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Abstract Thirty three chalcones were synthesized and
tested on viral H1N1 neuraminidase activity by using
MUNANA assay [2′-(4-methylumbelliferyl)-α-D-N-acet-
ylneuraminic acid] assay with DANA (2,3-didehydro-2-
deoxy-N-acetylneuraminic acid) was used as standard. 2D
and 3D-quantitative structure−activity relationship models
have been successfully developed with a good correlative
and predictive ability for quantitative structure−activity
relationships of these chalcone derivatives. Result from the
2D-quantitative structure−activity relationship model indi-
cates that electrostatic parameter enhanced bioactivity of the
chalcones while steric substituents diminished their potency
as H1N1 neuraminidase inhibitors. 3D-quantitative struc-
ture−activity relationship model showed the importance of
the position of the hydroxyl group in chalcone derivatives
which can influence on hydrophobicity, hydrogen bond
donor and aromatic ring features that enhance the biological
activity. Finally, docking studies showed that chalcones
MC8 and MC16 with low C docker interaction energies
and higher numbers of hydrogen bonding have better
inhibitory activity against viral H1N1 neuraminidase.
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Introduction

Influenza virus belongs to the orthomyxoviridae, a family of
RNA viruses which can cause infection in birds and
mammalian cells with the help of hemagglutinin (H) and
neuraminidase (NA) of the influenza virus. Neuraminidase
is involved in the initiation of the influenza infection by
promoting the release of the virus from the host cell. This
enzyme is a crucial part of influenza replication. Thus,
finding suitable inhibitors to block the function of NA is
possibly an effective way to restrain influenza (Babu et al.,
2000).

In the last decade, a number of investigations have been
conducted on phytomedicines for their potential as neur-
aminidase inhibitor. Flavonoids, especially, are considered
promising compounds and are widely found in traditional
herb based medicines for influenza. For example, a
series of flavonoids isolated from Sophoraflavescens,
Glycyrrhizauralensis, cudraniatricuspidata and Rhodio-
larosea were found to show moderate activities for NA
inhibition (Jeong et al., 2009; Ryu et al., 2008, 2009, 2010).
However, most work have been conducted on naturally
occurring flavonoids, and amongst all the subtypes of fla-
vonoids studied, chalcones have not been extensively
investigated for their potency as NA inhibitors (Ryu et al.,
2008, 2009; Gao et al., 2011; Mercader and Pomilio, 2010).
Thus far, there is no report on quantitative structure–activity
relationship for the chalcones as NA inhibitors. This study
was conducted to investigate quantitative structure–activity
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relationships for the chalcone compounds with the aid of 2D
and 3D-quantitative structure−activity relationship (QSAR)
models.

To ascertain the influence of different functional groups
on NA inhibition, 33 chalcones with different functional-
ities were synthesized through Claisen–Schmidt condensa-
tion reaction from the corresponding acetophenones and
benzaldehydes (Marais et al., 2005). All synthetic com-
pounds were purified by chromatographic method and
characterized by using various spectroscopic techniques.
The H1N1 neuraminidase inhibitory potency of the syn-
thetic chalcones was tested by using in vitro MUNANA
assay with DANA (2, 3-didehydro-2-deoxy-N-acetylneur-
aminic acid) as standard inhibitor (Potier et al., 1979).

Material and methods

General procedure for the synthesis of chalcones

All chalcones were prepared via standard Claisen–Schmidt
reaction. To a solution of the corresponding acetophenone
(1 eq) in ethanol (2.5 mL/mmol), sodium hydroxide (3 eq)
was added. After 10 min, benzaldehyde (1.2 eq) was added
and the solution was stirred at room temperature overnight.
After cooling with ice, the reaction mixture was neutralized
carefully using 1N hydrochloric acid. The crude mixture
was extracted with ethyl acetate, washed with water and
brine afforded chalcones (yield 32–92 %) after column
chromatography.

Data set preparation

A data set of 33 chalcone-based compounds (Table 1) and
percentage of NA inhibition for chalcones studied at
100 mg/mL in Fig. 1 expressed as % inhibition in the range
of 6.80–54.0 %. Among these 33 compounds, 22 com-
pounds were used in the training set for model development
and 11 compounds were used as a test set for model
validation.

2D QSAR modeling

The 2D molecular structures of the ligands were sketched
using the Chem Draw 6.0 software (Cambridge Scientific
Computing) while Corina in TSAR 3.3 (Accelrys) software
packages used to convert the structures into their 3D con-
formation. The geometries of these molecules were opti-
mized using the Cosmic module of TSAR. The calculation
was terminated when the energy difference or the energy gra-
dient becomes smaller than 1 × 10−5 and 1 × 10−10 kcal/mol,
respectively. Molecular descriptors were generated using
TSAR 3.3 (Accelrys) for each compound. 316 descriptors

were obtained from this calculation. These descriptors were
then reduced to a smaller set of descriptors. These set should
be information rich but as small as possible.

Correlation matrix was applied to select the best subset
of descriptors to be included in the model by eliminating
descriptors that are highly correlated with each other.
The next step involved the scaling of descriptors which
requires thorough manipulation since there may be under-
lying relationship between these descriptors and it may not
be possible to foresee the effects of this process.

The selected descriptors were used to build the QSAR
model. In this study, QSAR models were developed using
multiple linear regression analysis (MLRA) technique. In
this technique, the values for F-to-enter and F-to-leave were
set to 4. Cross-validation analysis was performed using the
leave-one-out (LOO) method where one compound is
removed from the dataset and its activity is calculated using
the model derived from the rest of the dataset. The cross-
validated r2(CV) and conventional r2 that resulted in the
lowest error of prediction were chosen (Wermuth, 1998).
Unless otherwise stated, the default values for the other
QSAR parameters were used.

3D-QSAR model and pharmacophore generation

The 3D-QSAR model was carried out using MOE software
packed (Chemical Computing Group Inc). This model was
developed using 33 compounds in the data set. QSAR
model was developed using partial least squares (PLS)
technique. The structure of each molecule was sketched
using the molecule builder tool in the MOE software and
then minimized using MMFF94× force field to a gradient
0.00001 kcal/mol/Å.

Fifteen pharmacophore descriptors were generated and at
the same time pharmacophore of the ligands was performed.
Feature of the pharmacophore was carried out using phar-
macophore query editor tool and the hypothesis for phar-
macophore alignment. In this study, the best alignments of
pharmacophore were generated using three features,
hydrogen bond donor, hydrogen bond acceptor and hydro-
phobic atom.

The features of this pharmacophore were then used to
ensure that 3D-QSAR model is applicable to molecules
with the same properties as the pharmacophore alignment,
and can be used to predict the biological activities of the
unknown compounds.

H1N1 viral neuraminidase MUNANA assay

All chalcones were tested on H1N1 viral neuraminidase by
using MUNANA [2'-(4-methylumbelliferyl)-α-D-N-acet-
ylneuraminic acid] assay with DANA was used as standard
inhibitor. Fresh stock solution (1 mg/mL) of the sample was
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Table 1 Structure and activity data of chalcones
O

R1

R2

R3

A B

Entry Compd no R1 R2 R3 % of
inhibitiona

Entry Compd no R1 R2 R3 % of
inhibitiona

1 MC1 H H 6.9 18 MC20 OCH3 OCH3 12.90

2 MC2 H H 70.1 19 MC22 OCH3 OCH3 21.90

3 MC3 H H 39.60 20 MC23 OCH3 OCH3 11.50

4 MC4 H H 92.10 21 MC24 OCH3 OCH3 15.40

5 MC5 OH H 12.90 22 MC25 OCH3 OCH3 19.10

6 MC6 OH H 60.88 23 MC26 OCH3 H 20.90

7 MC7 OH H 20.63 24 MC33 OCH3 H 19.50

8 MC8 OH H 96.50 25 MC38 NH2 H 34.90

9 MC9 OH H 22.80 26 MC39 NH2 H 63.00

10 MC10 OH H 20.20 27 MC40 NH2 H 26.40

11 MC11 OH H 12.90 28 MC41 NH2 H 29.40

12 MC12 OH H 19.50 29 MC42 NH2 H 6.80

13 MC13 OH H 17.00 30 MC43 H NH2 74.40

14 MC14 OH H 15.20 31 MC44 H NH2 41.20
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prepared in 2.5 % DMSO. Briefly, 25 µL H1N1 viral
neuraminidase (SINOBIO) was added to 25 µL of sample
solution mixed with buffer in a 96-microplate well. A
volumn of 50 µL of substrate (MUNANA (SIGMA,
M8639) in 32.5 mM MES (SIGMA, M8250) buffer (pH
6.5) was then added and the mixture was incubated at 37 °
C. After one hour, formation of 4-methylumbelliferone was
immediately quantified fluorometrically on a Modulus
Microplate Reader (Turner Biosystem, USA). The excita-
tion wavelength was set at 365 nm and the emission
wavelength at 450 nm. Percentage of inhibition was
obtained by fitting experimental data to the logistic graph.

Docking of chalcones to H1N1 viral neuraminidase

The docking of all 33 chalcones onto the neuraminidase of
A/Breving Mission/1/1918 H1N1 strain in complex with
zanamivir which downloaded from PDB data bank (www
.pdb.org, PDB ID: 3B7E) was achieved using Discovery
studio 2.5 software packages (Accelrys). Hydrogen atoms
were added to the protein and its backbone was minimized.
All ligands were minimized.

Docking was performed by using the Cdocker protocol; a
grid based molecular docking method that employs
CHARMM forcefields. The protein was firstly held rigid

Table 1 continued

Entry Compd no R1 R2 R3 % of
inhibitiona

Entry Compd no R1 R2 R3 % of
inhibitiona

15 MC15 OH H 16.40 32 MC45 H NH2 36.60

16 MC16 OH OCH3 93.40 33 MC46 H NH2 54.00

17 MC19 OCH3 OCH3 30.50 DANA 98.1

a Percentage of inhibition at 1 mg/mL
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and the ligands were allowed to flex during the refinement.
Two hundred ligand conformations were then generated
from the initial ligand structure though high temperature
molecular dynamic followed by random rotation, refine-
ment with grid based (GRID 1) simulated annealing and a
final grid based or full force field minimization. Upon
completion of the docking proses, conformations with the
lowest cdocker energy were then chosen and compared with
the standard DANA (active agents against neuramininidase
H1N1 with Cdocker energy equal to −46.11 kcal/mol).

Results and discussion

2D QSAR modeling

The best QSAR model developed for the H1N1 inhibition
using MLRA technique has an r2 value of 0.81 and an
r2 (CV) value of 0.65. The equation is:

Log 1=%inhibition ¼ � 1:06 � kier chiV5 pathð Þ
þ 0:98 �VAMPHOMOþ 0:79

�VAMPoctupole ZZZ þ 2:10

ð1Þ

Generally, QSAR model is accepted if it has an r2greater
than 0.6 and r2(CV) greater than 0.5 (Medina-Franco et al.,
2005; Frimayanti et al., 2013). This model, therefore,
exhibited high prediction value as can be seen from r2 and
r2(CV) value.

The cross-validated coefficient r2(CV) defines the
goodness of prediction whereas the non-cross-validated
correlation coefficient (r2) indicates the goodness of fit of a
QSAR model. The F test value stands for the degree of
statistical confidence. The statistical output of the MLRA
model is presented in Table 2. A cross-validated coefficient
of 0.65 was obtained using the ‘leave-one-out’ cross vali-
dation procedure. This value indicates very good internal
predictive capability of the developed model.

The model also exhibited a non-cross-validated correla-
tion coefficient of 0.81. The high value of this parameter
adds to its usefulness as a predictive tool. The statistical
significance of this parameter is listed in Table 3.

A plot of experimental vs. predicted of log 1/% inhibition
is shown in Fig. 2. There is no outlier observed in the plot.
Hence, the developed QSAR model could be considered to
be stable. The calculated inhibition of compounds in the test
set re shown in Table 4.

Based on the QSAR model described above, it could be
inferred that percentage of inhibition will improve with the
increase of the electrostatic parameter (i.e., VAMP octupole
ZZZ and VAMP HOMO). The electrostatic parameters are
properties of a molecule which are related to its electron
affinity and demonstrate its susceptibility towards attack by
nucleophiles (Sharma and Kohli, 2014). In this study,
VAMP octupole ZZZ and VAMP HOMO correlates well
with the percentage of inhibition. As an example, the pre-
sence of dimethylamine at R1; hydroxyl group at R2 and a
methoxy group at R3 of compound MC16 (93.4 % NA
inhibitory activity) increased the electrostatic parameter
which promotes the percentage of inhibition.

Topological descriptor (kier ChiV5) calculates the Kier
and Hall kappa molecular shape indices which are important
descriptors used to define the steric influence of substituents
in the interactions of organic compounds with

Table 2 Statistical output and F test value of the multiple linear
regression analysis (MLRA) model

Statistical output Value

Non-cross validated r2 0.81

Cross validation r2 (CV) 0.65

F value 27.54

F-probability 1.23e−007

Standard error of estimate (SEE) 0.18

Residual sum of square (RSS) 0.62

Predictive sum of square (PRESS) 1.16

Table 3 Statistical significance
of parameter in QSAR equation

Descriptors Regression coefficienta Jackknife SEb Covariance SEc tvalued tProbabilitye

Kier ChiV5 (path) −1.06 0.20 0.12 −8.59 5.73e−008

VAMP HOMO 0.98 0.049 0.17 5.53 2.43e−005

VAMP octupole ZZZ 0.79− 0.40 0.20 −3.84 0.001

a The regression coefficient for each variable in the equation
b Standard error of each regression coefficient derived from a Jackknife procedure on the final regression
model
c Estimate of the standard error of each regression coefficient derived from the covariance matrix
d Significance of each variable included in the final model
e Statistical significance for t values
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macromolecular drug receptor (Praphat et al., 2011).
Increasing the value of kier ChiV descriptor will decrease
the percentage of inhibition. For example, the bulky naph-
talene ring in R1 of compound MC42 increased the kier
ChiV5 values but showed a diminished NA inhibitory
activity (6.8 %).

The percentage of inhibition of the compounds in the test
set (i.e., 11 chalcone-based compounds) was predicted
using this QSAR model (Eq. 1). The calculated percentage
of inhibition values of the compounds in the test set are
listed in Tables 4.

The correlation coefficient (r2) between predicted and
experimental value for the QSAR model was also calcu-
lated. A predictive correlation coefficient r2 value (test set)
of 0.94 was obtained for the developed QSAR model.

3D QSAR modeling

Pharmacophore features in this study generated 15 types of
descriptors. The feature selection was used to select the best
descriptors that could be used in the QSAR model. Principle

component analysis (PCA) was applied to reduce the
dimensionality of set of molecular descriptors by linearly
transforming the data. 3D plot of PCA1, PCA2 and PCA3 is
shown in Fig. 3.

3D-QSAR model was then generated using the partial
least squares (PLS) technique where the percentage of
inhibition served as the dependent variable and the phar-
macophore descriptors were used as the independent vari-
able. The resulting model gave a root mean squares error
(RMSE) and coefficient correlation (r2) of 0.204 and 0.71,
respectively.

A plot of the actual value of the percentage of inhibition
vs. the predicted value of the percentage of inhibition is
shown in Fig. 4. The distribution of compounds is observed
to be in surrounding region of the linear regression, except
for three chalcones (MC46, MC15 and MC5) which were
seen as outliers (circled in Fig. 4).

The 3D-QSAR model was then validated by predicting
the percentage of inhibition of 11 compounds in the test set.
The predicted value and actual value of compounds in the
test is shown in Table 5. Overall, this 3D-QSAR model is
able to predict the biological activity of compounds in the
test set with r2 prediction of 0.51.

The suggested descriptors (in the QSAR model) were
then validated using pharmacophore alignment. The train-
ing set was aligned on the template using the fit and sta-
tistically significant pharmacophore hypothesis for chalcone
MC8 (96.5 % NA inhibition) (Fig. 5). The pink sphere in
Fig. 5 is featured for hydrogen bond donor; green sphere for
hydrophobic and yellow sphere represented the aromatic
ring feature.

A pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supra-
molecular interactions with a specific biological target and
to trigger (or block) its biological response (Wermuth,
1998). In addition, the pharmocophore also shows the
importance of the hydrophobic, hydrogen bond donor and
aromatic ring features in enhancing biological activity. As it
shown in Fig. 5, hydrogen bond donor (pink) and hydro-
phobic sphere (green) were observed in the vicinity of
ring A. Thus, it is presumed that compound such as MC8,
the highest percentage of NA inhibition may be due to the
presence of hydroxyl groups in the R1 and R2 positions.

From the result above, it is reasonable to conclude that
NA inhibitory action of chalcones can be regulated by
multiple mechanisms. To find the possible structure
requirement for NA inhibitory activity, meaningful 2D and
3D-QSAR models were derived. 2D-QSAR model
indicated that electrostatic parameter may enhance the
bioactivity of the chalcone such as MC16 while steric
influence of substituent and probably lack of flexibility such
as in chalcone MC42 may diminish its potency as NA
inhibitor.

Table 4 Calculated value of Log 1/% inhibition of chalcone based
compounds in the test set based on 2D QSAR model

Entry Compound No. Experimental log 1/ %
inhibition

Predicted log 1/%
inhibition

1 MC45 1.56 1.54

2 MC38 1.54 1.55

3 MC19 1.48 1.45

4 MC41 1.46 1.38

5 MC40 1.42 1.41

6 MC9 1.36 1.32

7 MC22 1.34 1.29

8 MC26 1.32 1.36

9 MC10 1.3 1.30

10 MC12 1.29 1.28

11 MC33 1.29 1.29

Fig. 2 Plot of actual value vs. predicted value of log 1/% inhibition of
compounds in the training set
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3D-QSAR model also showed the importance of the
position of the hydroxyl group in A ring which can influ-
ence the hydrophobic, hydrogen bond donor and aromatic
ring features of the compounds and presumably enhance
their biological activities.

Amongst all chalcones, MC8 showed the best NA
inhibitory activity with the percentage of inhibition almost
comparable with DANA. The present investigation provides
useful information on the structure requirements for the

interaction of chalcones with NA protein in order to
ascertain potential directions for synthetic lead-optimization
studies.

Docking results

In silico docking studies were performed to evaluate the
effects of chalcones against neuraminidase. The Cdocker
energy reflects the interaction energy for the ligand-protein

Fig. 4 Plot of predicted log 1/%
inhibition vs. actual log 1/%
inhibition of compounds in the
training set

Fig. 3 3D plot of principle
component analysis (PCA)
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complex. The lower the Cdocker energy means the inter-
action is more stable. The Cdocker energy is presented in
Table 6.

The calculated Cdocker energy for MC8 and MC16
showed relatively low value which seems to corroborate
with the experimental results. In addition, MC5 and MC15
which showed relatively higher Cdocker interaction energy
did not show good H1N1 inhibition activities.

MC8 showed to have four hydrogen bonds (blue dashed
line) with residue Arg118, Glu227, Arg292 and Arg371. In
addition, a π interaction was also found between ligand and
residue Arg152 and Arg371. Residues Asp151, Arg152,
Glu119, Glu277 and Asn294 showed interaction with the
ligand through van der Waals interaction (green cycle)
suggesting the importance of these five residues in the
formation of van der waals binding pocket. Likewise, in the
case of MC16, three hydrogen bonds were observed
between the ligand and residues Arg118D, Arg292 and
Arg374. This ligand displayed π interaction with residues
Arg152 and Arg374. The higher the number of the

hydrogen bond, may accounts for ligand is more active
(Mahto et al., 2012).

However, MC5 with only one hydrogen bond (between
hydroxyl group of the ligand and residue Arg152) and a π
interaction with the residue Arg292 showed relatively high
Cdocker energy and less inhibition. The binding interaction
for MC5, MC8 and MC16 are illustrated in Fig. 6

Combined inhibitory activity and docking studies sug-
gested that in the presence of hydroxyl groups in the R1 and
R2 positions in MC8 and MC 16 may fill better into the
adjunct pockets resulting more number of hydrogen bond-

Table 5 The actual value and predicted value of log 1/% inhibition of
compounds in the test set based on 3D QSAR model

Entry Compound Actual value of log 1/
% inhibition

Predicted value of log
1/% inhibition

1 MC45 1.56 1.61

2 MC38 1.54 1.78

3 MC19 1.48 1.06

4 MC41 1.46 1.68

5 MC40 1.42 1.61

6 MC9 1.36 1.52

7 MC22 1.34 1.27

8 MC26 1.32 1.08

9 MC10 1.3 1.41

10 MC12 1.29 1.54

11 MC33 1.29 0.58

Fig. 5 The best pharmacophore
hypothesis for compound MC8,
distance between
pharmacophore features is
reported in Angstrom.
Pharmacophores are color coded
with yellow for aromatic ring,
pink for hydrogen bond donor
and green for hydrophobic

Table 6 The Cdocker interaction energies of chalcone derivatives
with neuraminidase

Entry Compound (-) Cdocker
interaction
energy(kcal/
mol)a

Entry Compound (-) Cdocker
interaction
energy(kcal/
mol)a

1 MC1 28.25 18 MC20 37.21

2 MC2 31.80 19 MC22 38.58

3 MC3 35.69 20 MC23 39.28

4 MC4 29.74 21 MC24 38.12

5 MC5 28.08 22 MC25 35.31

6 MC6 36.94 23 MC26 35.31

7 MC7 33.04 24 MC33 33.82

8 MC8 36.94 25 MC38 31.74

9 MC9 35.35 26 MC39 31.60

10 MC10 38.65 27 MC40 35.85

11 MC11 43.25 28 MC41 35.78

12 MC12 35.41 29 MC42 31.19

13 MC13 32.54 30 MC43 30.32

14 MC14 35.37 31 MC44 27.82

15 MC15 29.25 32 MC45 33.26

16 MC16 43.05 33 MC46 35.29

17 MC19 38.39 34 DANA 46.11

a Calculation performed using Cdocker (Discovery Studio 2.5,
Accelrys)
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MC5 binding site

MC8 binding site

MC16 binding site

Fig. 6 The binding interaction
of MC5, MC8 and MC16
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ing and π interactions with the relative residue as Arg118,
Arg227, Arg292, Arg371, Arg152, Arg371, Asp151,
Arg152, Glu119, Glu277, Asn294 and Arg118D, Arg292,
Arg374, Arg152, Arg374, respectively, which can pre-
sumably enhance the biological activity of these chalcones.

Conclusion

The 2D and 3D-QSAR model has been successfully
developed with a good correlative and predictive ability for
predicting neuraminidase inhibitory activity of this chalcone
series. Based on 2D-QSAR model, the electrostatic prop-
erties can enhance the inhibitory activity. 3D-QSAR model
showed that the increasing of the biological activity will be
influenced by the hydrogen bond donor, hydrophobic
properties and aromatic ring features of the compound.
Docking studies were performed to evaluate the effects of
chalcones against neuraminidase.

Docking study showed the binding affinity of chalcone
derivatives to be within the enzyme binding pockets with
relatively less Cdocker interaction energies and higher
numbers of hydrogen bonding which validated them as
potential candidates for second generation drug discovery.

Bioassay studies of all chalcones indicated that the com-
pounds such as MC8 and MC16 bearing hydroxyl groups in
the R1 and R2 positions have better biological activities
against neuraminidase, suggesting that they are promising as
potential inhibitors for H1N1 virus Neuraminidase.
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