

Available online at www.sciencedirect.com

ScienceDirect

Mendeleev Commun., 2020, 30, 313-314

Mendeleev Communications

Base-determinant chemodivergent transformations of chiral 2,3-dibromopropanamide derivative

Natalya K. Selezneva,^{*a*} Adeliya M. Galeeva,^{*a*} Leonard M. Khalilov,^{*b*} Zuleykha R. Valiullina^{*a*} and Mansur S. Miftakhov^{**a*}

^a Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa,

Russian Federation. E-mail: bioreg@anrb.ru

^b Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 450071 Ufa, Russian Federation

DOI: 10.1016/j.mencom.2020.05.017

Depending on the base used, reactions of 2,3-dibromo-2methyl-N-[(1R)-1-phenylethyl]propanamide with DBU, Bu⁴OK and NaH in THF lead to β -bromomethacryloylamides, α -methylidene- β -lactam and azetidin-2-ones, respectively.

Keywords: chemodivergent synthesis, β -lactams, azetidin-2-ones, α -methylidene- β -lactams, β -bromomethacryloylamides, dehydrobromination, diastereomers.

Monocyclic β -lactams represent the ring part of antibacterial monobactam and sulbactam,¹ an Ezetimibe cholesterol absorption inhibitor,² azetidinones for carbapenems,^{3,4} β -lactam synthons for incorporation of Taxol β -amino ester fragment into the aglycone structure,^{5,6} serve as potential models in the study of drug resistance of β -lactams.⁷ α -Methylidene- β -lactams (α M β Ls) can undergo the Michael reactions, electrophilic addition and lactam ring opening. A number of methods for synthesizing α M β Ls have been published, including a synthesis of those containing CF₃ at C³ by methylenation of the corresponding 3-oxo derivatives,⁸ a synthesis employing Pd-catalyzed oxidative carbonylation of *N*-allylamines,⁹ approaches to densely functionalized α M β Ls from nitrodiene structures,¹⁰ asymmetric allylic amination of Baylis–Hillman adducts with amines followed by cyclization,¹¹ PPh₃-catalyzed Umpolung cyclization of propylamides.¹²

In the present study, we attempted to construct methylidene-βlactam moiety by dehydrobrominative cyclization of 2,3-dibromo-2-methylpropanamide derivatives which, in turn, can be prepared by bromination of methacrylamides. Dehydrobromination of 2,3-dibromo-2-methylpropanamides can also afford bromoalkenetype products which were used in the Heck cross-coupling,¹³ the Nozaki–Hiyama–Kishi aldol condensation,¹⁴ and for generation of vinyl radicals. We supposed that the choice of proper base and reaction conditions would drive the reaction towards the cyclization route involving amide nitrogen atom.

In our experiments, amide 1 obtained from commercially available methacryloyl chloride and (R)-(+)- α -methylbenzylamine was brominated to give a diastereomeric mixture of dibromo derivatives 2 (Scheme 1). Though analytical samples of diastereomers **2a**,**b** were isolated by column chromatography on SiO₂ and the structure of (S,R)-**2b** was confirmed by XRD (Figure 1),[†] a more accessible diastereomeric mixture of **2a**,**b** was used in the subsequent reactions.

Scheme 1 Reagents and conditions: i, Et₃N, CH₂Cl₂, $0 \rightarrow 20$ °C, 4 h, 83%; ii, Br₂, CH₂Cl₂, room temperature, 1 h, 73%; iii, SiO₂, column chromatography.

Compounds **2a,b** are of interest primarily for possible base-promoted intramolecular cyclization reactions. Reaction of dibromide **2** with DBU gives a mixture of dehydrobromination products **3a** and **3b** in a 2:1 ratio (Scheme 2). The vinyl proton signal is characteristic in the assignment of isomeric vinyl bromides **3a** and **3b**. For isomer **3a**, it is shifted

 μ (MoKα) = 5.784 mm⁻¹, d_{calc} = 1.660 g cm⁻³, F(000) = 1376.0, S = 0.842. Refinement was converged with R_1 = 0.0542, wR_2 = 0.0681 [9526 reflections with $I > 2\sigma(I)$] and R_1 = 0.1819, wR_2 = 0.1055 for all data (13857 reflections). The X-ray diffraction measurements were performed on an Agilent XCalibur (Eos, Gemini) automated four-circle diffractometer (graphite monochromator, MoKα radiation, λ = 0.71073 Å, ω -scan mode, $2\theta_{max} = 62^{\circ}$) at ambient temperature (293–298 K). The collected data were processed using the CrysAlisPro program.¹⁵ The structures were solved by direct methods and refined by the full-matrix least-squares method in the anisotropic approximation for non-hydrogen atoms. All hydrogen atoms were generated using the proper HFIX command and refined isotropically using the riding model. The structure was solved with the ShelXL¹⁶ structure solution program using Intrinsic Phasing and refined with the ShelXL¹⁷ refinement package using Least Squares minimisation.

CCDC 1972715 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* http://www.ccdc.cam.ac.uk.

[†] *Crystal data for* **2b**. $C_{12}H_{15}Br_2NO$ (*M* = 349.05), monoclinic, space group *P*2₁, *a* = 9.9212(5), *b* = 16.9866(10) and *c* = 16.8457(10) Å, β = 100.250(5)°, *V* = 2793.7(3) Å³, *Z* = 8, *T* = 293(2) K,

Italian Oral Surgery, 30 (2020) 313-314. doi:10.1016/j.mencom.2020.05.017