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Abstract

A novel approach towards the construction of the morphine skeleton was demonstrated by a total synthesis of
(�)-desoxycodeine-D (11) from 5,6,7,8-tetrahydroisoquinoline and isovanillin. The key steps are two consecutive
Pd-catalyzed cyclizations and a Stevens rearrangement for the formation of ring B. © 2000 Elsevier Science Ltd.
All rights reserved.
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Morphine is a potent analgesic alkaloid with a rigid pentacyclic (ABCNO) structure. A number of
total syntheses of morphine have been published since the first one achieved by Gates and Tschudi in
1952.1 However, a more practical and stereoselective synthetic route for morphine alkaloids remains an
attractive research goal for synthetic organic chemists.2 In a previous publication,3 we have demonstrated
an efficient synthesis of morphine ANO and ACNO fragments, namely spiro[benzofuran-3(2H),40-
piperidine] and octahydro-1H-benzofuro[3,2-e]isoquinoline, by intramolecular Heck reaction. We have
now developed a novel approach for the construction of ring B in morphine, based on a Pd-catalyzed
intramolecularN-benzylation followed by a Stevens rearrangement. The current strategy coupled with
our previous method for the construction of the ACNO ring system has provided us an efficient access to
the complete pentacyclic skeleton of morphine. Described here is a total synthesis of (�)-desoxycodeine-
D (11),4 which serves to exemplify the applicability of the above methodology.
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Scheme 1. Reagents and conditions: i. CH3I, CH2Cl2, room temp.; ii. NaBH4, MeOH, 0°C; iii. EtOOCCl, KHCO3,
ClCH2CH2Cl, reflux; iv. NaOH, MeOH, 0°C; v. 2-bromoisovanillin, DEAD, (n-C4H9)3P, THF.; vi. NaBH4, MeOH, 0°C; vii.
Pd(OAc)2, PPh3, Et3N, CH3CN, 120–130°C; viii. TBDMSCl, imidazole, THF; ix. (n-C4H9)4N+F�, THF, room temp.; x. NCS,
PPh3, THF, room temp.; xi. Pd(PPh3)4, Et3N, CH3CN, 120–130°C; xii. CH3I, CH2Cl2, room temp.; xiii. PhLi, ether, 0°C

As outlined in Scheme 1, the synthesis of11 starts from readily available 5,6,7,8-
tetrahydroisoquinoline and isovanillin. Thus, 5-acetoxy-5,6,7,8-tetrahydroisoquinoline (1)5,6 derived
from 5,6,7,8-tetrahydroisoquinoline was treated with iodomethane, followed by NaBH4 reduction,
to give the octahydroisoquinoline2.7 Compound2 was treated with ethyl chloroformate followed
by hydrolysis of the acetate group to give carbamate3. The condensation of compound3 with
2-bromoisovanillin8 under Mitsunobu conditions9 provided compound4, which was reduced with
NaBH4 to give the benzyl alcohol intermediate5. The formation of the O-ring was achieved when
compound5 was subjected to Heck reaction conditions, and the tetracyclic (ACNO) compound610 was
obtained in 42% yield. The yield of the above intramolecular cyclization was significantly increased
via prior protection of the alcohol function in5 as a silyl ether. Compound6 was then converted to
the benzyl chloride8 via treatment withN-chlorosuccinimide and triphenylphosphine. Our original
plan for the construction of ring B was to utilize the documented Pd-catalyzed cyclization of benzyl
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halides containing alkenes.11 However, when compound8 was subjected to Heck reaction conditions
(Pd(PPh3)4, Et3N, CH3CN, 120°C), instead of giving the anticipated compound12, an intramolecular
N-benzylation occurred and provided the tertiary amine9.

10 A likely mechanism for the formation of
compound9 from 8 is given in Scheme 2. Prompted by literature reports12 of Stevens rearrangement of
quaternary tetrahydroisoquinoline alkaloids, compound9 was first converted into the correspondingN-
methylammonium iodide10, which was then treated with PhLi in ether. To our gratification, compound
10 underwent the anticipated Stevens rearrangement, and provided (�)-desoxycodeine-D (11) in 83%
yield.13

Scheme 2.

In summary, we have demonstrated a novel synthetic route to the morphine skeleton, starting from
5,6,7,8-tetrahydroisoquinoline and isovanillin. Notable features of the synthesis include an unexpected
Pd-catalyzed intramolecularN-benzylation and the efficient formation of ring B via a Stevens rearrange-
ment. Further work towards a total synthesis of (�)-morphine is currently underway in our laboratory.
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