
RSC Advances

COMMUNICATION

Pu
bl

is
he

d 
on

 1
7 

Ju
ne

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
B

ir
m

in
gh

am
 o

n 
31

/1
0/

20
14

 1
8:

22
:2

7.
 

View Article Online
View Journal  | View Issue
aDivision of Energy Systems Research, Ajou U

hyjang2@ajou.ac.kr; Fax: +82 31 219 1615;
bKorea Carbon Capture & Sequestration R&

† Electronic supplementary information
and spectral analysis for new compounds

Cite this: RSC Adv., 2014, 4, 28225

Received 2nd May 2014
Accepted 17th June 2014

DOI: 10.1039/c4ra04012k

www.rsc.org/advances

This journal is © The Royal Society of C
N-heterocyclic carbene-catalyzed oxidation of
aldehydes for the synthesis of amides via phenolic
esters†

Miran Ji,a Seungyeon Lima and Hye-Young Jang*ab
N-heterocyclic carbene-catalyzed oxidation using TEMPO is reported

for the conversion of aldehydes to amides. A wide range of amides

were synthesized in good yields (up to 72%) via a one-pot, sequential

protocol involving oxidative esterification of aldehydes and subse-

quent aminolysis. To promote efficient aminolysis, various alkoxide

leaving groups were evaluated.
The amide group is a common feature in many important
compounds including pharmaceuticals, and in peptide bonds,
and polymers (e.g., nylon and aramid).1 As a result, a variety of
synthetic methods have been developed over the years to form
amides, including use of coupling reagents, metal-catalysts, and
metal-free conditions.2–7 Amongst these, our attention has been
drawn to carbene-catalyzed amidation conditions because of
the environmental benets of metal-free conditions. Compared
to carbene-catalyzed esterication of aldehydes,8–10 carbene-
catalyzed amide formation from aldehydes is limited because of
the competing imine formation. Based on Studer's report on
carbene-catalyzed oxidative amidation, imine formation can be
reduced using a sequential approach of carbene-catalyzed
reactive ester formation, followed by aminolysis of the
esters.6a,11 Although most carbene-catalyzed reactions required
higher catalyst loadings and showed lower turnovers compared
to those of the metal-catalyzed reactions, continuous studies of
carbene-catalyzed reactions would provide efficient metal-free
synthetic protocols.

We recently reported a carbene-catalyzed oxidation of alde-
hydes using 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) to
afford a diverse range of esters and thioesters.12 Under Studer's
conditions, the stable TEMPO-ester formed readily, thereby
making formation of the other esters and thioesters impossi-
ble.10a However, we found that we couldmodulate the formation
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of various esters and thioesters without forming the TEMPO-
esters as the product. Herein, we report the use of carbene
catalysts and TEMPO oxidant for the tandem oxidative esteri-
cation of aldehydes-aminolysis, to afford a diverse range of
amides from aldehydes. A possible mechanism is proposed in
Scheme 1. Based on our previous work, aldehyde 1a undergoes
oxidative esterication via Breslow intermediate I to afford
phenolic ester 1c. Subsequent aminolysis of 1c provides desired
amide 1b.

Optimization results are listed in Table 1. Initially, the
oxidative esterication of cinnamaldehyde 1a with various
alcohols, followed by aminolysis using benzyl amine was
investigated. Alcohols (1 equiv.) were reacted with cinna-
maldehyde 1a (1 equiv.) in the presence of 1,3-bis(2,6-diiso-
propylphenyl)imidazol-2-ylidene (IPr, 10 mol%), TEMPO
(2 equiv.) in toluene at 100 �C for 4 h, followed by addition of
benzyl amine (2 equiv.) and the mixture being stirred at 40 �C
for 18 h. As shown in entry 1 of Table 1, reaction of 1a with
isopropyl alcohol failed to form the desired amide 1b. Use of
Scheme 1 N-heterocyclic carbene-catalyzed amides synthesis from
aldehydes.
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Table 1 Optimization of carbene-catalyzed amidation to form 1bb

Entry Carbene TEMPO ROH
pKa of
ROH Yielda (1b)

1 IPr (10 mol%) 2 equiv. iPrOH 17 0%
2 IPr (10 mol%) 2 equiv. CF3CH2OH 12.4 34%
3 IPr (10 mol%) 2 equiv. HFIP 9.3 57%
4 IPr (10 mol%) 2 equiv. PhOH 10.0 60%
5 IPr (10 mol%) 2 equiv. pNO2–PhOH 7.2 0%
6 IPr (10 mol%) 2 equiv. F5-PhOH 5.5 0%
7 IPr (10 mol%) 1.5 equiv. PhOH 10.0 44%
8 IPr (5 mol%) 2 equiv. PhOH 10.0 44%
9 IMes (10 mol%) 2 equiv. PhOH 10.0 43%

a Isolated yield. b Experimental: TEMPO (1.0 mmol) and IPr (0.05mmol)
was added to a solution of 1a (0.5 mmol) and ROH (0.5 mmol) in toluene
(0.5 M) under nitrogen atmosphere. The reaction mixture was stirred at
100 �C for 4 h. Then, benzylamine (1.0 mmol) was added to the reaction
vessel and the reaction mixture was stirred at 40 �C for 18 h. Scheme 2 Oxidative esterification of 1a with phenol.

Table 2 The reactions of cinnamaldehyde with various aminesb

Entry Amine Product Yielda

1 55%

2 59%

3 41%

4 50%

5 52%

6 60%

a Isolated yield. b Experimental: TEMPO (1.0 mmol) and IPr (0.05mmol)
was added to a solution of 1a (0.5 mmol) and PhOH (0.5 mmol) in
toluene (0.5 M) under nitrogen atmosphere. The reaction mixture was
stirred at 100 �C for 4 h. Then, benzylamine (1.0 mmol) was added to
the reaction vessel and the reaction mixture was stirred at 40 �C
for 18 h.
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uorinated alcohols improved the yield to 34% and 57%
(entries 2 and 3). It was proposed that the basicity of the
conjugated base of the alcohol could affect the progress of the
aminolysis step, as the oxidative esterication of 1a to form the
corresponding esters was completed within 4 h. Thus, the more
basic isopropoxide group is considered as a poorer leaving
group, and therefore no amide formation was observed. By
considering the pKa of the alcohols, phenol, with a similar pKa

to that of hexauoroisopropyl alcohol (HFIP) was tested (entry
4).13 As expected, these reactions, which proceeded via the
phenolic and hexauoroisopropyl ester respectively, afforded
the similar yields of product (entries 3 and 4). In addition to
phenol, pNO2–phenol and pentauorophenol (F5-PhOH) were
tested; however, these failed to form desired amide 1b (entries 5
and 6). In the case of the electron-decient phenols, the inter-
mediate esters were not formed because of the low nucleophi-
licity of the phenol derivatives. It was found that the amount of
TEMPO could be reduced to 1.5 equiv. and afforded amide 1b in
44% yield (entry 7). The IPr carbene catalyst loading was also
reduced to 5 mol%; however, this led to a decrease in the yield
of 1b (entry 8). Finally, an alternative carbene catalyst (IMes) was
investigated but unfortunately this also led to a lower yield of 1b
compared to that with the IPr catalyst (43%, entry 9).14 In the
absence of carbene catalysts, either phenolic ester 1c or amide
1b was not formed. Without TEMPO, saturated amide 1d was
formed in 69% yield, implying redox-esterication instead of
oxidative esterication occurred in the absence of TEMPO.15

Based on our previous reports regarding the oxidative esteri-
cation of 1a with phenol,12 it was expected that excessive
28226 | RSC Adv., 2014, 4, 28225–28228
amounts of phenol would not increase the yield of esters. This
was conrmed by reacting 1a with 1 and 2 equiv. of phenol
which afforded 1c in a comparable 75% and 63% yields,
respectively (Scheme 2). Subsequently, the stoichiometry of
phenol was xed at 1 equiv. with respect to 1a.

Next, the substrate scope was investigated by employing a
diverse range of amines and aldehydes (Tables 2 and 3). The
reaction of cinnamaldehyde with various amines was conducted
using the optimized reaction conditions. Electron-rich benzyl
amines (p-methyl benzyl amine and p-methoxy benzyl amine)
performed well in the reaction with cinnamaldehyde, to afford
2b and 3b in 55% and 59% yield, respectively (Table 2, entries 1
This journal is © The Royal Society of Chemistry 2014
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Table 3 The reactions of various aldehydes with benzyl amineb

Entry Amine Product Yielda

1 55%

2 55%

3 56%

4 54%

5 72%

6 45%

7 38%

a Isolated yield. b Experimental: TEMPO (1.0 mmol) and IPr (0.05mmol)
was added to a solution of aldehyde (0.5 mmol) and PhOH (0.5 mmol) in
toluene (0.5 M) under nitrogen atmosphere. The reaction mixture was
stirred at 100 �C for 4 h. Then, benzylamine (1.0 mmol) was added
to the reaction vessel and the reaction mixture was stirred at 40 �C
for 18 h.
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and 2). Heteroaromatic amine led to the formation of 4b in a
slightly reduce yield (41%, entry 3). The reactions of cinna-
maldehyde with allyl amine and aliphatic amine proceeded well
to afford 5b (50%) and 6b (52%) (entries 4 and 5). An amide
formation using sterically hindered a-ethylbenzyl amine was
also successful and afforded 7b in 60% yield (entry 6).

Next, the scope of aldehyde was investigated for amide
formation using benzyl amine (Table 3). Benzaldehyde and
electron-decient benzaldehydes (pNO2-substituted and
puoro-substituted) reacted with benzyl amine to provide 8b
(55%), 9b (55%), and 10b (56%), respectively (entries 1–3).
Thiophenyl carboxaldehyde and furfural reacted well to afford
11b and 12b in 54% and 72% yield, respectively (entries 4 and
5). In addition to aromatic aldehydes, aliphatic aldehydes were
This journal is © The Royal Society of Chemistry 2014
also subjected to the reaction conditions; however, this afforded
aliphatic amide 13b and 14b in a reduced 45% and 38% yield,
respectively (entries 6 and 7).
Conclusions

In conclusion, we have expanded our NHC-catalyzed oxidative
coupling using TEMPO for the synthesis of a range of amides
from aldehydes. To address the previous imine formation
issues, we utilized a tandem reaction protocol involving NHC-
catalyzed oxidative phenolic ester formation followed by ami-
nolysis. The optimum alcohol for the ester formation and
aminolysis was chosen based on pKa values. As a result, phenol
(pKa ¼ 10.0) was found to be the most favourable alcohol for the
amide formation. Under optimized conditions, a diverse range
of aromatic and aliphatic aldehydes and amines were coupled
to form the desired amides in modest to good yield via the
intermediate esters.
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