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A practical asymmetric synthesis of sitagliptin phosphate,
from 1-{3-(trifluoromethyl)-5,6-dihydro-[1,2,4]triazolo-[4,3-
a]pyrazin-7(8H)-yl}-4-(2,4,5-trifluorophenyl)butane-1,3-dione,
in overall 65.3% yield has been reported. The target compound
was synthesized via eneamination, diastereoselective reduction,
amine-deprotection, and phosphatization. The key diastereose-
lective reduction was performed with NaBH4 and ZnCl2, and it
gave the product with almost quantitative yield and 68.5% d.e.
value after simple work-up and recrystallization with IPA/PE;
a high enantiopurity (d.e.% = 99.3%) can also be obtained in
57.1% yield.

Diabetes, a fast growing global epidemic that affects
millions of people, is caused by multiple reasons and can be
characterized by divided levels of plasma glucose in the rapid
or post glucose-challenge state. Two types of diabetes can be
generally recognized: Type 1 diabetes mellitus (T1DM), wherein
patients generate none or trace insulin, which cut down glucose,
and Type 2 diabetes mellitus (T2DM), in which patients can
generate insulin normally, but this insulin has a poor effect in
regulating glucose utilization. In a recent study, inhibitors of
dipeptidyl peptidase IV (DPP-IV) could generate fresh ther-
apeutic agents for T2DM by stimulating GLP-1 (glucagon-like
peptide-1) and GIP (glucose-dependent insulinotropic peptide)
levels, as well as boosting glycemic control for diabetics.

Sitagliptin phosphate 1 (Figure 1), the representative drug
for the treatment of T2DM, was approved by USFDA in 2006,
which received almost 4 billion saleroom in 2013, being worthy
of the name “heavy bomb drug.” Due to the unique structure and
good market performance, a large number of synthetic routes of
sitagliptin phosphate have been developed in the past decade.
Kim et al.1 reported an ingenious way to obtain the target
compound at 2005, but this needs quite strict reaction conditions
such as a low temperature (¹78 °C) and a dangerous reagent
(CH2N2). A method to obtain the key intermediate (β-amino acid
derivative) of sitagliptin phosphate has been developed by Xiao
et al.2 at 2004, which was carried out by metal-catalyzed
asymmetric hydrogenation; however, even if the chiral amido-
gen were created inventively, the cost of using the expensive
([Rh(cod)2]OTf) limited this process to the laboratory and small

scale, so did (S-BINAP),3 RuCl2,3 [(R)-(R)-t-Bu JOSIPHOS],4

(R-DM-SEGPHOS),5 and PtO2.6,7 Therefore, applying a cheap,
safe, and large-scale method to obtain sitagliptin phosphate or its
intermediates has become the scientists’ unremitting goal.

In 2013, a novel method that achieved the intermediate of
sitagliptin phosphate in a certain chiral purity (d.e.% = 50%)
by using a cheap reductant (NaBH4 and aliphatic acid) was
developed by Lin and colleagues,8 which revealed that a cheap
and simple reductive system can also catalyze the substrate
controlled diastereoselective reduction to a certain extent.

As a part of our interests in developing practical and simple
approaches for the synthesis of sitagliptin phosphate and other
active pharmaceutical ingredients (API) as well as the inter-
mediates,9 we report here an efficient approach to the synthesis
of sitagliptin phosphate 1 (Scheme 1) by a NaBH4/Lewis acid-
catalyzed diastereoselective reduction reaction10 and the follow-
ing work-up.11­14

The synthesis began from compound 2,2 after treating it
with (S)-phenylglycine amide in the presence of AcOH in IPA,
compound 3 was obtained in good yield (91%) and high HPLC
purity (99%).

Then, with the key intermediate, enamine compound 3 in
hand, the Lewis acid-catalyzed diastereoselective reduction was
examined carefully. As indicated in Table 1, it could be easily
found that NaBH4­ZnCl2 has better catalytic ability among the
four different NaBH4­Lewis acids (Entries 1­4) at 0 °C in THF,
resulting in 59.4% yield and 51.7% diastereomeric excess.
Then, the reaction mixture was frozen to ¹60 °C to enhance the
chiral selectivity, and a better yield and enantioselectivity were
obtained (Entry 5). We were happy to find that on decreasing
the loading of ZnCl2 to 0.7 equiv (Entry 6), the diastereomeric
pair of 4 could be quantitatively obtained with a satisfactory
diastereoselectivity (d.e.% = 68.5%). However, unfortunately,
further decreasing ZnCl2 to 0.35 equiv gave us a worse result,
and both the yield and d.e. value were reduced (Entry 7). We
then tried to adjust the reaction temperature to a moderate level
in order to reduce the energy consumption, but with the increase
in the temperature, the reaction yield decreased, and the
stereoselectivity was less than satisfactory (Entries 8­10).
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Figure 1. Structure of sitagliptin phosphate.
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Scheme 1. Synthesis of sitagliptin phosphate.
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This result may partly be caused by the balance between the
temperature and the concentration of Zn2+. At the beginning of
the reduction process, conjugated imine-enol intermediate state
3-1 has formed in the coordination of NaBH4 and ZnCl2; then,
imine was stereoselectively reduced to amine 3-2 as the C­N
double bond was linked with the zinc ion at little space steric
hindrance (α-face), and then compound 4 was obtained by the
reduction of intermediate state 3-2 by treatment with NaBH4

(Scheme 2). During the reduction course, the chiral purity would
be reduced while the process temperature is too high or the zinc
ion concentration is too high, which would both affect the
selective annexation of the zinc ions and imine; meanwhile,
when the concentration of zinc ion was too low, a portion of
enamine would be reduced by NaBH4 directly instead of
stereoselective reducing.

According to the optimized reaction condition in Table 1,
compound 4 could be obtained in an excellent yield and a
moderate purity (d.e.% = 68.5%); then, after a simple work-
up and recrystallization with IPA/PE, a high enantiopurity
(d.e.% = 99.3%) can also be obtained in 57.1% yield.

The subsequent synthesis could be carried out by treating 4
with Pd(OH)2/C and HCOOH aq. in MeOH/THF for 16 h; after
a typical work-up, the crude free base was recrystallized from
toluene, and sitagliptin was isolated with 95% yield, and then
adding 85% H3PO4 in IPA/H2O, a phosphoric acid salt 1 was
obtained with 94% yield, 99.2% HPLC purity (single impurity
less than 0.1%) and 99.4% e.e. value after recrystallization from
i-PrOH.

In summary, we have devised a novel asymmetric synthesis
of sitagliptin phosphate via a diastereoselective reduction
reaction, which was performed by NaBH4 and ZnCl2, giving
us the satisfying result with an almost quantitative yield and
68.5% d.e. value. This simple and economical process provides
a novel synthesis of sitagliptin phosphate 1.
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Scheme 2. Proposed mechanism of the reduction.
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