Tetrahedron Letters, Vol.32, No.50, pp 7431-7434, 1991 Printed in Great Britain

A Novel Approach to α -Silylmethylene- β -lactams via Rh-catalyzed Silylcarbonylation of Propargylamine Derivatives

Isamu Matsuda,^{*a}Jun Sakakibara^b, and Hideo Nagashima^{*b} ^a Department of Applied Chemistry, School of Engineering, Nagoya University, Chikusa, Nagoya 464-01, JAPAN ^b School of Material Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, JAPAN

Summary: α -Silylmethylene- β -lactams are successfully constructed by the one-pot coupling of a substituted propargylamine derivative, a triorganosilane, and CO with the catalysis of Rh₄(CO)₁₂ and DBU.

We previously reported rhodium-catalyzed silylformylation of acetylenic compounds as the first synthetic method of 3-silylpropenals represented by the formal addition of triorganosilyl and formyl groups to the acetylenic bond.¹ Application of this protocol to propargyl type alcohols (1) also provides a general route to the corresponding 2-hydroxyalkyl-3-silylpropenals (2) in high yields; however, it is quite remarkable that the co-presence of base attains a one-pot cyclocarbonylation to form α -silylmethylene- β -lactones 3 in the reaction of substituted 1 under similar conditions as shown in scheme 1.² This unusually facile procedure to construct a four-membered ring prompts us to examine the silylformylation of propargylamine derivatives shown in eq. 1, in which the potential formation of 5 is of keen interest from the synthetic point of view. The α -alkylidene- β -lactam unit is a common structural feature included in potent β -lactamase inhibitors asparenomycins,³ Ro 15-1903,⁴ and 6-[(Z)-methoxymethylene]penicillanic acid.⁵ Although a number of methods have been reported for the synthesis of this unit,⁶ only a few utilized the carbonylation of certain amine derivatives, in which a series of α -silylmethylene- β -lactams is easily available by one-pot procedure.

Previous reports suggest that the nonsubstituted amino group included in the starting substrates must be modified appropriately in the hydroformylation of alkenes because it participates in the consecutive

reaction of the products under the reaction conditions⁸ except for a few intramolecular version.⁹ N-(1-Ethynylcyclohexyl)-p-toluenesulfonamide (4b) was chosen as a model compound for the β -lactam synthesis on the basis of our knowledge of the formation of 3. Thus, carbonylation of 4b gave two types of product, β -lactam **5b** (40 %) and 3-silylpropenal **6b** (21 %) with the aid of Rh₄(CO)₁₂ and El₃N at 100 °C. Isolated 6b was not converted to 5b under similar conditions. This suggests that two products 5b and 6b are formed competitively. The presence of a base such as Et₃N is essential for the formation of 5b. In fact, 6b is the sole product in the silylformylation of 4b under conditions excluding Et₃N. In contrast to the successful control of the formation of 6b, the ratio of 5b to 6b was slightly improved when 10 mol % of 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) was added in place of Et₃N; it was also remarkably affected by the reaction temperature. The reaction at lower temperature (25 °C or 50 °C) apparently depressed the formation of **6b** despite an appreciable drop in the reaction rate. The exclusive formation of β -lactam **5b'** was achieved by a combined use of bulkier ^tBuMe₂SiH and DBU. This optimal combination of reagents realized the exclusive formation of β -lactam 5a' in the carbonylation of 4a under similar conditions. Other N-propargylic p-toluenesulfonamides 4d and 4e also gave the corresponding β -lactams 5d and 5e, respectively, in the onepot procedure. On the other hand, N-propargylic carbamate 4c and sterically less hindered sulfonamide 4f gave a mixture of 5 and 6 even with the participation of ^tBuMe₂SiH and DBU. These results suggest that the path to formation of β -lactam 5 is strongly affected by the steric requirement of substrates as well as nucleophilicity of the nitrogen atom or the protonic character of N-H. Propargylamine derivatives without substituents on the propargyl carbon 4g, 4h, and 4i were readily silvlformylated to give 6g, 6h, and 6i, respectively, in the absence of base at 25 °C; however, no attractive products were obtained in the presence of DBU. The results are summarized in Table 1.

The most notable feature of these reactions is that the R₃Si group always attacks the terminal carbon of acetylenes to give 5 and/or 6. Especially, the present one-pot procedure to form 5 provides a novel method for the synthesis of β -lactam skeletons from propargylamine derivatives, triorganosilanes, and CO. Unfortunately, a certain type of 4 does not give any cyclized product 5; however, propenal 6 could be lead to β -lactam 5 by two additional steps, oxidation of the formyl group to give carboxylic acid and subsequent dehydrative cyclization with the aid of dicyclohexylcarbxdiimide and 4-pyrrolidinopyridine.¹⁰ Further studies are now in progress.

Acknowledgments: This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan. We thank Professor Kenji Itoh (T.U.T) for helpful discussion.

	· · ·			Conditions				Products b		
Entry		4	R3SiH	Temp (°C)	Time (h)	Base <u>a</u>	5	Yield (%)	6	Yield (%)
1	4a	NH ₂	^t BuMe ₂ SiH	100	2	DBU	5a'	64		
2	4 b	\frown	Me ₂ PhSiH	25	12				6b	73 <u>⊆</u>
3		DTs	Me ₂ PhSiH	25	12	DBU	5b	57	6b	2 <u>d</u>
4		N N N	Me ₂ PhSiH	50	5	DBU	5 b	75	6b	2£
5		н	Me ₂ PhSiH	100	2	Et ₃ N	5 b	40	6 b	21
6			Me ₂ PhSiH	100	2	DBU	5 b	55	6 b	13
7			^t BuMe ₂ SiH	100	2	DBU	5b'	81		
8 9	4c	N.CO ₂ Me	Me2PhSiH ^t BuMe2SiH	100 100	2 2	DBU DBU	 5c'	28	6c 6c'	68 <u>0</u> 199
10	4d	N.PTs H	Me ₂ PhSiH	100	2	DBU	5d	80		
11	4e	N.PTs H	Me ₂ PhSiH	100	2	DBU	5e	65		
12	4 f	"C ₅ H ₁₁ N [.] pTs H	^t BuMe ₂ SiH	100	2	DBU	5f'	14	6f'	65f
13	4 g	N ^{.pTs}	Me ₂ PhSiH	25	12				6 g	818
14		Й́Н	Me ₂ PhSiH	100	2	DBU				
15	4h	N ^{-CO} 2Me	Me2PhSiH	25	12				6 h	63 <u>⊂</u>
16	4i	N, CO₂CH₂Ph H	Me ₂ PhSiH	25	12				61	75 <u>⊂</u>

Table 1. Silylcarbonylation of 4.11

^a The quantity of DBU was reduced to 0.1 equivalent. ^b See reference 12. ^c Z form only.

^d Unchanged 4b (29 %) was recovered. $\stackrel{\circ}{=}$ Unchanged 4b (20 %) was recovered.

f Z:E = 1:1.5. g Z:E = 1:2.

References and notes

- Matsuda, I.; Ogiso, A.; Sato, S.; Izumi, Y. J. Am. Chem. Soc., 1989, 111, 2332. Ojima, I.; Ingallina, P.; Donovan, R. J.; Clos, N. Organometallics, 1991, 10, 38.
- 2. Matsuda, I.; Ogiso, A.; Sato, S. J. Am. Chem. Soc., 1990, 112, 6120.
- Kawamura, Y.; Yasuda, Y.; Mayama, M.; Tanaka, K. J. Antibiot., 1982, 35, 10. Shoji, J.; Hinoo, H. Sakazaki, R.; Tsuji, N.; Nagashima, K.; Matsumoto, K.; Takahashi, Y.; Kozaki, S.; Hattori, T.; Kondo, E.; Tanaka, K. J. Antibiot., 1982, 35, 15. Tsuji, N.; Nagashima, K.; Kobayashi, M.; Shoji, J.; Kato, T.; Terui, Y.; Nakai, H.; Shiro, M.; J. Antibiot., 1982, 35, 24. Murakami, K.; Doi, M.; Yoshida, T. J. Antibiotic., 1982, 35, 39.
- 4. Arisawa, M.; Then, R. L. J. Antibiot., 1982, 35, 1578.
- 5. Brenner, D. G.; Knowles, J. R. Biochemistry, 1984, 23, 5839. Brenner, D. G. J. Org. Chem., 1985, 50, 18.
- Fletcher, S. R.; Kay, I. T. J. Chem. Soc. Chem. Commun., 1978, 903. Agawa, T.; Ishida, M.; Ohshiro, Y. Synthesis, 1980, 933. Barrett, A. G. M.; Strugess, M. A. Tetrahedron Lett., 1986, 27, 3811. Buynak, J. D.; Pajouhesh, H.; Lively, D. L.; Ramalakashmi, Y. J. Chem. Soc. Chem. Commun. 1984, 948. Buynak, J. D.; Rao, M. N.; Pajouhesh, H.; Chandrasekaran, R. Y.; de Meester, P.; Chu, S. C. J. Org. Chem., 1985, 50, 4245. Buynak, J. D.; Rao, M. N.; Chandrasekaran, R. Y.; Haley, E.; de Meester, P.; Chu, S. C. Tetrahedron Lett., 1985, 26, 5001. Tanaka, K.; Horiuchi, H.; Yoda, H. J. Org. Chem., 1989, 54, 63. Alcaide, B.; Plunet, J.; Rodriguez-Lopez, J.; Sanchez-Cantalejo, Y. M. Tetrahedron Lett., 1990, 31, 2493.
- Mori, M.; Chiba, K.; Okita, M.; Ban, Y. Tetrahedron, 1985, 41, 375. Alper, H.; Hamel, N. Tetrahedron Lett., 1987, 28, 3237.
- Jachimowicz, F.; Raksis, J. W. J. Org. Chem., 1982, 47, 445. Campi, E. M.; Jackson, W. R.; Nilsson, Y. Tetrahedron Lett., 1991, 32, 1093.
- Krafft, M. E. Tetrahedron Lett., 1989, 30, 539. Anastasiou, D.; Jackson, W. R. Tetrahedron Lett., 1990, 31, 283.
- 10. Somfai, P.; He, H. M.; Tanner, D. Tetrahedron Lett., 1991, 32, 283.
- 11. A typical procedure is as follows: Into a glass tube containing $Rh_4(CO)_{12}$ (0.004 g, 0.005 mmol), 4b (0.463 g, 1.67 mmol), and benzene (9 ml) saturated by CO were successively added at -70 °C under CO atmosphere by syringe ^tBuMe₂SiH (0.190 g, 1.64 mmol) in C₆H₆ (1 ml), and DBU (0.025 g, 0.16 mmol) in C₆H₆ (0.5 ml). The tube was put in a 100 ml of stainless steel autoclave and then the reactor was pressurized by CO to 20 kg/cm². The contents were stirred for 2 h at 100 °C and cooled to ambient temperature. After excess CO was purged in a hood, the reaction mixture was treated by the ordinary procedure to give **5b**⁺ (81 %).
- 12. All these compounds were identified by ¹H NMR, ¹³C NMR, and IR spectra. The structure of **5** was readily deduced by the presence of the diagnostic $v_{C=O}$ absorption around 1770 cm⁻¹ in the IR spectra. All new compounds gave satisfactory combustion analyses.

(Received in Japan 16 August 1991)