February 1997 SYNLETT 189 ## A Practical and Efficient Synthesis of α-Diazo Alkynyl Substituted Esters M. David Weingarten[‡] and Albert Padwa* Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA Fax: 404-727-6586; E-mail: chemap@dooley.cc.emory.edu Received 28 August 1996 **Abstract:** An efficient method for the preparation of α -diazo alkynyl substituted esters is described. The key step involves diazo transfer of an α -alkyl substituted alkynyl β -keto ester with p-nitrobenzenesulfonyl azide and DBU. $\alpha\textsc{-Diazo}$ carbonyl compounds are widely used in organic synthesis for preparing heterocyclic and carbocyclic rings. $^{1-10}$ The Arndt-Eistert sequence employs the Wolff rearrangement of an $\alpha\textsc{-diazo}$ ketone to a ketene in the one-carbon homologation of carboxylic acids. 11 Ring contraction of cyclic diazo ketones represents a general method for the preparation of highly strained small-ring compounds. 12 $\alpha\textsc{-Diazo}$ carbonyl compounds are also precursors to metallocarbenoid intermediates when exposed to many metal complexes or salts. 13 The high synthetic versatility of these compounds has brought diazo transfer reagents into wide usage as the most convenient method for achieving preparative diazotization. 14 , The diazo transfer reaction proceeds best with azido sulfonyl compounds, 16 is quite general, but is limited by the requirement that the methylene hydrogens of the substrate be sufficiently acidic. 14 $$R^1$$ R^1 R^1 R^2 Several years ago our group described a route for generating cycloalkenone carbenoids (*i.e.*, **2**) which involved the rhodium(II)-catalyzed decomposition of α -diazo alkynyl substituted carbonyl compounds. ¹⁷ In an effort to further extend these studies, we found it necessary to prepare a variety of diazo esters of type **1** (X=O). Despite the synthetic value of α -diazo esters, very few procedures for diazo transfer to the α -methylene of an ester have been developed. Formylation of esters does not lead to successful diazo transfer ^{18,19} although Taber has recently reported that benzoylation followed by reaction with *p*-nitrobenzenesulfonyl azide (*p*-NBSA) with DBU seems to work well in certain cases. ¹⁸ However, application of Taber's protocol to alkynyl substituted esters was totally unsuccessful resulting in very low yield (<10%) of the desired diazo esters. We now describe an alternative procedure for the preparation of α -diazo esters of type **1** which is based on the diazotization of α -substituted β -keto esters. Alkylation of alkynyl substituted β -keto esters 3 proceeded in high yield by first treatment with NaH in THF followed by reaction with the appropriate alkyl halide. The diazo transfer works best when DBU and p-nitrobenzenesulfonyl azide is used. ¹⁶ Deacetylation readily occurred upon flash silica gel chromatographic workup and proceeded smoothly for each of the examples outlined in Table 1. This procedure makes α -diazo alkynyl as well as related unsaturated esters available as intermediates and opens the way for exploration of their rhodium(II)-catalyzed behavior. The following procedure is representative. To a solution containing 3.0 g (22.7 mmol) of 3-phenylprop-2-yn-1-ol in 10 mL of xylene was added 3.0 mL (23.0 mmol) of 2,2,6-trimethyl-4H-1,3-dioxin-4-one²⁰ under N₂. After heating for 2 h at 140°C, the reaction was cooled to 25°C, filtered through celite and concentrated under reduced pressure. The crude \(\beta \)keto ester was purified by flash chromatography to give 4.5 g (92%) of 3-oxobutyric acid 3-phenylprop-2-ynyl ester (6). To a suspension containing 95 mg (2.38 mmol) of 60% NaH in 10 mL of THF was added 0.44 g (2.03 mmol) of 6 dropwise. After stirring for 30 min at 25°C, 0.28 mL (2.35 mmol) of benzyl bromide was added in one portion. The reaction was stirred for 4 h at 60°C and then cooled to 25°C. The solution was poured into 50 mL of ice cold saturated NH₄Cl and then extracted with ether. The ether layer was dried over magnesium sulfate and concentrated under reduced pressure to give 3.59 g (91%) of 2-benzyl-3-oxobutyric acid 3-phenylprop-2-ynyl ester (7). To a dry 25 mL flask containing 0.27g (0.88 mmol) of 7 was added 10 mL of dry CH₂Cl₂ and 0.30 g (1.32 mmol) of p-nitrobenzenesulphonyl azide. The flask was placed in an ice bath and 0.25 mL (1.67 mmol) of DBU was added dropwise. The mixture was stirred at 0°C for 10 min and filtered through a plug of silica. To this solution was added 2.2 mL (26 mmol) of pyrrolidine, and the mixture was stirred at 25°C for an additional 3 h. The solution was concentrated under reduced pressure, and the residue was purified by flash silica gel chromatography to give 185 mg (72%) of 2-diazo-3-phenylpropionic acid 3-phenylprop-2-ynyl ester (8): IR (neat) 2086 and 1688 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 3.66 (s, 2H), 5.02 (s, 2H), 7.24-7.32 (m, 8H), and 7.44-7.47 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 29.4, 53.1, 83.1, 86.5, 122.1, 127.2, 128.3, 128.4, 128.8, 128.8, 131.9, and 137.0. **Acknowledgment**: We gratefully acknowledge the National Science Foundation (CHE-9509496) for generous support of this work. ## References and Notes [‡]Recipient of a Graduate Fellowship from the Organic Chemistry Division of the American Chemical Society (1994-1995) sponsored by Proctor & Gamble, Co. - (1) Maas, G. Topics in Current Chemistry; Springer Verlag: Berlin, Germany 1987. - (2) Wulfmann, D. S.; Linstrumelle, G.; Cooper, C. F. in *The Chemistry of Diazonium and Diazo Compounds;* Patai, S., Ed.; Wiley: New York, 1978; Part 2, p 821. - (3) Doyle, M. P. Acc. Chem. Res. 1986, 19, 348; Doyle, M. P. Chem. Rev. 1986, 86, 919 and references therein. - (4) Padwa, A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385. - (5) Burke, S. D.; Grieco, P. A. Organic Reactions 1979, 26, 361. - (6) Dave, V.; Warnhoff, E. W. Organic Reactions 1970, 18, 217. - (7) Meier, H.; Zeller, K. P. Angew Chem. Int. Ed. Engl. 1979, 14, 32. - (8) Wenkert, E.; Alonso, M. E.; Buckwalter, B. L.; Sanchez, E. L. J. Am. Chem. Soc. 1983, 105, 2021. - (9) Moody, C. J. Organic Reaction Mechanisms; Wiley: London, 1983; Chapter 6. - (10) Hudlicky, T.; Reddy, D. B.; Govindan, S. V.; Kulp, T.; Still, B.; Sheth, J. P. J. Org. Chem. 1983, 48, 3422. - (11) Tsuji, T.; Nishida, S. J. Am. Chem. Soc. 1988, 110, 2157. - (12) Redmore, D.; Gutsche, C. D. Adv. Alicyclic Chem. 1971, 3, 125. Table 1. Alkylation and Diazo Transfer | Ketoester | Alkylation
Product | Yield(%) | Diazoester | Yield(%) | |-----------|-----------------------|----------|------------------------|----------| | Me 6 Ph | Me O Ph | 91 | Ph | 72
Ph | | Me 6 Ph | Me Ph | 73 | O
N ₂ 10 | 75
Ph | | Me 6 Ph | Me O Ph | 60 | Me O Ph | 81 | | Me 0 13 | Me Me 14 | 82 | Me N ₂ 15 | 78 | - (13) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263. Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. - (14) Regitz, M.; Maas, G. Diazo Compounds: Properties and Synthesis; Academic Press: Orlando, FL, 1986; p 185. - (15) Taber, D. F. Comprehensive Organic Synthesis; Pattenden, G., Ed., Pergamon Press: Oxford, 1991; Vol. 3, p 1045. - (16) Bollinger, F. W.; Tuma, L. D. Synlett 1996, 407. - (17) Padwa, A.; Krumpe, K. E.; Zhi, L. Tetrahedron Lett. 1989, 2623. Padwa, A.; Krumpe, K. E.; Garreau, Y.; Chiacchio, U. J. Org. Chem. 1991, 56, 2523. Padwa, A.; Krumpe, K. E.; Kassir, J. M. J. Org. Chem. 1992, 57, 4940. - (18) Taber, D. F.; You, K.; Song, Y. J. Org. Chem. 1995, 60, 1093. - (19) Aller, E.; Cox, G. C.; Miller, D. J.; Moody, C. J. Tetrahedron Lett. 1994, 35, 5949. - (20) Clemens, R. J.; Hyatt, J. A. J. Org. Chem. 1985, 50, 2431.