



### **Accepted Article**

**Title:** Electrochemically Enabled Intramolecular Aminooxygenation of Alkynes via Amidyl Radical Cyclization

Authors: Zhong-Wei Hou and Hai-Chao Xu\*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: *Chin. J. Chem.* **2020**, *38*, 10.1002/cjoc.201900500.

The final Version of Record (VoR) of it with formal page numbers will soon be published online in Early View: http://dx.doi.org/10.1002/cjoc.201900500.

## WILEY-VCH SIOC CCS

ISSN 1001-604X • CN 31-1547/O6 mc.manuscriptcentral.com/cjoc www.cjc.wiley-vch.de

# Electrochemically Enabled Intramolecular Aminooxygenation of Alkynes via Amidyl Radical Cyclization

Zhong-Wei Hou<sup>a</sup> and Hai-Chao Xu\*,<sup>a</sup>

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and hemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

ite this paper: Chin. J. Chem. 2019, 37, XXX-XXX. DOI: 10.1002/cjoc.201900XXX

ummary of main observation and conclusion An electrochemical synthesis of oxazol-2-ones and imidazol-2-ones has been developed via 5-*exo-dig* cyclization of propargylic carbamates- and ureas-derived amidyl radicals. The electrosynthesis relies on the dual function of TEMPO as a redox mediator for amidyl radical formation and an oxygen atom donor. The reactions are conducted under mild conditions using a simple setup and provide convenient access to functionalized oxazol-2-ones and imidazol-2-ones from readily available materials.

#### **Background and Originality Content**

Nitrogen-centered radicals (NCRs) are versatile synthetic intermediates for organic synthesis and can participate in eactions such as hydrogen atom transfer and addition to  $\pi$ -systems.<sup>[1]</sup> Particularly, the addition reactions provide access to nitrogen-containing compounds, which are prevalent in chemistry Probably due to the importance and biology. of nitrogen-containing compounds, addition reactions of NCRs have heen attracting increasing interests. Among the addition reactions mat have been investigated, reactions with alkynes are much less ommon compared to those with alkenes.<sup>[2]</sup> Further expansion of the synthetic utility of NCRs hinges on the development of efficient methods for their formation from readily available recursors.

Organic electrochemistry is emerging as a useful tool for romoting radical reactions.<sup>[3]</sup> In this context, we have developed several electrochemical methods for the generation of NCRs from N–H precursors.<sup>[4]</sup> The electrochemically generated NCRs r articipate in intramolecular cyclization reactions with arenes,<sup>[5]</sup> es<sup>[6]</sup> and alkynes<sup>[7]</sup> to afford various N-heterocycles. Particularly, we have shown that TEMPO can serve as both a redox mediator for amidyl radical formation and an oxygen atom donor o achieve intramolecular alkene aminooxygenation.<sup>[8]</sup> In these reactions, TEMPO is incorporated into the final product as an Ikoxyamine moiety, which can be cleaved reductively to a ydroxyl group or oxidatively to a keto group. Herein, we report a TEMPO-mediated. electricity-driven intramolecular minooxygenation reaction of alkynes. Unlike the reactions of alkenes, these reactions of alkynes afford acyl-substituted oxazolone and imidazolone products that do not contain EMPO-derived alkoxyamine moiety. Oxazolones and imidazolones are useful synthetic intermediates and are also structural motifs present in several bioactive compounds.<sup>[9]</sup>

Scheme 1 Electrochemical aminooxygenation of alkenes and alkynes





#### **Results and Discussion**

We first selected carbamate 1 as a model substrate for optimization of the electrolysis conditions. The electrochemical reaction was carried out in an undivided cell equipped with a reticulated vitreous carbon (RVC) anode and a platinum cathode at a constant current of 5 mA (Table 1). Oxazol-2-one 2 was isolated in 85% yield when the reaction was conducted at room temperature for 1.2 h in the presence of 1.5 equiv of TEMPO and 2.0 equiv of CF<sub>3</sub>COONa in a mixed solvent of MeCN/H<sub>2</sub>O (11:1) under argon atmosphere (entry 1). Electricity was indispensable for success (entry 2). Reduction of the amount of TEMPO to 0.5 equiv (entry 3) or conducting the electrolysis without CF<sub>3</sub>COONa (entry 4) resulted in a lower yield of 2. Other basic additives such as Na<sub>2</sub>CO<sub>3</sub> (entry 5), NaHCO<sub>3</sub> (entry 6), NaOAc (entry 7) and CF<sub>2</sub>CICOONa (entry 8) failed to give better results. Moderate yield of 2 was obtained when the electrolysis was performed in the absence of nBu<sub>4</sub>NBF<sub>4</sub> (entry 9) or under air atmosphere (entry

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/cjoc.201900500

This article is protected by copyright. All rights reserved.

10

| 1 | n | ۱ |   |
|---|---|---|---|
| т | υ | 1 | • |

Table 1 Optimization of reaction conditions<sup>a</sup>

entry 1 but under air

|    | PMP. |                 | TEMPO (1.5 equiv)<br>CF <sub>3</sub> COONa (2.0 equiv)<br>OCF | Ph<br>O               |  |
|----|------|-----------------|---------------------------------------------------------------|-----------------------|--|
|    | 0    | Ko∕∕ <i>⊪</i> r | MeCN/H <sub>2</sub> O (11:1), RT                              | <i>I</i> Pr           |  |
|    |      | 1               | "standard conditions"                                         | 2                     |  |
| Er | ntry | Deviation       | from standard conditions                                      | Yield <sup>b</sup> /% |  |
|    | 1    | None            |                                                               | 85 <sup>c</sup>       |  |
|    | 2    | no electric     | ity                                                           | 0 (99)                |  |
|    | 3    | entry 1 bu      | t TEMPO (0.5 equiv)                                           | 40 (34)               |  |
|    | 4    | entry 1 bu      | t no CF₃COONa                                                 | 32                    |  |
|    | 5    | entry 1 bu      | t Na₂CO₃ (2.0 equiv) as base                                  | 28                    |  |
|    | 6    | entry 1 bu      | t NaHCO₃ (2.0 equiv) as base                                  | 36                    |  |
|    | 7    | entry 1 bu      | t NaOAc (2.0 equiv) as base                                   | 65                    |  |
|    | 8    | entry 1 bu      | t CF <sub>2</sub> ClCOONa (2.0 equiv) as base                 | 73                    |  |
|    | 9    | entry 1 bu      | t no <i>n</i> Bu₄NBF₄                                         | 70                    |  |

Reaction conditions: RVC anode, Pt cathode, **1** (0.2 mmol), TEMPO (0.3 mmol), CF<sub>3</sub>COONa (0.4 mmol),  $nBu_4NBF_4$  (0.1 mmol), MeCN (5.5 mL), H<sub>2</sub>O (0.5 mL), argon, 5 mA, 1.2 h (1.1 F mol<sup>-1</sup>). <sup>b</sup>Yield determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as the internal standard, unreacted **1** in parenthesis. <sup>c</sup>Isolated yield. PMP = , methoxyphenyl.

67

After the optimized reaction conditions were defined, we investigated the substrate scope of the electrosynthesis (Scheme 2). The phenyl ring of the aniline moiety tolerated substituents of diverse electronic properties, including electron-donating groups uch as OPh (4), SMe (5) and Me (6), halogens (F, Cl, Br, I; 7–10), and electron-withdrawing groups such as OCF<sub>3</sub> (11). The structure of **3** was confirmed by single crystal X-ray diffraction studies. 2-Aminopyridine-derived substrate afforded the corresponding azol-2-one 12 in 31% yield. Substrates with a disubstituted *N*-aryl ring were also suitable for the electrochemical cyclization reaction (13-15). While the reaction is compatible with 4-methoxyphenyl (16), 2-thiophenyl (17) or 3-fluorophenyl (18) substituted alkynes, alkyl substituted alkynes failed to afford any a sired products (19). Furthermore, carbamates bearing a butyl (20), methyl (21) or phenyl (22) group at the propargylic position also reacted successfully to produce the desired ovazol-2-ones. Interestingly, substate without propargylic proton acted to afford a hydroxyl oxazolidone (23).





<sup>*a*</sup>Reaction conditions: Table 1, entry 1 unless otherwise mentioned. All yields are isolated yields. <sup>*b*</sup>Reaction with NaOAc (2.0 equiv) instead of CF<sub>3</sub>COONa. <sup>*c*</sup>Reaction for 4 h. <sup>*d*</sup>Reaction for 2.5 h.

Next, we applied the electrochemical strategy to the synthesis of imidazol-2-ones from propargylic ureas (Scheme 3). Urea substrates bearing 4-methoxy phenyl (24) and phenyl (25) groups reacted to afford the corresponding imidazol-2-ones in 68% and 64% yields, respectively. 4-Chlorophenyl (26), 4-cyanophenyl (27) and 3,5-dichlorophenyl (28) substituted ureas reacted successfully under modified conditions with  $K_2CO_3$  as the base at a constant current of 10 mA. The substitutent on the linking nitrogen also tolerated variation as demonstrated with a N-Ph urea (29).

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. **2019**, 37, XXX-XXX



Reaction conditions: urea (0.2 mmol), TEMPO (0.3 mmol),  $K_2CO_3$  (0.4 mmol),  $nBu_4NBF_4$  (0.1 mmol), MeCN (5.5 mL),  $H_2O$  (0.5 mL), argon, 10 mA, 1.5 h (4.6 F mol<sup>-1</sup>). All yields are isolated yields. <sup>b</sup>Reaction under the conditions of Table 1, entry 1 for 4 h.

The practicality of our method was further demonstrated by the gram scale reaction of **30** to give oxazolone **3** in 82% yield (Scheme 4). Note that larger electrodes were employed to allow the use of higher current to increase productivity.

nBu<sub>4</sub>NBF<sub>4</sub> (0.5 equiv)

cheme 4 Gram-scale synthesis of oxazol-2-one 3

CF<sub>3</sub>COONa (2.0 <sub>equiv</sub>), MeCN/H<sub>2</sub>O (11:1) 450 mA (1.4 F <sup>mol<sup>-1</sup></sup>), RT, 1.5 h, 30 3, 82% (4.5 g) b shine light on the reaction mechanism, we first recorded cyclic voltammograms (CVs) of TEMPO under different conditions (Figure 1). The CVs of TEMPO did not change when either the ubstrate 30 (curve b) or 30 together with CF<sub>3</sub>COONa was added (curve c), suggesting that the neutral substrate **30** did not react vith anodically generated TEMPO<sup>+</sup>. However, a catalytic current vas observed in the presence of *n*Bu<sub>4</sub>NOH, along with complete disappearance of reduction current (curve d). A comparison of curve d with curve e, the voltammogram of the conjugate base of ,0, suggested the current increase of curve d was not due to the oxidation of the substrate anion. These studies indicated that ffective electron transfer occurred between TEMPO<sup>+</sup> and the conjugate base of **30** but not the neutral **30**.



**Figure 1** Cyclic voltammograms in MeCN,  $nBu_4NBF_4$  (0.1 M). a: TEMPO (3 mM). b: TEMPO (3 mM) + **30** (10 mM). c: b + CF<sub>3</sub>COONa (10 mM). d: b +  $nBu_4NOH$  (10 mM). e: **30** (10 mM) +  $nBu_4NOH$  (10 mM). f:  $nBu_4NOH$  (10 mM).

Next, we performed a series of mechanistic experiments (Scheme 5). The oxidation of 30 was investigated with oxoammonium salt (TEMPO<sup>+</sup>BF<sub>4</sub><sup>-</sup>) under electricity-free conditions (Scheme 5a). While no reaction occurred in the presence of CF<sub>3</sub>COONa, oxazolone 3 was formed in 24% along with hydroxy ketone **31** in 62% when  $Cs_2CO_3$  was employed as a base. These results, together with the CV studies, clearly showed that a base strong enough to deprotonate the carbamate was needed for the aminooxygenation reaction to occur. The inferior results obtained using stoichiometric oxidant also highlighted the advantage of our electrochemical method. The alkyne substrates are known to undergo base promoted hydroamidation reaction.<sup>[7c,10]</sup> For example, propargyl carbamate 30 underwent efficient hydroxide-promoted ionic cyclization to afford oxazolidinone 32 in 78% yield. However, electrolysis of 32 under the standard conditions resulted in no oxazolone 3 and the recovery of 92% of 32 (Scheme 5b). These results suggested that 32 was not an intermediate for the electrochemical synthesis of 3.

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.cjc.wiley-vch.de

#### Report



Based on the above studies and previous reports,<sup>[8,11]</sup> a possible mechanism for the electrochemical cyclization reaction .. as proposed using carbamate 30 as a model substrate (Scheme 6). At the anode, TEMPO ( $E_{p/2}$  = 0.67 V vs SCE) is oxidized through ngle electron transfer (SET) to afford TEMPO<sup>+</sup>. Simultaneously, the cathodic reduction of H<sub>2</sub>O forms H<sub>2</sub> and HO<sup>-</sup>. The cathodically generated base HO<sup>-</sup> deprotonates **30** ( $E_{p/2}$  = 1.64 V vs SCE) to give ti e nitrogen anion intermediate **33** ( $E_{p/2} = 0.71$  V vs SCE), which is easily oxidized by TEMPO<sup>+</sup> via SET to furnish nitrogen-centered radical 34. The 5-exo-dig cyclization of 34 affords vinyl radical 35, hich is trapped by TEMPO to give tetrasubstituted alkene 36. The sterically crowded alkene **36** undergoes N–O bond cleavage to afford iminium **37** and 2,2,6,6-tetramethylpiperidine **38**.<sup>[12]</sup> The latter has been detected by high resolution mass spectrometry ( RMS). Intermediate 37 undergoes proton loss to afford the final oxazolone 3. For substrates that do not contain a propargylic proton, reaction of the iminium intermediate with H<sub>2</sub>O affords a nydration product (e.g. 23).

#### Scheme 5 Mechanistic experiments





#### Conclusions

In summary, we have developed a TEMPO-mediated electrochemical synthesis of functionalized oxazol-2-ones and imidazol-2-ones through oxidative cyclization of propargylic carbamates and ureas. In these reactions, TEMPO serves as both a redox mediator to produce amidyl radicals and an oxygen-atom donor.

#### Experimental

General procedures for the electrosynthesis: A 10 mL three-necked round-bottomed flask (Figure S1) was charged with TEMPO (0.3 mmol, 1.5 equiv), the substrate (0.2 mmol, 1.0 equiv),  $nBu_4NBF_4$  (0.1 mmol, 0.5 equiv), and CF<sub>3</sub>COONa or K<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 2.0 equiv). The flask was equipped with a reticulated vitreous carbon (100 PPI, 1 cm x 1 cm x 1.2 cm) anode and a platinum plate (1 cm x 1 cm) cathode and then flushed with argon. MeCN (5.5 mL) and H<sub>2</sub>O (0.5 mL) were added. The electrolysis was carried out at room temperature using a constant current of 5 mA or 10 mA until complete consumption of the substrate (monitored by TLC or <sup>1</sup>H NMR). The reaction mixture was concentrated under reduced pressure and the residue was chromatographed through silica gel eluting with ethyl acetate/hexane to give the desired product.

#### **Supporting Information**

The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2018xxxxx.

A C C F

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. 2019, 37, XXX-XXX

#### Acknowledgement

The authors acknowledge the financial support of this research from MOST (2016YFA0204100), NSFC (No. 21672178), and Fundamental Research Funds for the Central Universities.

#### References

- [1] (a) Zard, S. Z. Recent Progress in the Generation and Use of Nitrogen-Centred Radicals. *Chem. Soc. Rev.* 2008, *37*, 1603–1618; (b) Xiong, T.; Zhang, Q. New Amination Strategies Based on Nitrogen-Centered Radical Chemistry. *Chem. Soc. Rev.* 2016, *45*, 3069–3087; (c) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Visible Light Photoredox-Controlled Reactions of N-Radicals and Radical Ions. *Chem. Soc. Rev.* 2016, *45*, 2044–2056; (d) Jiang, H.; Studer, A. Chemistry with N-Centered Radicals Generated by Single-Electron Transfer-Oxidation Using Photoredox Catalysis. *CCS Chem.* 2019, *1*, 38–49; (e) Kärkäs, M. D. Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. *ACS Catal.* 2017, *7*, 4999–5022; (f) Zhao, Y.; Xia, W. Recent Advances in Radical-based C–N Bond Formation via Photo-/Electrochemistry. *Chem. Soc. Rev.* 2018, *47*, 2591–2608.
- 2] (a) Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. Cyclization Cascades via N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds. *J. Am. Chem. Soc.* **2015**, *137*, 964–973; (b) Reina, D. F.; Dauncey, E. M.; Morcillo, S. P.; Svejstrup, T. D.; Popescu, M. V.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Visible-Light-Mediated 5-*exo-dig* Cyclizations of Amidyl Radicals. *Eur. J. Org. Chem.* **2017**, 2108–2111; (c) Peng, X.-X.; Wei, D.; Han, W.-J.; Chen, F.; Yu, W.; Han, B. Dioxygen Activation via Cu-Catalyzed Cascade Radical Reaction: An Approach to Isoxazoline/Cyclic Nitrone-Featured  $\alpha$ -Ketols. *ACS Catal.* **2017**, *7*, 7830–7834; (d) Cai, Y.; Jalan, A.; Kubosumi, A. R.; Castle, S. L. Microwave-Promoted Tin-Free Iminyl Radical Cyclization with TEMPO Trapping: A Practical Synthesis of 2–Acylpyrroles. *Org. Lett.* **2015**, *17*, 488–491; (e) Qian, X.-Y.; Xiong, P.; Xu, H.-C. Modular Synthesis of Functionalized 4-Quinolones via a Radical Cyclization Cascade. *Acta Chim. Sinica* **2019**, *77*, 879–883.
- [3] (a) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319; (b) Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485-4540; (c) Moeller, K. D. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions. Chem. Rev. 2018, 118, 4817-4833; (d) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern Strategies in Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265-2299; (e) Francke, R.; Little, R. D. Redox Catalysis in Organic Electrosynthesis: Basic Principles and Recent Developments. Chem. Soc. Rev. 2014, 43. 2492-2521; (f) Yang, Q.-L.; Fang, P.; Mei, T.-S. Recent Advances in Organic Electrochemical C-H Functionalization. Chin. J. Chem. 2018, 36, 338-352; (g) Ye, Z.; Zhang, F. Recent Advances in Constructing Nitrogen-Containing Heterocycles via Electrochemical Dehydrogenation. Chin. J. Chem. 2019, 37, 513-528; (h) Yuan, Y.; Lei, Electrochemical Oxidative Cross-Coupling with Hydrogen Α. Evolution Reactions. Acc. Chem. Res. 2019, 52, 3309-3324. (i) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J.,

Electrochemical Arylation Reaction. *Chem. Rev.* **2018**, *118*, 6706-6765. (j) Sauer, G. S.; Lin, S., An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes. *ACS Catal.* **2018**, *8*, 5175-5187. (k) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. *Chem. Rev.* **2018**, *118*, 4834-4885.

- [4] Xiong, P.; Xu, H. C. Chemistry with Electrochemically Generated N-Centered Radicals. Acc. Chem. Res. 2019, 52, 3339-3350.
- [5] (a) Zhao, H.-B.; Hou, Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.; Xu, H.-C. Amidinyl Radical Formation through Anodic N-H Bond Cleavage and Its Application in Aromatic C-H Bond Functionalization. *Angew. Chem. Int. Ed.* 2017, *56*, 587–590; (b) Zhao, H.-B.; Liu, Z.-J.; Song, J.; Xu, H.-C. Reagent-Free C-H/ N-H Cross-Coupling: Regioselective Synthesis of N-Heteroaromatics from Biaryl Aldehydes and NH<sub>3</sub>. *Angew. Chem. Int. Ed.* 2017, *56*, 12732–12735. (c) Huang, C.; Qian, X.-Y.; Xu, H.-C. Continuous-Flow Electrosynthesis of Benzofused S-Heterocycles by Dehydrogenative C–S Cross-Coupling. *Angew. Chem. Int. Ed.* 2019, *58*, 6650-6653.
- [6] (a) Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. *Angew. Chem. Int. Ed.* 2016, *55*, 2226–2229; (b) Long, H.; Song, J.; Xu, H.-C. Electrochemical Synthesis of 7-Membered Carbocycles through Cascade 5-exo-trig/7-endo-trig Radical Cyclization. *Org. Chem. Front.* 2018, *5*, 3129–3132; (c) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Electrochemical Synthesis of (Aza)indolines via Dehydrogenative [3+2] Annulation: Application to Total Synthesis of (±)-Hinckdentine A. *Chin. J. Chem.* 2018, *36*, 909–915; (d) Xiong, P.; Xu, H.-H.; Xu, H.-C. Metal- and Reagent-Free Intramolecular Oxidative Amination of Triand Tetrasubstituted Alkenes. *J. Am. Chem. Soc.* 2017, *139*, 2956–2959.
- [7] These reactions proceed through amidyl radical cyclization followed by intramolecular trapping of the resulting vinyl radical: (a) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Electrochemical C-H/N-H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angew. Chem. Int. Ed. 2016, 55, 9168-9172; (b) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. Electrochemical Synthesis of Polycyclic N-Heteroaromatics through Cascade Radical Cyclization of Diynes. ACS Catal. 2017, 7, 5810-5813; (c) Hou, Z.-W.; Mao, Z.-Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C-N Bond-Forming Radical Cascade. Angew. Chem. Int. Ed. 2018, 57, 1636-1639; (d) Yan, H.; Mao, Z. Y.; Hou, Z. W.; Song, J. H.; Xu, H. C. A Diastereoselective Approach to Axially Chiral Biaryls via Electrochemically Enabled Cyclization Cascade. Beilstein J. Org. Chem. 2019, 15, 795-800; (e) Xu, F.; Long, H.; Song, J.; Xu, H.-C. De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angew. Chem. Int. Ed. 2019, 58,9017-9021.
- [8] Xu, F.; Zhu, L.; Zhu, S.; Yan, X.; Xu, H.-C. Electrochemical Intramolecular Aminooxygenation of Unactivated Alkenes. *Chem. Eur.* J. 2014, 20, 12740–12744.
- [9] (a) Nomura, I.; Mukai, C. Studies on the Total Synthesis of Streptazolin and Its Related Natural Products: First Total Synthesis of (±)-8α-Hydroxystreptazolone. J. Org. Chem. 2004, 69, 1803–1812; (b)

www.cjc.wiley-vch.de

This article is protected by copyright. All rights reserved.

#### Report

Fearnley, S. P.; Thongsornkleeb, C. Oxazolone Cycloadducts as Heterocyclic Scaffolds for Alkaloid Construction: Synthesis of (±)-2-epi-Pumiliotoxin C. J. Org. Chem. 2010, 75, 933-936; (c) Li, W.; Wollenburg, M.; Glorius, F. Enantioselective Synthesis of 2-Oxazolidinones by Ruthenium(II)-NHC-Catalysed Asymmetric Hydrogenation of 2-Oxazolones. Chem. Sci. 2018, 9, 6260-6263; (d) Casnati, A.; Perrone, A.; Mazzeo, P. P.; Bacchi, A.; Mancuso, R.; Gabriele, B.; Maggi, R.; Maestri, G.; Motti, E.; Stirling, A.; Ca, N. D., Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J Org Chem 2019, 84, 3477-3490. (e) Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.; Yang, B.; Lu, X.; Hu, Y. Synthesis and Biological Evaluation of Imidazol-2-one Derivatives as Potential Antitumor Agents. Bioorg. Med. Chem. 2008, 16, 2550-2557; (f) Dage, R. C.; Roebel, L. E.; Gibson, J. P.; Okerholm, R. A.; Rolf, C. N. Enoximone. Cardiovasc. Drug Rev. 1986, 4, 63-79.

- Herrero, M. T.; de Sarralde, J. D.; SanMartin, R.; Bravo, L.; Dominguez,
  E. Cesium Carbonate-Promoted Hydroamidation of Alkynes: Enamides, Indoles and the Effect of Iron(III) Chloride. *Adv. Synth. Catal.* 2012, *354*, 3054–3064.
- [11] (a) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. TEMPO-Catalyzed Electrochemical C–H Thiolation: Synthesis of Benzothiazoles and Thiazolopyridines from Thioamides. ACS Catal. 2017, 7, 2730–2734;
   (b) Zhao, H.-B.; Xu, P.; Song, J.; Xu, H.-C. Cathode Material

Determines Product Selectivity for Electrochemical C-H Functionalization of Biaryl Ketoximes. *Angew. Chem. Int. Ed.* **2018**, *57*, 15153–15156.

[12] Romero-Ibañez, J.; Cruz-Gregorio, S.; Quintero, L.; Sartillo-Piscil, F., Concise and Environmentally Friendly Asymmetric Total Synthesis of the Putative Structure of a Biologically Active 3-Hydroxy-2-piperidone Alkaloid. Synthesis 2018, 50, 2878-2886.

(The following will be filled in by the editorial staff) Manuscript received: XXXX, 2019 Manuscript revised: XXXX, 2019 Manuscript accepted: XXXX, 2019 Accepted manuscript online: XXXX, 2019 Version of record online: XXXX, 2019

#### **Entry for the Table of Contents**

Page No.

**Electrochemically Enabled Intramolecular** Aminooxygenation of Alkynes via Amidyl **Radical Cyclization** 



An electrochemical synthesis of oxazol-2-ones and imidazol-2-ones has been developed via 5-*exo-dig* cyclization of amidyl radicals. The electrosynthesis relies on the dual functional of TEMPO as a redox mediator for amidyl radical formation and an oxygen atom donor.

<sup>a</sup> Department, Institution, Address 1 E-mail:

<sup>b</sup> Department, Institution, Address 2 E-mail:

<sup>c</sup> Department, Institution, Address 3 E-mail:

© 2018 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



This article is protected by copyright. All rights reserved.