113 cm⁻¹. ¹H NMR (400 MHz,

CDCl₃) δ –0.04 (s, 3H); 0.01 (s, 3H); 0.80 (s, 9H); 0.99 (d, *J* = 6.5 Hz, 3H); 1.06 (s, 9H); 1.48 (ddd, *J* = 13.9, 6.7, 5.3 Hz, 1H); 1.56 (ddd, *J* = 12.9, 6.4, 3.4 Hz, 1H); 1.73 (ddd, *J* = 13.9, 8.0, 6.3 Hz, 1H); 2.15–2.30 (m, 3H); 2.42–2.53 (m, 1H); 3.74–3.82 (m, 2H); 3.83–3.88 (m, 1H); 3.91–3.98 (m, 1H); 4.30–4.35 (m, 1H); 7.34–7.44 (m, 6H); 7.66–7.72 (m, 4H); 9.73 (t, *J* = 2.1 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); –4.6 (q); 18.0 (s); 19.2 (s); 20.6 (q); 25.7 (q); 25.8 (d); 26.9 (q); 41.6 (t); 43.4 (t); 50.6 (t); 63.7 (t); 72.5 (d); 75.4 (d); 83.5 (d); 127.5 (d); 129.5 (d); 133.7 (s); 133.9 (s); 135.6 (d); 135.7 (d); 203.1 (d). HRMS (+ESI): *m/z* calcd. for C₃₂H₅₀O₄NaSi₂ (M+Na) 577.3140, found 577.3147.

General procedure for stereoselective aldol addition:

Acetone (5.5 eq.) and Et₃N (5 eq.) were added to a solution of (–)-Bchlorodiisopinocampheylborane (5 eq.) in Et₂O at 0 °C and the solution was stirred at 0 °C for 45 min. The solution was cooled to -78 °C, a solution of aldehyde **9** (1 eq.) was added and the reaction mixture was stirred at -78 °C for 1 h and at -20 °C for 16 h. After this time, H₂O₂, KH₂PO₄-NaOH pH = 7 buffer and MeOH were added and stirring continued for further 1 h. The reaction mixture was diluted with water and extracted with Et₂O and EtOAc. The organic extracts were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (90:10 to 80:20) yielded the corresponding aldol **10** as a colorless oil.

(4*S*,6*R*)-7-[(2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-4-hydroxy-6-methylheptan-2-one (10a).

Aldehyde **9a** (2.04 g, 3.7 mmol) led to aldol **10a** (1.51 g, 67%) (dr = 8:1). $[\alpha]_D$ = +36.1 (c 1.0, CHCl₃). IR (KBr film) v 3454 (br), 2955, 2929, 2857, 1711, 1478, 1428, 1361, 1257, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H); 0.05 (s, 3H); 0.87

(s, 9H); 0.95 (d, J = 6.7 Hz, 3H); 1.05 (s, 9H); 1.36–1.41 (m, 2H); 1.50–1.64 (m, 3H); 1.71–1.81 (m, 1H); 2.12 (s, 3H); 2.19–2.26 (m, 1H); 2.46 (dd, J = 17.6, 9.0 Hz, 1H); 2.56 (dd, J = 17.6, 2.7 Hz, 1H); 3.64 (dd, J = 10.9, 3.9 Hz, 1H); 3.69 (dd, J = 10.9, 3.9 Hz, 1H); 3.83–3.87 (m, 1H); 4.10–4.22 (m, 2H); 4.43–4.49 (m, 1H); 7.34–7.44 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); -4.6 (q); 17.9 (s); 19.2 (s); 21.0 (q); 25.8 (q); 26.8 (q); 26.9 (d); 30.7 (q); 41.2 (t); 42.8 (t); 43.6 (t); 50.2 (t); 64.1 (t); 65.6 (d); 73.0 (d); 76.9 (d); 85.8 (d); 127.6 (d); 129.6 (d); 133.4 (s); 133.5 (s); 135.6 (d); 210.0 (s). HRMS (+ESI): m/z calcd. for C₃₅H₅₇O₅Si₂ (M+H) 613.3739, found 613.3743.

(4*S*,6*R*)-7-[(2*R*,4*S*,5*S*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-4-hydroxy-6-methylheptan-2-one (10b).

Aldehyde **9b** (1.2 g, 2.16 mmol) led to aldol **10b** (1.06 g, 80%) (dr = 6:1). $[\alpha]_D$ = 19.8 (c 1.0, CHCl₃). IR (KBr film) v 3462 (br), 2955, 2930, 2857, 1711, 1472, 1428, 1361, 1255, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ –0.05 (s, 3H); 0.01 (s, 3H); 0.80 (s,

9H); 0.94 (d, J = 6.7 Hz, 3H); 1.06 (s, 9H); 1.38 (t, J = 6.8 Hz, 2H); 1.50–1.70 (m, 3H); 1.78 (h, J = 6.7 Hz, 1H); 2.12 (s, 3H); 2.21 (ddd, J = 13.2, 7.5, 6.1 Hz, 1H); 2.48 (dd, J = 17.5, 8.9 Hz, 1H); 2.58 (dd, J = 17.5, 3.0 Hz, 1H); 3.16 (bs, 1H); 3.73–3.80 (m, 2H); 3.82–3.88 (m, 1H); 3.94–4.01 (m, 1H); 4.10–4.18 (m, 1H); 4.32 (dt, J = 6.1, 3.6 Hz, 1H); 7.33–7.43 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); –4.6 (q); 18.0 (s); 19.2 (s); 21.2 (q); 25.7 (q); 26.6 (d); 26.9 (q); 30.8 (q); 41.6 (t); 43.0 (t); 43.6 (t); 50.1 (t); 64.6 (t); 65.6 (d); 72.5 (d); 75.8 (d); 83.4 (d); 127.5 (d); 129.5 (d); 133.7 (s); 133.9 (s); 135.6 (d); 135.7 (d); 210.1 (s). HRMS (+ESI): *m/z* calcd. for C₃₅H₅₇O₅Si₂ (M+H) 613.3739, found 613.3729.

General procedure for MPA derivatization:

 α -Methoxyphenylacetic acid (3 or 6 eq.) and DCC (3 or 6 eq.) were added to a solution of alcohol **10** (1 eq.) in THF, then DMAP (0.1 eq.) was added and the solution was stirred for 30 min. The solution was filtered, poured into Et₂O and washed with 0.2 M aqueous HCl and sat. NaHCO₃. The organic residue was dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (90:10) yielded the corresponding ester **S6** as a colorless oil.

(2*S*,4*S*)-1-[(2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-2-methyl-6-oxoheptan-4-yl (*S*)-2-methoxy-2-phenylacetate (S6a).

S-α-Methoxyphenylacetic acid (25 mg, 0.15 mmol) and alcohol **10a** (30 mg, 0.05 mmol) led to ester **S6a** (30 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H); 0.05 (s, 3H); 0.87 (s, 9H); 0.94 (d, J = 5.6 Hz, 3H); 1.05 (s, 9H); 1.45–1.60 (m, 6H); 1.81 (s, 3H); 2.17 (dt, J = 12.6,

6.4 Hz, 1H); 2.45 (dd, *J* = 16.1, 4.9 Hz, 1H); 2.52 (dd, *J* = 16.1, 7.6 Hz, 1H); 3.37 (s, 3H); 3.64 (dd, *J* = 11.0, 3.9 Hz, 1H); 3.68 (dd, *J* = 11.0, 3.9 Hz, 1H); 3.81 (q, *J* = 3.9 Hz, 1H); 4.03–4.11 (m, 1H); 4.42–4.47 (m, 1H); 4.68 (s, 1H); 5.33–5.41 (m, 1H); 7.30–7.47 (m, 11H); 7.65–7.72 (m, 4H).

(2*S*,4*S*)-1-[(2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-2-methyl-6-oxoheptan-4-yl (*R*)-2-methoxy-2-phenyl-acetate (S6b).

R- α -Methoxyphenylacetic acid (25 mg, 0.15 mmol) and alcohol **10a** (30 mg, 0.05 mmol) led to ester **S6b** (26 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H); 0.05 (s, 3H); 0.78 (d, *J* = 6.5 Hz, 3H); 0.87 (s, 9H); 1.04 (s, 9H); 1.54–1.98 (m, 6H); 2.05 (s, 3H); 2.06–2.10 (m,

1H); 2.56 (dd, *J* = 16.1, 5.0 Hz, 1H); 2.63 (dd, *J* = 16.1, 7.5 Hz, 1H); 3.41 (s, 3H); 3.55–3.70 (m, 2H); 3.75–3.81 (m, 1H); 3.90–4.01 (m, 1H); 4.39–4.44 (m, 1H); 4.68 (s, 1H); 5.30–5.37 (m, 1H); 7.28–7.44 (m, 11H); 7.65–7.72 (m, 4H).

Absolute configuration determination:

	δH_A	δH_B	δH_C
R=R-MPA	2.05	2.59	0.78
R=S-MPA	1.81	2.48	0.94
Δ^{RS}	0.24	0.11	-0.16

(2*S*,4*S*)-1-[(2*R*,4*S*,5*S*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-2-methyl-6-oxoheptan-4-yl (*S*)-2-methoxy-2-phenylacetate (S6c).

S-Methoxyphenylacetic acid (50 mg, 0.3 mmol) and alcohol **10b** (32 mg, 0.05 mmol) led to ester **S6c** (22 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ –0.05 (s, 3H); 0.00 (s, 3H); 0.79 (s, 9H); 0.94 (d, *J* = 5.9 Hz, 3H); 1.05 (s, 9H); 1.40–1.65 (m, 6H); 1.81 (s, 3H); 2.12–2.19 (m,

1H); 2.47 (dd, J = 16.2, 4.8 Hz, 1H); 2.55 (dd, J = 16.2, 7.7 Hz, 1H); 3.38 (s, 3H); 3.72–3.78 (m, 2H); 3.81–3.88 (m, 2H); 4.30 (dt, J = 6.1, 3.8 Hz, 1H); 4.69 (s, 1H); 5.30–5.37 (m, 1H); 7.30–7.42 (m, 11H); 7.66–7.72 (m, 4H). HRMS (+ESI): m/z calcd. for C₄₄H₆₄O₇NaSi₂ (M+Na) 783.4083, found 783.4070.

(2*S*,4*S*)-1-[(2*R*,4*S*,5*S*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-2-methyl-6-oxoheptan-4-yl (*R*)-2-methoxy-2-phenylacetate (S6d).

R-Methoxyphenylacetic acid (50 mg, 0.3 mmol) and alcohol **10b** (32 mg, 0.05 mmol) led to ester **S6d** (30 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ –0.06 (s, 3H); 0.00 (s, 3H); 0.79 (s, 9H); 0.80 (d, *J* = 5.9 Hz, 3H); 1.05 (s, 9H); 1.25–1.53 (m, 6H); 2.05 (s, 3H); 2.05–2.12 (m,

1H); 2.59 (dd, J = 16.2, 5.1 Hz, 1H); 2.65 (dd, J = 16.2, 7.5 Hz, 1H); 3.40 (s, 3H); 3.67–3.75 (m, 3H); 3.80–3.86 (m, 1H); 4.27 (dt, J = 6.2, 3.8 Hz, 1H); 4.68 (s, 1H); 5.28–5.36 (m, 1H); 7.28–7.42 (m, 11H); 7.66–7.72 (m, 4H). HRMS (+ESI): m/z calcd. for C₄₄H₆₄O₇NaSi₂ (M+Na) 783.4083, found 783.4075.

Absolute configuration determination:

General procedure for TIPS protection:

Triisopropylsilyl trifluoromethanesulfonate (1.2 eq.) was added to a solution of **10** (1 eq.), imidazole (2 eq.) and DMAP (0.1 eq.) in DMF, and the reaction mixture was stirred at 95 °C for 6 h. The solvent was removed under reduced pressure and the residue was dissolved in water and extracted with Et_2O . The organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane- Et_2O (95:5) yielded the corresponding protected aldol **11** as a colorless oil.

(4*S*,6*S*)-7-[(2*R*,4*S*,5*R*)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-6-methyl-4-(triisopropylsilyloxy)heptan-2-one (11a).

TBDPSO

Alcohol **10a** (1.5 g, 2.45 mmol) led to protected **11a** (1.79 g, 93%). [α]_D = +27.6 (c 1.0, CHCl₃). IR (KBr film) v 2956, 2930, 2864, 1719, 1476, 1427, 1251, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H); 0.05 (s, 3H); 0.87 (s, 9H);

0.93 (d, J = 6.3 Hz, 3H); 1.05–1.06 (3bs, 30H); 1.25–1.65 (m, 6H); 2.11 (s, 3H); 2.23 (dt, J = 12.6, 6.5 Hz, 1H); 2.54 (d, J = 5.7 Hz, 2H); 3.65 (dd, J = 11.0, 3.9 Hz, 1H); 3.70 (dd, J = 11.0, 3.9 Hz, 1H); 3.83 (dt, J = 4.4, 3.9 Hz, 1H); 4.11–4.19 (m, 1H); 4.36–4.43 (m, 1H); 4.47 (td, J = 6.2, 4.4 Hz, 1H); 7.34–7.44 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); –4.6 (q); 12.7 (d); 17.9 (s); 18.2 (q); 19.2 (s); 21.0 (q); 25.8 (q); 26.8 (q); 27.5 (d); 31.7 (q); 41.6 (t); 44.7 (t); 45.4 (t); 50.9 (t); 64.1 (t); 67.7 (d); 73.1 (d); 76.7 (d); 85.6 (d); 127.6 (d); 129.6 (d); 133.4 (s); 133.5 (s); 135.6 (d); 207.9 (s). HRMS (+ESI): m/z calcd. for C₄₄H₈₀O₅NSi₃ (M+NH₄) 786.5339, found 786.5365.

(4*S*,6*S*)-7-[(2*R*,4*S*,5*S*)-4-(*tert*-butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-6-methyl-4-(triisopropylsilyloxy)heptan-2-one (11b).

Alcohol **10b** (0.97 g, 1.58 mmol) led to protected **11b** (0.96 g, 77%). [α]_D = 25.6 (c 1.0, CHCl₃). IR (KBr film) v 2931, 2864, 1719, 1463, 1428, 1254, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ –0.05 (s, 3H); 0.00 (s, 3H); 0.80 (s, 9H); 0.91

(d, J = 6.3 Hz, 3H); 1.04 and 1.05 (2bs, 30H); 1.30–1.66 (m, 7H); 2.12 (s, 3H); 2.23 (dt, J = 13.2, 6.7 Hz, 1H); 2.55 (d, J = 5.7 Hz, 1H); 3.72–3.80 (m, 2H); 3.81–3.88 (m, 1H); 3.90–3.97 (m, 1H); 4.32 (dt, J = 6.0, 3.7 Hz, 1H); 4.35–4.44 (m, 1H); 7.34–7.44 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); -4.6 (q); 12.6 (d); 17.8 (s); 18.2 (q); 19.2 (s); 20.1 (q); 25.7 (q); 26.9 (q); 27.4 (d); 31.7 (q); 41.9 (t); 44.9 (t); 45.2 (t); 50.8 (t); 63.7 (t); 67.8 (d); 72.6 (d); 75.6 (d); 83.3 (d); 127.5 (d); 129.5 (d); 133.7 (s); 134.0 (s); 135.6 (d); 135.7 (d); 208.0 (s). HRMS (+ESI): m/z calcd. for C₄₄H₈₀O₅NSi₃ (M+NH4) 786.5339, found 786.5316.

General procedre for ketone reduction:

A solution of NaBH₄ (1.2 eq.) and ketone **11** (1 eq.) in THF-EtOH 2:1 was stirred at r.t. for 16 h. After this time, aqueous sat. NH₄Cl was added and the residue was extracted with CH_2Cl_2 . The organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (95:5) yielded a 6:4 mixture of the corresponding alcohol **S7** as a colorless oil.

(2RS,4S,6S)-7-[(2R,4S,5R)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)-tetrahydrofuran-2-yl]-6-methyl-4-(triisopropylsilyloxy)heptan-2-ol (S7a).

Ketone **11a** led to a 6:4 mixture of alcohol **S7a** (4.79 g, 89%). IR (KBr film) v 3506, 2955, 2931, 2865, 1463, 1428, 1252, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H); 0.05 (s, 3H); 0.87 (s, 9H); 0.91 (d, J = 6.1 Hz, 3H); 1.06–1.09

(3bs, 30H); 1.11 and 1.15 (2d, J = 6.2 Hz, 3H); 1.30–1.75 (m, 8H); 2.24 (dt, J = 12.8, 6.6 Hz, 1H); 3.62–3.96 (m, 2H); 3.84–3.88 (m, 1H); 3.98–4.06 (m, 1H); 4.12–4.26 (m, 2H); 4.42–4.50 (m, 1H); 7.34–7.44 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); –4.6 (q); 12.4 (d); 13.1(d); 17.7 (s); 17.9 (s); 18.1 (q); 18.2 (q); 19.2 (s); 19.6 (q); 19.7 (q); 23.8 (q); 23.9 (q); 25.8 (q); 26.8 (q); 27.4 (d); 27.7 (d); 41.2 (t); 41.4 (t); 41.6 (t); 42.6 (t); 44.6 (t); 44.7 (t); 45.1 (t); 45.2 (t); 64.1 (t); 64.2 (d); 66.9 (d); 70.7 (d); 72.1 (d); 73.1 (d); 73.3 (d); 76.9 (d); 85.9 (d); 127.6 (d); 129.6 (d); 133.4 (s); 133.5 (s); 135.6 (d). HRMS (+ESI): *m*/*z* calcd. for C₄₄H₇₈O₅NaSi₃ (M+Na) 793.5049, found 793.5068.

(2RS,4S,6S)-7-[(2R,4S,5S)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl]-6-methyl-4-(triisopropylsilyloxy)heptan-2-ol (S7b).

Ketone **11b** (1.81 g, 2.36 mmol) led to a 6:4 mixture of alcohol **S7b** (1.69 g, 92%). IR (KBr film) v 3456 (br), 2955, 2931, 2863, 1463, 1428, 1255, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ –0.04 (2s, 3H); 0.01 (s, 3H); 0.81 (2s, 9H);

0.89 (d, J = 6.3 Hz, 3H); 1.05 and 1.09 (2s, 9H); 1.08 (bs, 21H); 1.09 and 1.15 (2d, J = 6.2 Hz, 3H); 1.30–1.75 (m, 8H); 2.15–2.25 (m, 1H); 3.72–3.80 (m, 2H); 3.83–3.88 (m, 1H); 3.91–4.00 (m, 1H); 4.01–4.07 and 4.11–4.25 (2m, 2H); 4.30–4.35 (m, 1H); 7.34–7.45 (m, 6H); 7.66–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); –4.6 (q); 12.3 (d); 13.1 (d); 17.7 (s); 18.0 (s); 18.1 (q); 18.2 (q); 19.2 (s); 19.7 (q); 19.8 (q); 23.8 (q); 25.7 (q); 26.9 (q); 27.4 (d); 27.5 (d); 40.9 (t); 41.7 (t); 41.9 (t); 42.0 (t); 44.3 (t); 45.2 (t); 45.3 (t); 63.5 (t); 63.6 (t); 64.3 (d); 67.0 (d); 70.9 (d); 72.4 (d); 72.5 (d); 72.6 (d); 75.4 (d); 75.5 (d); 83.3 (d); 127.5 (d); 129.4 (d); 129.5 (d); 133.8 (s); 133.9 (s); 135.6 (d); 135.7 (d). HRMS (+ESI): *m*/*z* calcd. for C₄₄H₇₉O₅Si₃ (M+H) 771.5230, found 771.5217.

General procedure for thioester formation by Mitsunobu reaction:

Diisopropyl azodicarboxylate (1.5 eq.) was added to a solution of alcohol **S7a** (1 eq.), 1-R-1*H*-tetrazole-5-thiol (1.5 eq.) and PPh₃ (1.5 eq.) in THF. The reaction mixture was stirred at r.t. for 5 h. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with hexane-EtOAc (98:2 to 95:5) to yield the corresponding thioester **S8** as a colorless oil.

5-[(2RS,4S,6S)-7-((2R,4S,5R)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)-6-methyl-4-(triisopropylsilyloxy)heptan-2-yl-thio]-1-phenyl-1*H*-tetrazole (S8a).

Alcohol **S7a** (4.9 g, 6.35 mmol) and 1-phenyl-1*H*-tetrazole-5-thiol (1.69 g, 9.5 mmol) led to thioester **S8a** (4.19 g, 71%). IR (KBr film) v 2930, 2864, 1598, 1500, 1462, 1428, 1388, 1251, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.03 (2s, 3H); 0.04 and 0.05 (2s, 3H); 0.86 and 0.87 (2s, 9H); 0.92 (d,

 $J = 6.3 \text{ Hz}, 3\text{H}; 1.01 \text{ (s, 13H)}; 1.04, 1.05 \text{ and } 1.06 \text{ (3s, 17H)}; 1.35-1.50 \text{ (m, 2H)}; 1.56 \text{ and } 1.58 \text{ (2d, } J = 6.7 \text{ Hz}, 3\text{H}); 1.54-1.68 \text{ (m, 5H)}; 1.85-2.02 \text{ (m, 1H)}; 2.20-2.27 \text{ (m, 1H)}; 3.61-3.71 \text{ (m, 2H)}; 3.80-3.85 \text{ (m, 1H)}; 4.04-4.22 \text{ (m, 3H)}; 4.43-4.50 \text{ (m, 1H)}; 7.34-7.44 \text{ (m, 6H)}; 7.52-7.56 \text{ (m, 5H)}; 7.65-7.71 \text{ (m, 4H)}. {}^{13}\text{C} \text{ NMR} (100.6 \text{ MHz}, \text{CDCl}_3) \delta -4.8 \text{ (q)}; -4.6 \text{ (q)}; 12.9 \text{ (d)}; 17.8 \text{ (s)}; 17.9 \text{ (s)}; 18.2 \text{ (q)}; 18.3 \text{ (q)}; 19.2 \text{ (s)}; 19.8 \text{ (q)}; 21.8 \text{ (q)}; 23.1 \text{ (q)}; 25.8 \text{ (q)}; 26.8 \text{ (q)}; 27.4 \text{ (d)}; 41.3 \text{ (t)}; 41.6 \text{ (t)}; 42.0 \text{ (d)}; 43.2 \text{ (t)}; 44.7 \text{ (t)}; 44.9 \text{ (t)}; 45.1 \text{ (t)}; 64.1 \text{ (t)}; 68.6 \text{ (d)}; 68.7 \text{ (d)}; 73.1 \text{ (d)}; 76.9 \text{ (d)}; 85.6 \text{ (d)}; 85.7 \text{ (d)}; 124.0 \text{ (d)}; 127.6 \text{ (d)}; 129.6 \text{ (d)}; 129.9 \text{ (d)}; 130.0 \text{ (d)}; 133.4 \text{ (s)}; 133.5 \text{ (s)}; 133.8 \text{ (s)}; 135.6 \text{ (d)}; 153.8 \text{ (s)}. \text{HRMS (+ESI): } m/z \text{ calcd. for } C_{51}H_{82}O_4N_4\text{NaSSi}_3 \text{ (M+Na) } 953.5257, \text{ found } 953.5268.}$

5-[(2RS,4S,6S)-7-((2R,4S,5S)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)-6-methyl-4-(triisopropylsilyloxy)heptan-2-yl-thio]-1-*tert*-butyl-1*H*-tetrazole (S8b).

Alcohol **S7b** (490 mg, 0.63 mmol), and 1-(*tert*-butyl)-1*H*-tetrazole-5-thiol^[5] (140 mg, 0.89 mmol) led to **S8b** (529 mg, 92%). IR (KBr film) v 2931, 2864, 1463, 1390, 1253, 1112 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ –0.05 and –0.04 (2s, 3H); –0.00 and 0.00 (2s, 3H); 0.79 and 0.80 (2s, 9H); 0.91

(2d, J = 6.2 Hz, 3H); 1.03 (s, 10H); 1.05, 1.06 and 1.07 (3s 20H); 1.36–1.48 (m, 3H); 1.53 and 1.54 (2d, J = 6.6 Hz, 3H); 1.57–1.67 (m, 4H); 1.68 and 1.70 (2s, 9H); 1.84–2.02 (m, 1H); 2.19–2.26 (m, 1H); 3.72–3.80 (m, 2H); 3.82–3.86 (m, 1H); 3.87–3.96 (m, 1H); 4.07–4.26 (m, 2H); 4.30–4.36 (m, 1H); 7.32–7.42 (m, 6H); 7.67–7.72 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); –4.7(q); –4.6 (q); 12.9 (d); 17.9 (s); 18.2 (q); 18.3 (q); 19.2 (s); 19.9 (q); 21.8 (q); 23.2 (q); 25.7 (q); 26.9 (q); 27.4 (d); 28.7 (q); 41.7 (t); 41.8 (t); 41.9 (d); 42.3 (d); 43.1 (t); 43.2 (t); 44.9 (t); 45.0 (t); 45.1 (t); 60.8 (s); 63.7 (t); 68.8 (d); 72.6 (d); 75.6 (d); 75.9 (d); 83.2 (d); 83.3 (d); 127.5 (d); 129.4 (d); 132.2 (s); 133.7 (s); 135.6 (d); 135.7 (d); 152.1 (s). HRMS (+ESI): *m/z* calcd. for C₄₉H₈₇N₄O₄SSi₃ (M+H) 911.5750, found 911.5740.

General procedure for oxidation to the sulfone:

A solution of 70% m-CPBA (2.2 eq) and thioester **S8** (1 eq.) in CH_2Cl_2 was stirred for 16 h. The reaction mixture was diluted with sat. $Na_2S_2O_3$ and sat. $NaHCO_3$ and the residue was extracted with CH_2Cl_2 . The organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (95:5) yielded the corresponding sulfone **2** as a colorless oil.

5-[(2RS,4S,6S)-7-((2R,4S,5R)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)-6-methyl-4-(triisopropylsilyloxy)heptan-2-yl-sulfonyl]-1-phenyl-1*H*tetrazole (2a).

Thioester **S8a** (4.19 g, 4.5 mmol) led to sulfone **2a** (3.85 g, 89%). IR (KBr film) v 2930, 2865, 1498, 1463, 1338, 1252, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.03, 0.04, 0.05 and 0.06 (4s, 6H); 0.88 and 0.89 (2s, 9H); 0.89 and 0.92 (2d, J = 6.0 Hz, 3H); 1.06, 1.07 and 1.08 (3s, 30H); 1.38–1.70

and 1.83–1.91 (2m, 7H); 1.49 and 1.56 (2d, J = 6.8 Hz, 3H); 2.12–2.28 and 2.42–2.50 (2m, 2H); 3.62–3.71 (m, 2H); 3.77–3.85 (m, 1H); 4.07–4.21 and 4.24–4.31 (2m, 3H); 4.40–4.51 (m, 1H); 7.34–7.43 (m, 6H); 7.55–7.62 (m, 3H); 7.64–7.71 (m, 6H). ¹³C NMR (100.6 MHz, CDCl₃) δ –4.8 (q); -4.7 (q); 12.9 (d); 13.5 (q); 15.9 (q); 17.7 (s); 17.9 (s); 18.2 (q); 18.3 (q); 19.0 (s); 19.2 (q); 19.7 (q); 25.8 (q); 26.8 (q); 27.3 (d); 27.4 (d); 34.1 (t); 35.7 (t); 41.4 (t); 41.6 (t); 44.6 (t); 45.0 (t); 45.1 (t); 58.6 (d); 58.8 (d); 64.1 (t); 64.3 (t); 67.5 (d); 69.3 (d); 73.1 (d); 73.3 (d); 76.5 (d); 76.9 (d); 85.8 (d); 85.9 (d); 125.3 (d); 125.4 (d); 127.6 (d); 129.5 (d); 129.6 (d); 131.3 (d); 133.2 (s); 133.4 (s); 133.5 (s); 135.6 (d); 152.6 (s); 152.7 (s). HRMS (+ESI): m/z calcd. for C₅₁H₈₃O₆N₄SSi₃ (M+H) 963.5336, found 963.5351.

5-[(2RS,4S,6S)-7-((2R,4S,5S)-4-(*tert*-Butyldimethylsilyloxy)-5-(*tert*-butyldiphenylsilyloxymethyl)tetrahydrofuran-2-yl)-6-methyl-4-(triisopropylsilyloxy)heptan-2-yl-sulfonyl]-1-*tert*-butyl-1*H*tetrazole (2b).

Thiotetrazole **S8b** (2.56 g, 2.80 mmol) led to sulfone **2b** (2.10 g, 80%). IR (KBr film) v 2941, 2865, 1463, 1332, 1158, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ -0.04 (s, 3H); 0.00 and 0.01 (2s, 3H); 0.80 (2s, 9H); 0.91 (d, *J* = 6.2 Hz, 3H); 1.05 (2s, 9H); 1.06 and 1.07 (2s, 21H); 1.37–1.70 (m, 7H); 1.50 and 1.56 (2d, *J* = 6.9 Hz, 3H); 1.84 (s, 9H);

2.12–2.26 and 2.42–2.49 (2m, 2H); 3.71–3.78 (m, 2H); 3.82–3.96 (m, 2H); 4.07–4.16 and 4.24–4.43 (2m, 3H); 7.32–7.42 (m, 6H); 7.67–7.71 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ –5.2 (q); –4.6 (q); 12.9 (d); 13.9 (q); 16.3 (q); 18.0 (s); 18.2 (q); 18.3 (q); 19.1 (q); 19.2 (s); 19.6 (q); 25.7 (q); 26.9 (q); 27.4 (d); 27.5 (d); 29.6 (q); 29.7 (q); 34.2 (t); 35.9 (t); 41.7 (t); 41.9 (t); 45.0 (t); 45.2 (t); 45.3 (t); 58.8 (d); 59.3 (d); 63.5 (t); 65.3 (s); 65.4 (s); 67.6 (d); 69.5 (d); 72.5 (d); 75.6 (d); 75.9 (d); 83.2 (d); 83.3 (d); 127.5 (d); 129.5 (d); 133.7 (s); 133.8 (s); 134.0 (s); 135.6 (d); 135.7 (d); 153.2 (s); 153.3 (s). HRMS (+ESI): *m*/*z* calcd. for C₄₉H₉₀N₅O₆SSi₃ (M+NH₄) 960.5914, found 960.5907.

(2*S*,3*S*,5*R*)-5-[(2*S*,4*S*,6*RS*)-6-(1-(*tert*-Butyl)-1*H*-tetrazol-5-yl-sulfonyl)-2-methyl-4-(triisopropyl-silyloxy)heptyl]-2-(hydroxymethyl)tetrahydrofuran-3-ol (S9).

PPTS (666 mg, 2.6 mmol) was added to a solution of sulfone **2b** (250 mg, 0.26 mmol) in MeOH (10 mL) and the reaction was stirred at 65 °C for 5 h. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with hexane-EtOAc (80:20 to 50:50) to yield **S9**

(114 mg, 95%) as a colorless oil. IR (KBr film) v 3419 (br), 2943, 2867, 1464, 1377, 1332, 1159 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.92 and 0.94 (2d, *J* = 6.3 Hz, 3H); 1.08 (bs, 21H); 1.41–1.78 and 1.94–2.03 (m, 6H); 1.55 and 1.61 (2d, *J* = 6.8 Hz, 3H); 1.86 (2s, 9H); 2.20–2.27 and 2.36–2.50 (2m, 3H); 3.73–3.80 (m, 1H); 3.86–4.01 (m, 3H); 4.16–4.30 (m, 1H); 4.33–4.41 (m, 1H); 4.43–4.51 (m, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 12.7 (d); 12.9 (d); 14.4 (q); 16.0 (q); 18.2 (q); 19.8 (q); 20.1 (q); 26.9 (d); 27.4 (d); 29.7 (q); 33.7 (t); 36.4 (t); 42.7 (t); 42.9 (t); 43.1 (t); 44.0 (t); 44.5 (t); 45.0 (t); 59.2 (d); 59.3 (d); 61.7 (t); 61.8 (t); 65.5 (s); 65.6 (s); 68.1 (d); 69.6 (d); 73.9 (d); 74.1 (d); 75.2 (d); 75.3 (d); 80.6 (d); 80.7 (d); 153.1 (s); 153.2 (s). HRMS (+ESI): *m*/*z* calcd. for C₂₇H₅₅N₄O₆SSi (M+H) 591.3606, found 591.3608. 1-(*tert*-Butyl)-5-[(2*RS*,4*S*,6*S*)-7-((2*R*,4*S*,5*S*)-5-(*tert*-butyldiphenylsilyloxymethyl)-4-(trimethylsilyloxy)tetrahydrofuran-2-yl)-6-methyl-4-(triisopropylsilyloxy)heptan-2-yl-sulfonyl]-1*H*-tetrazole (2c).

TBDPSCl (71 μ L, 0.27 mmol) was added to a solution of diol **S9** (150 mg, 0.25 mmol) and imidazole (68 mg, 1 mmol) in CH₂Cl₂ (10 mL) and the reaction was stirred for 1 h. After this time, TMSCl (48 μ L, 0.37 mmol) was added and the reaction was stirred for further 15 min. Finally, the resulting mixture was washed with water, dried over MgSO₄, filtered

and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (97:3) yielded **2c** (165 mg, 73%) as a colorless oil. IR (KBr film) v 2943, 2866, 1463, 1333, 1113 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 0.05 and 0.06 (2s, 9H); 0.91 (d, *J* = 5.9 Hz, 3H); 1.04 (s, 9H); 1.07 (2bs, 21H); 1.38–1.68 (m, 7H); 1.50 and 1.56 (2d, *J* = 6.8 Hz, 3H); 1.84 (s, 9H); 1.89–1.94, 2.13–2.30 and 2.41–2.49 (3m, 2H); 3.70–3.77 (m, 2H); 3.83–3.93 (m, 2H); 4.07–4.16 and 4.23–4.31 (2m, 1H); 4.32–4.44 (m, 2H); 7.32–7.43 (m, 6H); 7.66–7.74 (m, 4H). ¹³C NMR (100.6 MHz, CDCl₃) δ 0.0 (q); 12.9 (d); 14.0 (q); 16.2 (q); 18.2 (q); 18.3 (q); 19.2 (s); 19.2 (q); 19.7 (q); 26.9 (q); 27.4 (d); 27.5 (d); 29.6 (q); 29.7 (q); 34.2 (t); 35.9 (t); 41.8 (t); 41.9 (t); 44.7 (t); 45.0 (t); 45.1 (t); 58.9 (d); 59.2 (d); 62.8 (t); 65.3 (s); 65.4 (s); 67.7 (d); 69.4 (d); 72.1 (d); 75.5 (d); 75.9 (d); 82.8 (d); 83.0 (d); 127.5 (d); 129.5 (d); 133.7 (s); 133.8 (s); 134.0 (s); 135.6 (d); 135.7 (d); 153.2 (s); 153.3 (s). HRMS (+ESI): *m*/*z* calcd. For C4₆H₈₄N₅O₆Ssi₃ (M+NH₄) 918.5445, found 918.5443.

Kinetic resolution of 12:^[6]

Lipase PS-30 (4.32 g) was added to a solution of (±)-12 (2.15 g, 12.5 mmol) in vinyl acetate (10 mL) and pentane (25 mL), and the suspension was stirred for 48 h at 37 °C. The residue was filtered through Celite[®] 545, and the solvent was removed under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (90:10) yielded *R*-12 (1.05 g, 49%) and *S*-Ac-12 (1.28 g, 48%) as colorless oils. *R*-12: ¹H NMR (400 MHz, CDCl₃) δ 1.46 (s, 9H); 2.43 (dd, *J* = 16.2, 8.3 Hz, 1H); 2.51 (dd, *J* = 16.2, 4.0 Hz, 1H); 3.11 (bs, OH); 4.45–4.52 (m, 1H); 5.14 (dt, *J* = 10.5, 1.4 Hz, 1H); 5.87 (ddd, *J* = 17.2, 10.5, 5.5 Hz, 1H). *S*-Ac-12: ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H); 2.05 (s, 3H); 2.52 (dd, *J* = 15.3, 5.8 Hz, 1H); 2.60 (dd, *J* = 15.3, 8.0 Hz, 1H); 5.20 (dd, *J* = 10.5, 1.0 Hz, 1H); 5.30 (dd, *J* = 17.2, 1.0 Hz, 1H); 5.57–5.63 (m, 1H); 5.83 (ddd, *J* = 17.2, 10.5, 6.2 Hz, 1H).

tert-Butyl (R)-3-(triisopropylsilyloxy)pent-4-enoate (S10).

O OTIPS Triisopropylsilyl trifluoromethanesulfonate (1.98 mL, 7.34 mmol) was added to a solution of aldol (*R*)-12 (1.05 g, 6.1 mmol), imidazole (830 mg, 12.2 mmol) and

DMAP (20 mg) in THF (60 mL), and the reaction mixture was stirred for 16 h at reflux temperature. The solvent was removed under reduced pressure and the residue was dissolved in water and extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (97:3) yielded **S10** (1.78 g, 89%) as a colorless oil. [α]_D = -3.8 (c 1.0, CHCl₃). IR (KBr film) v 2944, 2867, 1732, 1464, 1367, 1256, 1161 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.04–1.07 (m, 21H); 1.43 (s, 9H); 2.37 (dd, *J* = 14.4, 7.5 Hz, 1H); 2.56 (dd, *J* = 14.4, 5.8 Hz, 1H); 4.59–4.65 (m, 1H); 5.06 (ddd, *J* = 10.4, 1.7, 1.1 Hz, 1H); 5.87 (ddd, *J* = 17.2, 10.4, 6.7 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 12.3 (d); 18.0 (q); 18.1 (q); 28.1 (q); 45.2 (t); 71.3 (d); 80.4 (s); 114.5 (t); 140.6 (d); 170.1 (s). HRMS (+ESI): *m/z* calcd. for C₁₈H₃₇O₃Si (M+H) 329.2507, found 329.2506.

tert-Butyl (*R*)-4-oxo-3-(triisopropylsilyloxy)butanoate (3).

OCTIPS Ozone gas was bubbled into a solution of olefin **S10** (1.45 g, 4.41 mmol) in a 4:1 mixture of CH₂Cl₂-MeOH (100 mL) at -78° C until the blue color persisted. Argon was passed through the solution for 10 min at -78° C to remove any excess ozone. Then, PPh₃ (1.5 g, 5.73 mmol) was added and the solution was stirred at r.t. for 16 h. The reation mixture was concentrated under reduced pressure and filtered through silica to yield **3** (1.35 g, 93%) as a colorless oil. [α]_D = +11.5 (c 1.0, CHCl₃). IR (KBr film) v 2944, 2868, 1736, 1464, 1367, 1256, 1157 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 1.04–1.07 (m, 21H); 1.44 (s, 9H); 2.66 (ddd, *J* = 15.7, 5.8, 0.8 Hz, 1H); 2.78 (dd, *J* = 15.7, 4.0 Hz, 1H); 4.32 (ddd, *J* = 5.8, 4.0, 0.8 Hz, 1H); 9.80 (t, *J* = 0.8, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 12.1 (d); 17.8 (q); 28.0 (q); 41.22 (t); 74.2 (d); 81.4 (s); 169.0 (s); 204.2 (d). HRMS (+ESI): m/z calcd. for C₁₇H₃₅O₄Si (M+H) 331.2299, found 331.2297.

6. NMR data table of macrocycles 1a-c. Spectra recorded in CDCI3

	1a		1b		1c	
	δ _H , mult, J (Hz)	δ _c , mult	δ _H , mult, J (Hz)	$\delta_{c}^{}$, mult	δ _H , mult, J (Hz)	$\delta_{c}^{}$, mult
1	-	170.9, s	-	170.6, s	-	170.8, s
2	2.65, d, 5.3	46.6, t	2.42, dd, 15.1, 8.4 2.30, dd, 15.1, 4.0	44.3, t	2.62, dd, 15.1, 5.3 2.47 dd, 15.1, 6.2	46.1, t
3	4.97, m	67.8, d	4.86, td, 8.4, 4.0	66.8, d	4.75 dt, 7.8, 5.8	67.0, d
4	5.41, d, 7.7	131.6, d	5.21, d, 8.4	131.3, d	5.33, m	131.5, d
5	-	134.8, s	-	133.4, s	-	135.0, s
6	2.48, dd, 14.0, 6.9 2.29 dd, 14.0, 4.4	40.0, t	2.36, dd, 13.6, 6.7 2.03, dd, 13.6, 6.0	40.2, t	2.42, dd, 14.3, 5.8 2.31 dd, 14.3, 5.0	40.3, t
7	4.11, m	71.0, d	4.04, m	70.1, d	3.95, m	71.1, d
8	1.69, dt, 13.5, 6.6 1.42, m	47.2, t	1.34, m	45.9, t	1.60, m 1.33, m	47.1, t
9	1.56, m	27.2, d	1.63, m	28.8, d	1.34 m	27.0, d
10	2.05, m 1.42, m	42.0, t	1.57, m 1.44, m	43.3, t	1.66, m 1.38, m	43.6, t
11	4.46, m	78.5, d	3.78, m	77.5, d	4.22, m	77.0, d
12	2.22, ddd, 13.8, 7.8, 5.8 2.01, d, 13.8	34.3, t	2.48, dt, 13.7, 7.0 1.36, m	40.8, t	2.17, m 1.99, dd, 14.2, 2.1	35.1 t
13	5.27, d, 5.6	77.7, d	5.18, m	74.3, d	5.33, m	74.6, d
14	4.10, m	84.4, d	3.84, m	81.4, d	4.04, td, 6.6, 3.4	82.2, d
15	3.66, dd, 10.9, 4.0 3.80, dd, 10.9, 3.3	64.9 t	3.86, m	62.8 t	3.82, m	62.3 t
32	1.78, s	24.6, q	1.72, d, 1.2	25.5, q	1.74, d, 1.4	25.3, q
33	0.94, d, 6.3	20.6, q	1.00, d, 6.6	20.5, q	0.88 d, 5.2	20.5, q

SI 30

○ Signals used to assign relative stereochemistry of the THF ring

SI 32

M400APCB_13012014_ALC_1118-1-H1 Submitq / Mercury-400 cdcl3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: ALC_1118-1 Nom: JANIRE LAMARIANO MERKETEGI Data: 13/01/14 / Ope.: J.LAMARIANO

M400APCB_13012014_ALC_1118-1-C13 Submitq / Mercury-400 cdcl3 / Temp: 25C / N.Reg: XXXXXXX Usuari: ad / Mostra: ALC_1118-1 Nom: JANIRE LAMARIANO MERKETEGI Data: 13/01/14 / Ope.: J.LAMARIANO

CO₂Et TBDPSO HÔ 5d 190 100 90 f1 (ppm) 80 180 170 160 150 140 130 120 110 70 60 50 40 30 20 10 0

SI 60

SI 94

SI 103

8. References

- M. Karplus, J. Chem. Phys. 1959, 30, 11–15; b) C. A. G. Haasnoot, F. A. A. M. De Leeuw, C. Altona, *Tetrahedron* 1980, 36, 2783–2792.
- [2] N. Matsumori, D. Kaneno, M. Murata, H. Nakamura, K. Tachibana, J. Org. Chem. 1999, 64, 866–876.
- [3] Y. Guindon, D. Delorme, C. K. Lau, R. Zamboni, J. Org. Chem. 1988, 53, 267–275.
- [4] a) M. Ishizaki, Y. Hara, S. Kojima, O. Hoshino, *Heterocycles* 1999, *50*, 779–790; b) F. Scaravelli, S. Bacchi, L. Massari, O. Curcuruto, P. Westerduin, W. Maton, *Tetrahedron Lett.* 2010, *51*, 5154–5156.
- [5] H. Quast, L. Bieber, Chem. Ber. 1981, 114, 3253-3272.
- [6] a) S. Vrielynck, M. Vandewalle, A. M. García, J. L. Mascareñas, A. Mouriño, *Tetrahedron Lett.* 1995, 36, 9023–9026; b) G. P. Pollini, C. De Risi, F. Lumento, P. Marchetti, V. Zanirato, *Synlett* 2005, 164–166.