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Abstract: A metal-free convergent paired electrolysis strategy
to synthesize benzylic amines through direct arylation of
tertiary amines and benzonitrile derivatives at room temper-
ature has been developed. This TEMPO-mediated electro-
catalytic reaction makes full use of both anodic oxidation and
cathodic reduction without metals or stoichiometric oxidants,
thus showing great potential and advantages for practical
synthesis. This convergent paired electrolysis method provides
a straightforward and powerful means to activate C�H bonds
and realize cross-coupling with cathodically generated species.

Benzylic amines are ubiquitous structural motifs among
natural products and medicinal agents.[1] An ideal method to
construct the building blocks is the direct cross-coupling of
aryl compounds and amines.[2–4] Among the existing methods,
transition-metal catalysis or stoichiometric oxidants are
utilized to active the inert a-amino sp3 C�H bonds. In 2011,
MacMillan and co-workers disclosed a breakthrough method
involving photoredox-catalyzed a-amino C�H arylation for
the construction of benzylic amines from readily available
tertiary amines and cyanoaromatics.[2a] Inspired by this
pioneering work, highly efficient photoredox catalysis meth-
ods were successively developed for diverse C�H bond
arylation reactions.[2b–g]

Different metal-catalysis strategies were successfully
developed by the groups of Li,[3a] Sames,[3b] Chen,[3c]

Maes,[3d] Yu,[3e,f] Glorius,[3g] and Gong,[3h] using oxidative
cross-dehydrogenative coupling, directed C�H bond activa-
tion, and deprotonation–transmetalation. Impressively, chiral
benzylic amines have been constructed through asymmetric
deprotonation,[3c] and chiral phosphorus ligands enabled
enantioselective C�H activation by palladium[3f,h] or rhodium
catalysis.[3g] Recently, Shirakawa et al. discovered that the
metal-free arylation of alkylamines with aryl halides can be
promoted by an equivalent tert-butoxy radical precursor at 60
or 120 8C.[4] Despite these important and elegant advances,
the metal- and stoichiometric-oxidant-free methods for the

direct arylation of amines are unavailable, and remain a great
challenge in organic synthesis. Therefore, novel and environ-
mentally friendly approach to a-amino sp3 C�H arylation by
using clean energy are urgently needed.

As a direct and powerful tool to provide and transfer
electrons, electrolysis can trigger various transformations and
afford interesting and unexpected products.[5] In contrast to
normal electrochemical process, which only involve either the
anodic or cathodic reaction, paired electrolysis simultane-
ously matches the two desirable half reactions, thus furnishing
one or more products.[6] In partucular, convergent paired
electrolysis,[6f–h] in which the intermediates formed at anode
and cathode interact with each other to yield the final
product, is an efficient approach to perform cross-coupling
reactions. From the perspective of retrosynthesis for the
arylation of a-amino sp3 C�H bonds, we can divide the
coupling produces into two parts: dehydrogenation of amines
and reduction of aryl precursors, such as halogenated
aromatics and benzonitriles. Therefore, we speculated that
the cross coupling of tertiary amines and arenes could be
achieved through convergent paired electrolysis, in which the
anodically generated a-amino radicals react with the arene
radical anions formed at the cathode, giving arise to the final
products (Scheme 1).

Generally, the compatibility of the two desired half
reactions and its reactive species are the major factors in
developing convergent paired electrolysis. Hence, at the
outset, optimizing suitable partners was carried out. Under
direct electrolysis with an electrolyte solution of nBu4NClO4

in CH3CN and pyridine as an additive base, combinations of
a variety of tertiary amines and arenes were tested, such as 1-
phenylpyrrolidine (1a), 1-methylpyrrolidine, N,N-dimethyla-
niline, 2-chlorobenzothiazole, 4-cyanopyridine, and 1,4-dicya-
nobenzene (2 a). Only the pairing of 1 a and 2 a afforded the
desired product (3a) in 8% yield. Thus, they were chosen as
the model reactants to screen for optimal conditions, includ-
ing solvents, mediators, and electrode materials. The result
showed that the outcome of the process can be improved in
the presence of 2,2,6,6-tetramethylpiperidinooxy (TEMPO),

Scheme 1. Convergent paired electrolysis for the arylation of tertiary
amines. EWG= electron-withdrawing group.
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which is a normal mediator in electrochemistry.[5f, 7] In an
undivided cell equipped with reticulated vitreous carbon
(RVC) as the anode and cathode, 3a was afforded in 78%
yield with 10 mol% TEMPO in N,N-dimethylethanamide
(DMA) under a constant current of 5 mA (Table 1, entry 1).
It is also interesting to note that the a-cyanation product 4,
a byproduct generated from the addition of CN� to an
iminium ion, was also obtained in 10% yield.[7d, 8] Upon
removing TEMPO or replacing TEMPO with analogues II–
IV, the yields dramatically descended to 34–46 % (Table 1,
entries 2–5). Since the deprotonation of 1a could be facili-
tated under basic condition, 3 a was only obtained in 39%
yield in the absence of 2,6-lutidine (Table 1, entry 6). Con-
sidering that the a-amino carbon radical is prone to be
oxidized and transformed into imine nitrenium ions,[7d,8, 9] the
electrolysis under air atmosphere was tested and gave 3a and
4 in 45 % and 20% yields, respectively (Table 1, entry 7). The
survey of polar solvents, such as DMA, N,N-dimethylamide
(DMF), CH3CN, and acetone, indicated that DMA was the
best (Table 1, entries 8–10). By contrast, no desired product
was obtained in protic or nonpolar solvents. When the RVC
cathode was replaced with carbon felt (CF) or Pt plate, 3a was
afforded in 45% and 64 % yields, respectively (Table 1,
entries 11,12).

With the optimal conditions in hand, the scope with
respect to tertiary amines and benzonitrile derivatives under
the standard conditions was explored. A variety of tertiary
arylamines bearing electron-donating groups, such as methyl,
methoxyl, tertiary butyl, phenoxyl, acetoxyl, and acetamino,
were examined with moderate to excellent yields groups
(Scheme 2. 3b–3j, 42–92%). The interaction between 2a and

amines substituted with weakly electron-withdrawing groups
(F, Cl, Br and OCF3) afforded the desired products in 62 % to
86% yields under the optimal conditions (Scheme 2. 3k–3n).
Additionally, the coupling of 2a with ortho-, meta-, or multi-
substituted amines also smoothly proceeded with yields of 62–
92% (Scheme 2. 3h–3j, 3o–3p). However, when amine
substrates with strongly electron-withdrawing groups were
used, the arylated adducts were not detected,[10] mainly due to
their poor electronic effect on oxidation potential (1q Ep/2 =

1.02 V; 1r Ep/2 = 0.99 V).[11] The reactions between 1q–1r and
2a did not occur even upon performing the electrolysis at
higher temperatures, for longer times, or mediated by IV. By
contrast, the reaction proceeded when the strongly electron-
withdrawing groups were not directly linked to the phenyl
group (1s Ep/2 = 0.74 V; 1t Ep/2 = 0.72 V), as demonstrated by
the formation of 3s–3t when the strongly electron-withdraw-
ing groups were not directly linked to the phenyl group (1s
Ep/2 = 0.74 V; 1t Ep/2 = 0.72 V). Notably, b-naphthyl amine
was also compatible in the electrolysis protocol (Scheme 2,
3u). Due to the impaired stereoelectronic overlap between
the amino lone pair and carbon radical, [2c] the arylation of

Table 1: Optimization of reaction conditions [a]

Entry Deviation from standard conditions Yield [%][b]

1 none 78(10)[c]

2 No mediator 35
3 II instead of I 46
4 III instead of I 40
5 IV instead of I 34
6 no base 39
7 under air atmosphere 45(20)
8 DMF as solvent 66
9 acetone as solvent 32
10 CH3CN as solvent 47
11 RVC(+)-CF(�) instead of RVC(+)-RVC(�) 45
12 RVC(+)-Pt(�) instead of RVC(+)-RVC(�) 64

[a] Reaction condition: reticulated vitreous carbon RVC anode, RVC
cathode, 0.4 mmol 1a, 0.2 mmol 2a, 0.02 mmol I, 0.4 mmol 2,6-lutidine,
0.4 mmol nBu4NClO4, 4 mL DMA, N2, constant current=5 mA, 25 8C,
8 h, 7.5 Fmol�1. [b] Yield of isolated 3a. [c] Yield of isolated 4.

Scheme 2. Substrate scope. Reaction conditions: RVC anode, RVC
cathode, 0.4 mmol 1, 0.2 mmol 2, 0.02 mmol I, 0.4 mmol 2,6-lutidine,
0.4 mmol nBu4NClO4, 4 mL DMA, N2, constant current= 5 mA.
[a] Yield of isolated products. [b] The yield from 10 mmol scale
electrolysis. [c] Catalyzed by IV. [d] NaAcO (0.4 mmol) as the additive
base, 40 8C, constant current= 10 mA. [e] The yield was obtained with
the standard conditions. [f ] Pyridine (0.4 mmol) as the additive base,
DMF as the solvent, constant current= 10 mA. [f ] NaHCO3 (0.4 mmol)
as the additive base, DMF as the solvent, constant current= 10 mA.
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acyclic amine and six-membered piperidine was inefficient
under standard conditions. Thus modified conditions were
provided to perform the arylation (Scheme 2, 3v–3w).

Tertiary aliphatic amines were also viable substrates and
their selective arylation, thus further highlighted the synthetic
utility of this electrochemical approach, although satisfactory
yields were not obtained (Scheme 2, 3x–3ad). Direct aryla-
tion of triethylamine furnished 3x in 44% yield. Compound
3y was also produced as a 4:1 mixture of regioisomers. It is
worth noting that an aryl group was regioselectively incorpo-
rated into N-benzyl aliphatic amines while the benzylic
methylene remained intact (Scheme 2. 3z–3ab). For cyclic
aliphatic amines, the arylation occurred preferentially at the
tetrahydropyrrole ring, as illustrated by 3ab–3ad.

Additionally, the scope with respect to analogues of 2a as
the aromatic partner was tested. Dicyano aromatic com-
pounds, including 1,4-dicyanobenzene, 2,5-dicyanotoluene,
and 4,4’-biphenyldicarbonitrile, readily underwent the cou-
pling with 1a to furnish corresponding products in moderate
to good yields (Scheme 2. 3ae–3ag). Since the elimination of
CN� in 2,5-dicyanotoluene lacks regioselectivity, 3af is
produced as a 1:1 mixture of the two isomers. Benzonitriles
bearing ester and amide groups are also suitable substrates in
this electrochemical arylation (Scheme 2. 3ah–3ai). However,
some electron-deficient heteroaromatic compounds, such as
4-cyanopyridine, 1-isoquinolinecarbonitrile, 2-chlorobenzox-
azole, and 2-chlorobenzothiazole, were not compatible with
this convergent paired electrolysis (see the Supporting
Information for details).

Compared with normal electrolysis, convergent paired
electrolysis is more dependent on mass transfer of reactive
species from the surface of electrodes to bulk solution. This
became the crucial factor in scale-up experiments. In order to
increase the concentration of a-amino radicals at the anode
and the collision frequency of anodic and cathodic inter-
mediates, a three-electrode system RVC(+)-RVC(�)-RVC-
(+) was used and the distance between each electrode was as
close as possible. In this way, the gram-scale electrochemical
arylation was performed on a 10 mmol scale and gave 1.52 g
3a in synthetically useful yield (see the Supporting Informa-
tion for details).

In order to investigate the anodic and cathodic processes,
a series of cyclic voltammetry (CV) studies were conducted.
First, the electrochemical behavior of 2a was studied in 0.1m
nBu4NClO4/DMA at 100 mVs�1. A couple of reversible redox
peaks were observed at �1.65 V, which corresponds to the
reduction of 2a to anion radical species 5, and �1.34 V, which
corresponds to the oxidation of anion radical species 5 to 2a
(Figure 1A).

Then the CV curves of TEMPO and 1m were recorded.
The anodic peak of TEMPO was slightly increased but the
cathodic peak disappeared with the inclusion of 1m (Fig-
ure 1B), thus demonstrating that anodic formed TEMPO+

reacted with 1m to generate the amino radical cation 6. The
involvement of 2,6-lutidine, which facilitates the deprotona-
tion of amino radical cation 6, shifted the electron transfer
equilibrium to TEMPO and greatly increased the catalytic
current (Figure 1F).[5d] The important role of 2,6-lutidine was
also shown in Table 1, entry 6. As depicted in Figure 1 C,

a similar interaction between 1q and TEMPO was also
detected at the same scanning rate (Figure 1C). However, the
cathodic peak gradually appeared as the scanning rate
increased from 10 to 200 mVs�1 (Figure 1D). By contrast,
the cathodic peak did not appear even at a scanning rate of
200 mVs�1 when testing the interaction between TEMPO+

and 1m (Figure 1E). We thus presumed that the reaction rate
of TEMPO+ with 1q is much lower than that with the 1m
DCB anion radical.[12]

To further assess the convergent process of the electrolysis
reaction, a divided-cell experiment was carried out. Com-
pound 3a was not detected in the anode or cathode chambers.
However, the dimerization occurred and gave 8 in the anode
chamber (Scheme 3a). Next, under the standard conditions,
the electrolysis was carried out in the presence of 2.0 equiv of
9, which is used as a radical acceptor. This led to the formation
of 10 in 17 % yield and impeded the generation of 3a
(Scheme 3b), thus indicating the existence of a-amino radical
7.[13] In the absence of anion radical 5, a-amino radical 7 could
be oxidized to iminium ion 12, which reacted with enamine
intermediate to afford 8.[14]

On the basis of the experimental studies above, a plausible
mechanism for the TEMPO-catalyzed arylation of a-amino
sp3 C�H was proposed (Scheme 4). TEMPO is known to
undergo single-electron oxidation to afford TEMPO+,[7e–g]

which reversibly oxidizes the tertiary arylamine to TEMPO

Figure 1. Cyclic voltammetry studies in 3 mL DMA (A) and CH3CN (B,
C, D, E; 0.1m nBu4NClO4). A) 0.06 mmol 2a, 100 mVs�1;
B) 0.06 mmol 1m, 0.03 mmol I, 0.06 mmol 2,6-lutidine, 20 mVs�1;
C) 0.06 mmol 1q, 0.03 mmol I, 0.06 mmol 2,6-lutidine, 20 mVs�1;
D) 0.06 mmol 1m, 0.03 mmol I ; E) 0.06 mmol 1q, 0.03 mmol I.
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and amino radical cation 6. The oxidation rate is inversely
associate with the oxidation potential of the substrates. The a-
C(sp3)-H of 6 is activated and undergoes deprotonation by
2,6-lutidine to provide amino radical 7.[15] On the one hand, 7
couples with the anodic formed anion radical 5 to generate
the key intermediate 11, which undergoes subsequent elim-
ination of CN� and aromatization to give the final product.
On the other hand, it proceeds through further oxidation and
deprotonation to give imine nitrenium ion 12, which is then
attacked by the eliminated CN� to yield the byproduct 4.[8]

In summary, we have developed a metal-free convergent
paired electrolysis method to synthesize a variety of benzylic
amines through direct arylation of tertiary amines and
benzonitrile derivatives. Both the anodic and cathodic
reactions are fully utilized. Moreover, metals and stoichio-
metric oxidants are not required. A new perspective for the
construction of carbon–carbon bonds through cross-coupling
between anodically and cathodically generated species has
been provided. This could greatly enrich the application of
convergent paired electrolysis in organic synthesis.
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Direct Arylation of a-Amino C(sp3)-H
Bonds by Convergent Paired Electrolysis

It’s electrifying ! A convergent paired
electrolysis method to synthesize ben-
zylic amines through direct arylation of
tertiary amines and benzonitrile deriva-
tives without stoichiometric oxidants and
metals is reported. This electrocatalytic

approach makes full use of the anodic
and cathodic reactions and provides
a new perspective for the cross-coupling
of anodically and cathodically generated
species.
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