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Metal-free C-C, C-O, C-S and C-N Bond Formation Enabled by SBA-
15 Supported TFMSA 
Xiangyan Yi,a,b Jiajun Feng,a,b Fei Huang*a,b, and Jonathan Bayldon Baell*b,c 

The intermolecular C-C, C-O, C-S and C-N bonds construction 
between diazo compounds and  acyclic, cyclic 1,3-dicarbonyl 
compounds, thiophenol, alkynes were developed by using a 
TFMSA@SBA-15, thus providing a metal-free and eco-friendly 
platform for forging those chemical bonds.

C-C and C-X (X = O, C, N) bonds exist widely in drug or 
bioactive molecules.1 A wide range of transition-metal 
catalyzed insertion reactions between diazo compounds 
and various nucleophiles forging those chemical bonds 
above have become indispensable to organic synthetic 
field.2 In this regard, the most used metal catalysts are 
Rh3 and Cu,4 which were first developed to promote the 
formation of metal-carbenoid intermediates. Metal 
carbene species can undergo corresponding 
transformations, forming C-C, C-O, C-S and C-N bonds. 
Subsequently, transition metal complexes and salts like 
Fe,5 Ru,6 Pd,7 Sc,8 In,9 Au,10 Ag11 and Ir12 have been 
employed as activator of diazo to catalyze formation of 
those chemical bonds. Although the process of those 
reactions can be controlled by sophisticated metal, the 
cost of preparation of metal catalysts and ligands raise 
serious barrier in economy. Meanwhile, the issue of 
transition-metal residue contained in metal catalysts 
allows those protocols are limited in the pharmaceutical 

industries (< ppm level).13 Consequently, as a mean to 
improve applicability and maneuverability, the research 
on utilization of organic molecular as a substitute for 
metal catalysts will be significant. We targeted a new 
protic acid as the activator of diazo. Based on 
achievements in Lewis acids14 and Brønsted acid15 
activation of diazo compounds. We questioned whether 
trifluoromethanesulfonic acid (strongest protic acid, 
TFMSA) could be used to meditate C-C, C-O, C-S and C-N 
bonds formation. In addition, we envisioned that the 
higher catalytic efficiency can be exhibited through 
immobilizing the protic acid on mesoporous silica, 
according to excellent physical properties of this 
material and the high oxophilicity of Si helps to the 
formation of six-membered cyclic structure that 
increases the electrophilicity of proton in protic acid.16 
Guided by this den idea, herein we would like to 
elaborate the development of such TFMSA@SBA-15 
(only 2 mol%) catalyst catalyzed four chemical bonds 

Well established the activation methods of diazo

This work

diazo

Transition metals

Lewis acids

Brønsted acids

C-O bond formation

C-C, C-O, C-S, C-N bond formation

C-O bond formation

diazo

Protic acid

C-C, C-O, C-S, C-N bond formation

Mesoporous silica

Metal-free and Heterogeneous catalyst

R1

N2

R2

R1

N2

R2

Scheme 1 Intermolecular C-C, C-O, C-S and C-N bonds 
construction by pervious contributions and this work.

a.School of Food Science and Pharmaceutical Engineering, Nanjing Normal 
University, Nanjing, 210023, China.

b.School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, 
China.

c. Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, 
Monash University, Parkville, Victoria 3052, Australia.

E-mail: huangfei0208@yeah.net, jonathan.baell@monash.edu 
Electronic Supplementary Information (ESI) available: [details of any supplementary 
information available should be included here]. See DOI: 10.1039/x0xx00000x

Page 1 of 4 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
7 

D
ec

em
be

r 
20

19
. D

ow
nl

oa
de

d 
on

 1
/3

/2
02

0 
1:

35
:0

4 
A

M
. 

View Article Online
DOI: 10.1039/C9CC08389H

https://doi.org/10.1039/c9cc08389h


COMMUNICATION Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

construction between diazo compounds and acyclic, 
cyclic 1,3-dicarbonyl compounds, thiophenol, alkynes. 

Our investigation began with a search for a 
nonmetallic catalyst for intermolecular C-C, C-O, C-S and 
C-N bonds formation through diazo compounds. We 
examined the activity of various protic acids toward the 
reactions between ethyl 2-diazoacetate (1a) and 5-
methylcyclohexane-1,3-dione (2a) to check the 
feasibility of C-O bond formation (see SI for detail). The 
results are displayed in (Fig. 1a). The reaction mentioned 
above did not deliver the desired results with high yield 
in the presence of acids such as AcOH, CSA, TFA and 
MsOH. However, the use of some strong acids like TsOH, 
H2SO4, HCl and HClO4 gave the product (3a) remarkably 
better yield. Gratifyingly, when TFMAS (pKa =-14) was 
used as a catalyst, the isolated yield of product (3a) 
reached the highest. These results also revealed that the 
correlation between catalytic activity of acid and its pKa 
value, strong protic acid was necessary for giving the 
best results, whereas weak acid was ineffective with 
starting material unchanged.

Fig. 1 (a) Screening various protic acids with different pKa in C-
O bond formation. (b) Study on TFMSA@SBA-15 in C-C, C-O, C-
S and C-N bonds formation reactions. (c) TFMSA@SBA-15 SEM 
images and TEM images. (d) FT-IR spectra of SBA-15 and 
TFMSA@SBA-15. Reaction condition see SI for details.

To minimize the catalyst amount, as well as the 
improvement of acid operation, a heterogeneous 
catalyst, TFMSA@SBA-15, was prepared by immobilizing 
TFMSA on solid support (SBA-15). Improved results were 
obtained in each model reactions, affording excellent 

isolated yields in C-C (80%), C-O (95%), C-S (85%) and C-
N (88%) bond products, respectively (Fig. 2b). Therefore, 
it was concluded that TFMSA@SBA-15 (2 mol%) was the 
best catalyst for those reactions (TON=50). 

Next, the morphology of TFMSA@SBA-15 were 
observed by scanning electron microscopy (SEM). As 
shown in (Fig. 2c), an overall perspective of 
TFMSA@SBA-15 can be seen clearly and it presents 
ordered mesoporous channels. Fluorine and sulfur 
elements were confirmed via EDS. In addition, the 
transmission electron microscope images (Fig. 2c) 
demonstrated that strongly acidic condition didn’t cause 
structural damage to the highly ordered mesoporous 
channels. 

The binding mode between TFMSA and SBA-15 was 
further analysed by flourier transform infrared (FT-IR) in 
(Fig. 2d). For the pure SBA-15 samples, two peaks were 
observed at 807 cm-1 and 1078 cm-1, which can be 
attributed to Si-O bond group in samples. After 
treatment with TFMAS, a band was observed at 641 cm-1 

that arise from stretching vibration of the sulfonic group. 
Moreover, a redshift in the symmetric stretching 
vibration band from 1078 to 1046 cm-1 was observed, 
simultaneously, another redshift ranging from 807 to 
796 cm-1 was observed. Thus, we deduce that the 
adsorption of TFMSA on SBA-15 preferentially occurred 
through Si-O binging16 during the preparation 
TFMSA@SBA-15 process.
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Scheme 2 Intermolecular C-C bonds formation through α-diazo 
compounds. Reaction conditions: 1 (0.5 mmol), 2 (2.5 mmol), 
TFMSA@SBA-15 (2 mol%), DCE (3 mL), 60 oC, isolated yield.

Page 2 of 4ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
7 

D
ec

em
be

r 
20

19
. D

ow
nl

oa
de

d 
on

 1
/3

/2
02

0 
1:

35
:0

4 
A

M
. 

View Article Online
DOI: 10.1039/C9CC08389H

https://doi.org/10.1039/c9cc08389h


Journal Name  COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

With the advent of this efficient heterogeneous 
catalytic system, we investigated the scope of the 
reaction between α-diazoesters and acyclic 1,3-
dicarbonyl substrates firstly. A variety of α-diazoesters 
with either OMe, F, or isobutyl, allyl, benzyl 
phenyldiazoacetates, were successfully formed the 
desired C-C bond products in 68-87% yields. It was noted 
that the presence of an electron-withdrawing group in 
the phenyl ring increased the yield to 87% (3b). Electron-
donating group, such as methoxy, decreased the yield 
(3c). 2-Naphthyl-diazoacetates also afforded the 
corresponding products (3g) in 65% isolated yield, while 
lower reactivity was observed for heteroaryl system (3h) 
and alkyl 1.3-diketone (3i). 
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Scheme 3 Intermolecular C-O bonds formation through α-diazo 
compounds. Reaction conditions: 1 (0.5 mmol), 4 (1.5 mmol), 
TFMSA@SBA-15 (2 mol%), DCE (3 mL), 60 oC, isolated yield.

Interestingly, TFMSA@SBA-15 exclusively furnished 
the C-O bond product for cyclic 1,3-dicarbonyl 
substrates, without formation of the C-C bond products. 
The results may be attributed to the different enol forms 
of acyclic diketone (cis-enol) and cyclic diketone (trans-
enol).11

Then TFMSA@SBA-15 was also proved be an 
efficient catalyst for solvent-free C-S bond formation in 
room temperature between α-diazoester and 
thiophenol in the scheme 4. Not only substituted 
phenyldiazoacetates but also ethyl diazoacetate could 
participate in S-H insertion reaction to give products 
with moderate to good yield (65-85%) in 5-50 mins.
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Scheme 4 Intermolecular C-S bonds formation through α-diazo 
compounds. Reaction conditions: 1 (0.5 mmol), 6 (1.5 mmol), 
TFMSA@SBA-15 (2 mol%), rt, isolated yield, aDCE (3 mL).

To our delight, this catalyst applied to those 
reactions between various alkynes and α-diazo 
compounds as well. In general, good yields (70-93%) 
were obtained in this 1,3-dipolar cycloaddition reaction. 
Presumably due to hindered aryl migration, 
phenyldiazoacetate (9e) afforded relatively poor yield 
compared with ethyl diazoacetate (9a). The highest TOF 
is up to 600 h-1.

TFMSA@SBA-15
DCE, 60 oC

R6

HN N
R6 R2

C-N bond

HN N

CO2Et
O

9a [88% 8 h]

HN N

CO2Et
O

O

HN N

CO2Et
O

O

HN N

CO2Et

HN N

CO2Et
O

HN N

O
Ph

8 9

9b [68% 8 h] 9c [63% 8 h] 9d [93% 8 h]

9e [70% 8 h] 9f [74% 8 h]

CO2Et

Ph

O

R1

1a 8a

Ph CO2Et

N2 O same condition

O

O

1
R1

N2

R2

9a [83% 1 gram-scale]

Scheme 5 Intermolecular C-N bonds formation through α-diazo 
compounds. 1 (0.55 mmol), 8 (0.5 mmol), TFMSA@SBA-15 (2 
mol%), DCE (3 mL), 60 oC, isolated yield.

As an indication of the possible potential of this 
catalytic system, those reactions were carried out on the 
1 g scale and the catalyst can be reused 4 times (see SI 
for detail). Based on related precedents11,15-18 and the 
structure of catalyst, a plausible mechanism was 
proposed. Firstly, α-diazo compound activated by 
protonation of the carbon atom in C-N bond.11,17 
Meanwhile, carbocation is nucleophilic attacked by 
acyclic, cyclic 1,3-dicarbonyl substrates, thiophenol to 
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form C-C,11 C-O15, C-S bond and regenerate the catalyst. 
Particularly, there is a 1,3-diplor cycloaddition for C-N 
bond formation between α-diazo compounds and 
alkynes after protonation of alkynes.18
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Ph CO2Et

Nu

C-C, C-O and C-S bond formation

HN N
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OO
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1,3-H shift

OO
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CF3O
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Scheme 6 Possible mechanism.

In conclusion, for the first we have demonstrated 
that organic acid is able to catalyse the insertion and 
cycloaddition reactions between diazo compounds and 
acyclic, cyclic 1,3-dicarbonyl substrates, thiophenol, 
alkynes. Employing catalyst loadings as low as 2 mol%, 
good yield was obtained in those reactions of formation 
C-C, C-O, C-S and C-N bond, when TFMSA was 
immobilized on SBA-15. Particularly, the reaction of S-H 
insertion reaction proceeds under solvent-free 
conditions and remarkably short time with high yields. 
We believe that this work may open for new possibility 
of organic molecular catalyzed insertion and 
cycloaddition reactions, offering a green and feasible 
entry to industrial application.
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