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ABSTRACT: A strategy of aerobic oxidative C(sp3)-C(sp3) bond cleavage of N-ethylaniline derivatives bearing azaarenes for the 

synthesis of N-aryl formamides has been developed. This approach was carried out smoothly with the CuI/TEMPO/air system to 

give N-aryl formamides in yields of 50 to 90%. With this methodology, a mutagenically active compound was constructed in 90% 

yield. Moreover, the reaction also provided a “one-pot” synthetic tool for accessing a promoter of hematopoietic stem cells by 

difunctionalization in 61% yield.  
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C(sp3)-C(sp3) bond activation is gaining increasing attention in organic synthesis. Although many 

examples of strained C(sp3)-C(sp3) bond activation have been reported,1 the activation of unstrained 

C(sp3)-C(sp3) bond is still a challenging subject due to the high bond-dissociation energy and lack of 

selectivity.2 Recently, several strategies to cleave inert C(sp3)-C(sp3) bonds have been developed: 

-elimination,3  oxidative cleavage,4 reductive scission,5 cross alkane metathesis6 and nucleophilic 

substitution.7 Among them, the oxidative cleavage of C(sp3)-C(sp3) bonds adjacent to tertiary 

aliphatic amines is of particular interest as the generated electrophilic iminium ions may serve as a 

reactive intermediate to install a broad range of complex structures. For example, Wang reported 

that Bu4NI and TBHP promoted oxidative functionalization of tertiary amines to synthesize 

methylene-bridged bis-1,3-dicarbonyl compounds.8 In addition, Opatz demonstrated the -bond 

fragmentation of 1-benzyl-1,2,3,4-tetrahydroisoquinolines.9 Wang and co-workers realized the 

C(sp3)-C(sp3) bond cleavage of 1,2-diamines by a photocatalytic system to obtain iminium ions and 

C-radicals (Scheme 1, eq 1),10 and Sarpong developed a new approach for the cleavage of inert 

C(sp3)-C(sp3) bond via silver-mediated ring-opening fluorination from N-acyl (Bz) unstrained cyclic 

amines in 2018 (Scheme 1, eq 2).11 Very recently, a copper-catalyzed selective cleavage of 

C(sp3)-C(sp3) single bonds within amines using high pressure air has been developed by Beller’s 

group.12 However, in contrast to tertiary aliphatic amines and N-Bz aliphatic secondary amines, 

unprotected secondary aromatic amines are able to form stable N,N,-diphenylhydrazines by a 

dehydrogenative homocoupling reaction under oxidative conditions13 (we also found this 

phenomenon in our study). Additionally, they can easily bind the transition metal catalysts and 

inhibit catalytic cycles.14 The scission of unstrained C(sp3)-C(sp3) bonds in the presence of adjacent 

secondary aromatic amines is unprecedented.
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Scheme 1. The C(sp3)-C(sp3) bond cleavage strategies of amines.
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Although the C(sp3)-C(sp) and C(sp3)-C(sp2) bond cleavage of unprotected secondary aromatic 

amine derivatives have been developed by Li and Wang respectively, 15-16 the C(sp3)-C(sp3) bond 

cleavage of secondary aromatic amines has not been realized. Very recently, we introduced a 

copper-promoted intramolecular C-H oxidative amination reaction for the synthesis of aziridine 

derivatives.17 In this C-N bond formation reaction, a radical was proposed to form at the benzylic 

position of azaarenes followed by the annulation with secondary amines. In the continuation of our 

research concerning potential divergent synthetic methodologies and C-C bond functionalization,18 

we questioned whether the substrates could be oxidized to enamine intermediates and then react with 

molecular oxygen to form 1,2-dioxetanes. Afterwards, C(sp3)-C(sp3) bond and O-O bond cleavage 

lead to N-aryl formamides, which have been widely employed in the preparation of bioactive 

compounds and fine chemical intermediates (Scheme 1, eq 3).19 Herein, we reported the cleavage of 

unstrained C(sp3)-C(sp3) bond adjacent to aromatic secondary amines to synthesize N-aryl 

formamides with air as the terminal oxidant under mild condition.
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Table 1: Optimization of Reaction Conditions of C(sp3)-C(sp3) bond cleavage.a

entry copper base solvent yield (%)b

1 CuI DBU dioxane 36

2 CuI DBU DMSO N.R.

3 CuI DBU DMF 8

4 CuI DBU toluene 78

5 CuI TBD toluene N.R.

6 CuI DMAP toluene N.R.

7 CuI DABCO toluene N.R.

8 Cu(OAc)2 DBU toluene 21

9 CuBr DBU toluene 72

10c CuI DBU toluene 51

11d CuI DBU toluene 62

12e CuI DBU toluene 65

13f CuI DBU toluene 23

a A solution of 1a (0.2 mmol), copper salt (0.16 mmol) and TEMPO (0.4 mmol) with base (0.4 mmol) in the 

solvent stated (1.5 mL) was stirred for 2 h at 65 oC. b Isolated yield. c 0.1 mmol CuI was used. d 0.1 mmol TEMPO 

was used e Under O2 atmosphere. f The reaction was carried out at rt. 

In an initial attempt on the formation of N-aryl formamides, a solution of aniline 1a (1.0 equiv) in 

the presence of CuI (0.8 equiv), DBU (2.0 equiv) and TEMPO (2.0 equiv) in dioxane was stirred for 

2 h at 65 °C. The desired formamide product 2a was obtained in 36% yield (Table 1, entry 1). Next, 

the reaction conditions were optimized to improve the reaction yield. The solvent screening revealed 

that polar aprotic solvent such as DMSO and DMF afforded the products in very poor yields (entries 

2-3). In comparison, the nonpolar solvent toluene afforded a much higher yield (78%, entry 4). In 

addition to DBU, other organic bases such as 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine 

(TBD), 1,4-diazabicyclo[2.2.2]octane (DABCO), and N,N,-dimethylpyridin-4-amine (DMAP), were 

0.8 equiv copper
2.0 equiv TEMPO

2.0 equiv base
solvent, 65 oC, air

H
N O

2a1a

H
N N

NO2
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also examined in toluene but only gave trace amount of products (entries 5-7). When screening 

different copper salts, Cu(OAc)2 was found much less effective (21%, entry 8) and CuBr gave 

slightly lower yield than CuI (72%, entry 9). Lowering the loading of the copper salt or TEMPO also 

decreased the reaction yields (entries 10-11). Additionally, when the reaction was carried out under 

O2 atmosphere, the desired product was obtained in 65% yield (entry 12). Notably, the yield was 

significantly lower at room temperature (23%, entry 13).

Scheme 2. Scope of CuI-promoted synthesis of N-aryl formamides via C(sp3)-C(sp3) cleavage.a
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a Reaction conditions: a solution of 1 (0.2 mmol), CuI (0.16 mmol), DBU (0.4 mmol) and TEMPO (0.4 mmol)  in 

toluene (1.5 mL) was stirred for 2 h at 65 oC. Isolated yield. b 6-(2-(Phenylamino)ethyl)nicotinonitrile 1u was used 

as substrate. 

Page 5 of 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



With the optimal reaction conditions established, we then examined the substrate scope of 

CuI-promoted C(sp3)-C(sp3) activation process for the formation of N-aromatic formamides 2. As 

shown in Scheme 2, almost all of the tested combinations produced the desired N-aromatic 

formamides 2 with moderate to good isolated yields. The reaction has a high tolerance to 

substituents on the para position of the phenyl ring: para-F, para-Cl, and para-Me only had a slight 

impact on the yield (2b-2c, 2e). Even aniline 1d bearing a para-CF3 group reacted smoothly to 

afford N-aromatic formamide 2d in 50% yield. Other anilines bearing various electron-donating 

para-substituents on the phenyl ring were also suitable substrates for this protocol (2f-2k). Similarly, 

we noted that the meta-substituted amines could also smoothly engage in this process to afford the 

corresponding N-aromatic formamides 2l-2o in moderate to good yields. A steric effect was seen in 

substrates bearing ortho-substituents: ortho-Me and ortho-Ph afforded the corresponding products in 

moderate yields (2p-2q). Furthermore, the aniline with two substituents of the phenyl ring gave 

N-formylation product 2r and 2s in 77% and 65% yields respectively. The reaction was also very 

effective for the construction of N-heterocyclic formamide 2t in 73% yield. To further expand the 

scope of the reaction, N-ethylaniline derivatives bearing functionalities different from para-nitro 

azaarenes were investigated. By replacing NO2 in 1a with the slightly weaker electron-withdrawing 

group CN (1u), the same product 2a was obtained in 70% yield. When switching from 1a to 

N-(2-(3-nitropyridin-4-yl)ethyl)aniline (1v), the reaction still afforded the corresponding product 2a 

in acceptable yield (56%). However, when methyl 6-(2-(phenylamino)ethyl)nicotinate 1w or 

1-phenyl-3-(phenylamino)propan-1-one 1x were used as the starting substrates, no bond cleavage 

was observed. When N-methyl-N-(2-(5-nitropyridin-2-yl)ethyl)aniline 1y was used as the starting 
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substrate under the standard reaction condition, no N-methyl-N-phenylformamide was detected at all. 

This revealed that the proton of N-H is also essential in this reaction. 

Scheme 3. The application of C(sp3)-C(sp3) bond cleavage process.
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Formamide substructures are frequently encountered in many bioactive compounds. To test the 

applicability of our methodology, the mutagenically active molecule 2z was synthesized by this 

C(sp3)-C(sp3) activation strategy.19b The process proceeded readily with higher yield than any other 

reported method (90%). Furthermore, by unifying oxidative benzylic C-H cabonylation and 

C(sp3)-C(sp3) activation in one-pot, we successfully realized the difunctionalization of 1aa to obtain 

fluorenone formamide 2aa which has been used in maintaining and expanding of hematopoietic 

stem cells (HSC) in 61% yield (Scheme 3).19f To test the practicality of this methodology, a 

gram-scale reaction using substrate 1a was carried out to give product 2a in 70% yield. 

Scheme 4. Control experiments.
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In order to understand the reaction mechanism, two control experiments were performed (Scheme 

4). When 5.0 equiv of H2O was added into the reaction system under air atmosphere, the reaction 

gave TEMPO addition product 3a in 57% yield, and no desired N-phenylformamide 2a was obtained. 

The addition of H2O was thought to inhibit the formation of iminium intermediate. Additionally, 

without the addition of TEMPO, N,N,-diphenylhydrazine 4u was formed by using 1u as the substrate 

in 15% yield, indicating a vital role of TEMPO as an additive in the transformation.

Scheme 5. The proposed mechanism for C(sp3)-C(sp3) bond cleavage.
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Although the details of this C(sp3)-C(sp3) bond cleavage remains uncertain, a plausible mechanism 

is illustrated in Scheme 5. The iminium intermediate I is generated in the existence of copper salt 

and oxidant (TEMPO or O2).16 With the strong electron withdrawing group NO2, intermediate I is 

easily deprotonated to intermediate II by DBU. Enamine intermediate III is formed and reacts with 

oxygen to form 1,2-dioxetane intermediate IV. Finally, the fragmentation of IV sequentially 

underwent the C-C bond and O-O bond cleavage to furnish the desired product 2a.20 In addition, we 
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tried to identify the pyridine component by using commercially available 5-nitropicolinaldehyde (5a) 

and 5-nitropicolinic acid (6a) as reference standards. Unfortunately, neither 5a nor 6a was stable 

under the standard conditions. However, a mass peak corresponding to 5a was detected in the study 

of the reaction mixture (Supporting Information).    

In summary, we have developed an efficient copper-promoted oxidative cleavage of C(sp3)-C(sp3) 

bond adjacent to secondary aromatic amines providing N-aromatic formamides. A wide scope of 

substituents on the aniline portion was tolerated to give the products in moderate to good yields. 

Both TEMPO and oxygen played very important roles in this reaction. The methodology has been 

successfully applied for the synthesis of a mutagenically active molecule in 90% yield and a HSC 

active molecule in 61% yield, respectively. Further exploration of this organic transformation and 

the application of this methodology in the synthesis of more biologically relevant molecules are 

underway in our laboratories. 

EXPERIMENT SECTION

General Information

Unless otherwise noted, all reagents were obtained commercially and used without further 

purification. Unless otherwise specified, all other reagents were purchased from Acros, Aldrich, 

Fisher, Adamas-beta Co. Ltd. or TCI and used without further purification. 1H NMR spectra was 

recorded at 400 MHz, 13C NMR spectra was recorded at 100 MHz. 1H NMR spectra was recorded 

with tetramethylsilane (δ = 0.00 ppm) as internal reference; 13C NMR spectra was recorded with 

CDCl3 (δ = 77.00 ppm) as internal reference. Chemical shifts were reported in parts per million 

(ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), 

doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). Chromatography was carried out 
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with silica gel (200-300 mesh) using mixtures of petroleum ether (Bp 60-80 ºC) and ethyl acetate as 

eluents. Mass Spectra were obtained from the mass spectrometry facility of East China University of 

Science and Technology.

General procedure for the preparation of substrates: To a solution of 5-nitro-2-vinylpyridine 

(0.4 mmol, 120 mg) and aromatic amines 7 (0.8 mmol, 2 equiv) in toluene (2 mL) was added 

Yb(OTf)3 (0.02 mmol, 12.4 mg). The resulting solution was stirred for 2 h at 65 oC by oil bath. After 

the reaction was completed, the reaction mixture was directly purified by column chromatography 

(petroleum ether: ethyl acetate = 20:1~4:1) to give the corresponding product. Other Michael 

addition product was prepared according to the literature.17 

4-(tert-Butyl)-N-(2-(5-nitropyridin-2-yl)ethyl)aniline(1f), yellowish solid, 87 mg (81%). Mp 

84-86 °C. 1H NMR (400 MHz, CDCl3): δ 9.31 (d, J = 2.4 Hz, 1H), 8.31 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 

1H), 7.29 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.52 (d, J = 8.8 Hz, 1H), 3.53 (t, J = 6.0 Hz, 

2H), 3.15 (t, J = 6.0 Hz, 2H), 1.20 (s, 9H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 165.8, 144.2, 

143.8, 141.8, 139.6, 130.3, 125.1, 122.5, 111.7, 42.2, 36.8, 32.8, 30.5 ppm. HRMS (EI-TOF) m/z 

calcd for C17H21N3O2: 299.1634, found 299.1630.

4-Methoxy-N-(2-(5-nitropyridin-2-yl)ethyl)aniline(1g), yellowish solid, 94 mg (86%). Mp 

69-71 °C. 1H NMR (400 MHz, CDCl3): δ 9.39 (d, J = 2.4 Hz, 1H), 8.38 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 

1H), 7.36 (d, J = 8.4 Hz, 1H), 6.79 (m, 2H), 6.61 (m, 2H), 3.75 (s, 3H), 3.57 (t, J = 6.0 Hz, 2H), 3.21 

(t, J = 6.0 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 166.8, 152.4, 144.9, 142.8, 141.7, 

131.4, 123.6, 115.0, 114.5, 55.8, 44.0, 37.7 ppm. HRMS (EI-TOF) m/z calcd for C14H15N3O3: 

273.1113, found 273.1111. 
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N-(2-(5-Nitropyridin-2-yl)ethyl)-4-(trifluoromethoxy)aniline(1h), orange solid, 99 mg (76%). 

Mp 101-103 °C. 1H NMR (400 MHz, CDCl3): δ 9.39 (d, J = 2.8 Hz, 1H), 8.40 (dd, J1 = 8.4 Hz, J2 = 

2.8 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.59 (m, 2H), 4.19 (brs, 1 H), 3.60 (t, 

J = 6.0 Hz, 2H), 3.22 (t, J = 6.0 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 166.4, 146.5, 

144.9, 142.9, 140.6, 131.5, 123.6, 122.5, 118.2 (JC-F = 253.7 Hz), 113.2, 43.0, 37.4 ppm. HRMS 

(EI-TOF) m/z calcd for C14H12N3O3 F3: 327.0831, found 327.0832.

N-(2-(5-Nitropyridin-2-yl)ethyl)-[1,1'-biphenyl]-4-amine(1i), yellow solid, 73 mg (57%). Mp 

119-121 °C. 1H NMR (400 MHz, CDCl3): δ 9.41 (d, J = 2.8 Hz, 1H), 8.40 (dd, J1 = 8.4 Hz, J2 = 2.4 

Hz, 1H), 7.53 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 2H), 7.44 (dd, J1 = 8.4 Hz, J2 = 2.0 Hz, 2H), 7.41-7.36 

(m, 3H), 7.27 (m, 1H), 6.70 (m, 2H), 4.15 (brs, 1H), 3.67 (t, J = 7.2 Hz, 2H), 3.15 (t, J = 6.4 Hz, 2H) 

ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 166.6, 147.0, 145.0, 142.9, 141.1, 131.5, 130.8, 128.7, 

128.1, 126.3, 126.2, 123.6, 113.2, 42.6, 37.6 ppm. HRMS (EI-TOF) m/z calcd for C19H17N3O2: 

319.1321, found 319.1322.

4-(Benzyloxy)-N-(2-(5-nitropyridin-2-yl)ethyl)aniline(1j), yellowish solid, 126 mg (80%). Mp 

80-82 °C. 1H NMR (400 MHz, CDCl3): δ 9.39 (d, J = 2.4 Hz, 1H), 8.30 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 

1H), 7.42- 7.31 (m, 6H), 6.85 (d, J = 8.8 Hz, 1H), 6.59 (d, J = 8.8 Hz, 1H), 4.99 (s, 2H), 3.57 (t, J = 

6.0 Hz, 2H), 3.13 (t, J = 6.0 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 166.8, 151.6, 144.9, 

142.8, 142.0, 137.5, 131.4, 128.5, 127.8, 127.5, 123.6, 116.2, 114.3, 70.8, 43.9, 37.7 ppm. HRMS 

(EI-TOF) m/z calcd for C20H19N3O3: 349.1426, found 349.1424. 

4-(Methylthio)-N-(2-(5-nitropyridin-2-yl)ethyl)aniline(1k), yellowish solid, 61 mg (53%). Mp 

76-78 °C. 1H NMR (400 MHz, CDCl3): δ 9.30 (d, J = 2.4 Hz, 1H), 8.29 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 

1H), 7.26 (d, J = 8.4 Hz, 1H), 7.13 (m, 2H), 6.48 (m, 2H), 4.07 (brs, 1H), 3.50 (t, J = 6.0 Hz, 2H), 

Page 11 of 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3.13 (t, J = 6.0 Hz, 2H), 2.32 (s, 3H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 165.5, 145.4, 143.8, 

141.8, 130.4, 130.3, 123.7, 122.6, 112.5, 41.8, 36.4, 18.0 ppm. HRMS (EI-TOF) m/z calcd for 

C14H15N3O2S: 289.0885, found 289.0883. 

2-Methyl-N-(2-(5-nitropyridin-2-yl)ethyl)aniline(1p), yellowish solid, 67 mg (65%). Mp 60-62 

°C. 1H NMR (400 MHz, CDCl3): δ 9.30 (d, J = 2.4 Hz, 1H), 8.29 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H), 

7.26 (d, J = 8.4 Hz, 1H), 7.05 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.59 (m, 2H), 4.00 (brs, 1H), 3.55 (t, 

J = 6.4 Hz, 2H), 3.18 (t, J = 6.4 Hz, 2H), 2.00 (s, 3H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 

165.8, 144.6, 143.7, 141.8, 130.4, 129.2, 126.1, 122.6, 122.5, 121.2, 116.2, 108.6, 41.8, 36.4, 16.4 

ppm. HRMS (EI-TOF) m/z calcd for C14H15N3O2: 257.1164, found 257.1165. 

N-(2-(5-Nitropyridin-2-yl)ethyl)-[1,1'-biphenyl]-2-amine(1q), yellowish solid, 73 mg (57%). 

Mp 126-128 °C. 1H NMR (400 MHz, CDCl3): δ 9.20 (d, J = 2.8 Hz, 1H), 8.32 (dd, J1 = 8.4 Hz, J2 = 

2.8 Hz, 1H), 7.42-7.34 (m, 3H), 7.28-7.23 (m, 4H), 7.07 (dd, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H), 6.80-6.76 

(m, 2H), 3.61 (t, J = 6.4 Hz, 2H), 3.18 (t, J = 6.4 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 

166.5, 144.7, 144.5, 142.7, 139.2, 131.3, 130.3, 129.4, 128.8, 128.7, 127.3, 123.5, 117.4, 110.6, 

43.0, 37.3 ppm. HRMS (EI-TOF) m/z calcd for C19H17N3O2: 319.1321, found 319.1320. 

3,4-Dimethyl-N-(2-(5-nitropyridin-2-yl)ethyl)aniline(1r), orange solid, 77 mg (71%). Mp 61-63 

°C. 1H NMR (400 MHz, CDCl3): δ 9.32 (s, 1H), 8.30 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H), 7.28 (d, J = 

8.4 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.38 (m, 1H), 6.33 (dd, J1 = 8.0 Hz, J2 = 2.8 Hz, 1H), 3.52 (t, J 

= 6.0 Hz, 2H), 3.13 (t, J = 6.0 Hz, 2H), 2.12 (s, 3H), 2.08 (s, 3H) ppm. 13C{1H} NMR (100 MHz, 

CDCl3): δ 166.9, 145.7, 144.8, 137.5, 131.4, 130.3, 125.9, 123.6, 115.0, 110.5, 42.3, 37.8, 20.1, 18.7 

ppm. HRMS (EI-TOF) m/z calcd for C15H17N3O2: 271.1321, found 271.1317. 
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N-(2-(5-Nitropyridin-2-yl)ethyl)-5,6,7,8-tetrahydronaphthalen-1-amine(1s), yellow solid, 86 

mg (72%). Mp 64-66 °C. 1H NMR (400 MHz, CDCl3): δ 9.38 (d, J = 2.8 Hz, 1H), 8.38 (dd, J1 = 8.4 

Hz, J2 = 2.4 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.03 (t, J = 8.0 Hz, 1H), 6.51 (m, 2H), 4.04 (brs, 1H), 

3.61 (t, J = 6.4 Hz, 2H), 3.25 (t, J = 6.4 Hz, 2H), 2.72 (t, J = 6.4 Hz, 2H), 2.32 (t, J = 6.4 Hz, 2H), 

1.84 (m, 2H), 1.72 (m, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 166.9, 145.3, 144.8, 142.9, 

137.9, 131.5, 126.1, 123.6, 121.4, 118.6, 106.8, 42.9, 37.5, 30.1, 23.8, 23.1, 22.7 ppm. HRMS 

(EI-TOF) m/z calcd for C17H19N3O2: 297.1477, found 297.1476. 

N-(2-(5-Nitropyridin-2-yl)ethyl)quinolin-6-amine(1t), yellow solid, 66 mg (56%). Mp 129-131 

°C. 1H NMR (400 MHz, CDCl3): δ 9.41 (d, J = 2.4 Hz, 1H), 8.62 (dd, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 

8.39 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.38 (d, J 

= 8.4 Hz, 1H), 7.29 (m, 1H), 7.08 (dd, J1 = 9.2 Hz, J2 = 2.8 Hz, 1H), 6.75 (d, J = 2.4 Hz, 1H), 3.73 

(t, J = 6.4 Hz, 2H), 3.30 (t, J = 6.4 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 174.3, 166.4, 

146.1, 145.6, 144.9, 143.0, 142.9, 134.0, 131.6, 130.1, 123.7, 121.5, 103.2, 103.1, 42.7, 37.1 ppm. 

HRMS (EI-TOF) m/z calcd for C16H14N4O2: 294.1117, found 294.1118.  

6-(2-(Phenylamino)ethyl)nicotinonitrile(1u), orange solid, 63 mg (70%). Mp 72-74 °C. 1H NMR 

(400 MHz, CDCl3): δ 8.83 (d, J = 1.6 Hz, 1H), 7.85 (dd, J1 = 8.0 Hz, J2 = 1.6 Hz, 1H), 7.17 (m, 1H), 

6.71 (t, J = 1.6 Hz, 2H), 6.63 (m, 1H), 6.60 (m, 2H), 4.05 (br, 1H), 3.58 (t, J = 6.8 Hz, 2H), 3.16 (t, J 

= 6.8 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 164.5, 152.2, 147.7, 139.5, 129.4, 123.5, 

117.7, 116.8, 113.0, 107.7, 42.8, 37.8 ppm. HRMS (ESI-TOF) calcd for [M+H]+ C14H14N3 : 

224.1188, found 224.1189. 
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N-(2-(5-Nitropyridin-2-yl)ethyl)-4-phenoxyaniline(1z), orange solid, 84 mg (63%). Mp 111-113 

°C. 1H NMR (400 MHz, CDCl3): δ 9.40 (d, J = 2.4 Hz, 1H), 8.40 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H), 

7.38 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 1H), 7.29 (m, 2H), 7.00 (t, J = 8.8 Hz, 1H), 6.91 (m, 4H), 6.63 (m, 

2H), 4.00 (brs, 1H), 3.60 (t, J = 6.0 Hz, 2H), 3.24 (t, J = 6.0 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, 

CDCl3): δ 166.6, 159.0, 148.0, 144.9, 144.2, 142.9, 131.5, 129.5, 123.6, 122.0, 121.3, 117.1, 114.0, 

43.5, 37.6 ppm. HRMS (EI-TOF) m/z calcd for C19H17N3O3: 335.1270, found 335.1269. 

N-(2-(5-Nitropyridin-2-yl)ethyl)-9H-fluoren-2-amine(1aa), orange solid, 27 mg (20%). Mp 

154-156 °C. 1H NMR (400 MHz, CDCl3): δ 9.34 (d, J = 2.8 Hz, 1H), 8.31 (dd, J1 = 8.4 Hz, J2 = 2.8 

Hz, 1H), 7.53 (m, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 

7.10 (m, 1H), 6.76 (m, 1H), 6.57 (dd, J1 = 8.0 Hz, J2 = 2.0 Hz, 1H), 3.74 (s, 2H), 3.61 (t, J = 6.4 Hz, 

2H), 3.18 (t, J = 6.4 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 165.6, 146.1, 144.2, 143.9, 

141.2, 141.1, 131.3, 130.4, 125.6, 123.9, 123.7, 122.6, 119.7, 117.5, 111.1, 110.1, 108.4, 42.2, 36.6, 

35.9 ppm. HRMS (EI-TOF) m/z calcd for C20H17N3O2: 331.1321, found 331.1317.

Typical procedure for synthesis of C(sp3)-C(sp3) bond cleavage product (2a as an example): 

A 10 mL round bottom flask was equipped with magnetic stir bar and cooling coil was charged with 

N-(2-(5-nitropyridin-2-yl)ethyl)aniline (1a, 0.2 mmol, 49 mg), toluene (1.5 mL). Then, DBU (0.4 

mmol, 60 μL), TEMPO (0.4 mmol, 62 mg) and CuI (0.16 mmol, 38 mg) were added to the solution. 

The reaction mixture was exposed to the open air and was stirred for 2 h at 65 oC by oil bath. After 

the reaction was completed, the reaction mixture was directly purified by column chromatography 

[100 g silica gel was treated with 2 mL aqua ammonia (25% m/m)] with petroleum ether/CH2Cl2 = 

1:1 to give C(sp3)-C(sp3) bond cleavage product 2a in 78% yield.
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N-Phenylformamide(2a), yellow oil, 19 mg (78%). 1H NMR (400 MHz, DMSO-d6): δ 10.2 (brs, 

0.78H), 8.78 (d, J = 11.2 Hz, 0.22H), 8.27 (d, J = 2.0 Hz, 0.60H), 7.59 (d, J = 7.6 Hz, 1.22H), 7.32 

(t, J = 7.6 Hz, 1.66H), 7.19 (d, J = 7.6 Hz, 0.44H), 7.07 (q, J = 5.6 Hz, 0.84H) ppm. 13C{1H} NMR 

(100 MHz, DMSO-d6): δ 163.0, 160.1, 138.7, 138.6, 129.8, 129.3, 124.1, 124.0, 119.6, 118.0 ppm. 

The spectroscopic data matched that previously reported20b.

N-(4-Fluorophenyl)formamide(2b), brown solid, 21 mg (75%). 1H NMR (400 MHz, CDCl3): δ 

8.50 (d, J = 11.2 Hz, 0.40H), 8.29 (s, 0.58H), 7.74 (brs, 0.39H), 7.45 (m, 1.15H), 7.23 (m, 0.87H), 

7.01-6.93 (m, 2.57H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 162.3, 159.4 (d, JC-F = 243.2 Hz), 

158.7, 158.5 (d, JC-F = 242.7 Hz), 132.0, 131.8, 121.0, 120.0, 115.5 (d, JC-F = 22.8 Hz), 114.6 (d, JC-F 

= 22.8 Hz) ppm. The spectroscopic data matched that previously reported21a.

N-(4-Chlorophenyl)formamide(2c), yellow solid, 25 mg (80%). 1H NMR (400 MHz, CDCl3): δ 

8.58 (d, J = 11.2 Hz, 0.41H), 8.30 (s, 0.60H), 8.12 (brs, 0.37H), 7.43 (m, 1.23H), 7.34-7.27 (m, 

0.42H), 7.25-7.21 (m, 0.92H), 7.21-7.19 (m, 0.75H), 6.97 (m, 0.80H) ppm. 13C{1H} NMR (100 

MHz, CDCl3): δ 161.3, 157.9, 134.3, 134.2, 129.8, 129.7, 128.9, 128.1, 120.2, 119.1 ppm. The 

spectroscopic data matched that previously reported21a.

N-(4-(Trifluoromethyl)phenyl)formamide(2d), brown solid, 19 mg (50%). 1H NMR (400 MHz, 

CDCl3): δ 8.73 (m, 0.28H), 8.37 (brs, 0.61H), 7.62-7.51 (m, 2.59H), 7.19-7.12 (m, 0.55H) ppm. 

13C{1H} NMR (100 MHz, CDCl3): δ 162.7, 159.7, 140.0, 139.9, 138.8, 126.3 (q, JC-F = 33.8 Hz), 

126.4, 124.1 (q, JC-F = 270.0 Hz), 119.8, 117.9 ppm. The spectroscopic data matched that previously 

reported21a.

N-p-Tolylformamide(2e), yellow solid, 22 mg (80%). 1H NMR (400 MHz, CDCl3): δ 8.62 (d, J = 

11.6 Hz, 0.49H), 8.38 (s, 0.92H), 7.42 (d, J = 8.0 Hz, 0.39H), 7.15 (t, J = 8.8 Hz, 0.98H), 7.11 (m, 
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1.98H), 6.98 (d, J = 8.0 Hz, 1.09H), 2.33 (m, 3.00H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 

163.0, 159.1, 135.1, 134.5, 134.3, 134.1, 130.2, 129.5, 120.1, 119.1, 20.9, 20.8 ppm. The 

spectroscopic data matched that previously reported21a.

N-(4-(tert-Butyl)phenyl)formamide(2f), yellow solid, 18 mg (51%). 1H NMR (400 MHz, 

CDCl3): δ 8.58 (d, J = 11.2 Hz, 0.45H), 8.29 (s, 0.39H), 7.72 (br, 0.40H), 7.39 (d, J = 8.8 Hz, 

0.82H), 7.29 (t, J = 8.8 Hz, 1.86H), 6.95 (d, J = 8.4 Hz, 0.94H), 1.24 (m, 9.00H) ppm.13C{1H} NMR 

(100 MHz, CDCl3): δ 161.8, 158.0, 147.5, 146.8, 133.2, 133.0, 125.6, 124.9, 118.8, 117.8, 33.4, 

33.3, 30.3, 28.7 ppm. The spectroscopic data matched that previously reported21a.

N-(4-Methoxyphenyl)formamide(2g), yellow solid, 24 mg (79%). 1H NMR (400 MHz, CDCl3): 

δ 8.43 (m, 0.46H), 8.26 (d, J = 1.6 Hz, 0.52H), 7.39 (brs, 0.47H), 7.38 (dd, J1 = 10.8 Hz, J2 = 2.4 Hz, 

1.08H), 6.96 (dd, J1 = 6.4 Hz, J2 = 2.4 Hz, 1.01H), 8.84 (brs, 0.47H), 6.81-6.79 (m, 2.02H), 3.73 (m, 

3H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 161.8, 157.7, 156.7, 155.7, 128.8, 128.4, 120.8, 

120.7, 113.9, 113.3, 54.6, 54.4 ppm. The spectroscopic data matched that previously reported21a.

N-(4-(Trifluoromethoxy)phenyl)formamide(2h), yellow oil, 29 mg (71%). 1H NMR (400 MHz, 

CDCl3): δ 8.61 (d, J = 6.0 Hz, 0.37H), 8.33 (s, 0.62H), 8.03 (brs, 0.32H), 7.52 (d, J = 8.0 Hz, 1.28H), 

7.31 (s, 0.64H), 7.15 (m, 2.00H), 7.05 (m, 0.75H) ppm.13C{1H} NMR (100 MHz, CDCl3): δ 162.2, 

158.9, 154.5, 152.9, 147.0 (q, JC-F = 113.1 Hz), 145.7, 135.4, 135.3, 122.7, 121.9, 121.1, 119.1 (q, 

JC-F = 253.3 Hz) ppm. The spectroscopic data matched that previously reported21b.

N-([1,1'-Biphenyl]-4-yl)formamide (2i), yellow solid, 33 mg (83%). 1H NMR (400 MHz, 

CDCl3): δ 8.65 (d, J = 11.6 Hz, 0.47H), 8.35 (d, J = 2.0 Hz, 0.53H), 7.56-7.49 (m, 5.50H), 7.39-7.35 

(m, 2.06H), 7.30-7.26 (m, 1.11H), 7.08 (m, 1.45H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 161.2, 
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157.8, 139.3, 139.0, 137.4, 136.8, 135.1, 134.8, 127.9, 127.7, 127.4, 126.7, 126.4, 126.2, 125.9, 

125.8, 119.2, 118.1 ppm. The spectroscopic data matched that previously reported21b.

N-(4-(Benzyloxy)phenyl)formamide(2j), yellow solid, 28 mg (61%). 1H NMR (400 MHz, 

CDCl3): δ 8.43 (d, J = 11.6 Hz, 0.44H), 8.21 (brs, 0.49H), 8.01 (d, J = 11.2 Hz, 0.40H), 7.37-7.24 

(m, 6.74H), 6.95-6.83 (m, 3.01H), 4.96 (m, 2.00H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 162.2, 

158.9, 145.7, 135.4, 135.3, 122.7, 121.9, 121.1, 119.1 (q, JC-F = 253.3 Hz) ppm. The spectroscopic 

data matched that previously reported21c.

N-(4-(Methylthio)phenyl)formamide(2k), yellow oil, 28 mg (84%). 1H NMR (400 MHz, 

CDCl3): δ 8.58 (d, J = 8.0 Hz, 0.44H), 8.27 (s, 0.87H), 7.40 (d, J = 8.4 Hz, 1.25H), 7.19-7.15 (m, 

2.22H), 6.96 (d, J = 8.4 Hz, 0.91H), 2.40 (m, 3.00H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 

162.7, 159.4, 135.3, 134.5, 134.4, 134.2, 128.4, 127.9, 120.8, 119.7, 16.6, 16.5 ppm. The 

spectroscopic data matched that previously reported21b.

N-(3-Fluorophenyl)formamide(2l), yellow oil, 19 mg(68%). 1H NMR (400 MHz, CDCl3): δ 8.63 

(d, J = 11.2 Hz, 0.41H), 8.32 (brs, 0.58H), 7.58 (brs, 0.43H), 7.43 (m, 0.68H), 7.28-7.20 (m, 1.16H), 

7.11 (dd, J1 = 8.0 Hz, J2 = 1.2 Hz, 0.70H), 6.85-6.72 (m, 1.63H) ppm. 13C{1H} NMR (100 MHz, 

CDCl3): δ 163.3 (d, JC-F = 245.6 Hz), 162.9 (d, JC-F = 243.7 Hz), 162.8, 159.6, 138.5 (d, JC-F = 10.1 

Hz), 138.4 (d, JC-F = 10.1 Hz), 131.2, 130.3, 115.3, 114.0, 112.1 (d, JC-F = 21.0 Hz), 111.6 (d, JC-F = 

21.0 Hz), 107.7 (d, JC-F = 26.1 Hz), 105.9 (d, JC-F = 26.1 Hz) ppm. The compound was reported 

previously20b.

N-(3-Chlorophenyl)formamide(2m), yellow solid, 20 mg (65%). 1H NMR (400 MHz, CDCl3): δ 

8.68 (m, 0.43H), 8.39 (brs, 0.59H), 7.80 (m, 0.40H), 7.67 (t, J = 2.0 Hz, 0.67H), 7.38 (d, J = 8.4 Hz, 

0.76H), 7.31-7.28 (m, 0.37H), 7.25 (m, 0.49H), 7.18-7.12 (m, 1.04H), 6.97 (d, J = 8.4 Hz, 0.42H) 
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ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 161.9, 158.8, 137.1, 137.0, 134.3, 133.5, 129.8, 129.1, 

124.3, 123.8, 119.2, 117.7, 117.1, 115.6 ppm. The spectroscopic data matched that previously 

reported21d.

N-(3-(Trifluoromethyl)phenyl)formamide(2n), brown solid, 18 mg (48%). 1H NMR (400 MHz, 

CDCl3): δ 8.68 (d, J = 11.2 Hz, 0.37H), 8.49 (brs, 0.34H), 8.35 (s, 0.62H), 7.77 (s, 0.63H), 7.68 (m, 

1.16H), 7.45-7.21 (m, 2.71H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 162.3, 159.2, 137.4, 132.3 

(q, JC-F = 32.7 Hz), 131.7, 131.3, 130.5, 129.7, 123.7 (q, JC-F = 270.8 Hz), 123.5 (q, JC-F = 270.7 Hz), 

122.9, 121.9 (q, JC-F = 3.8 Hz), 121.7, 121.4 (q, JC-F = 3.8 Hz), 116.7 (q, JC-F = 3.8 Hz), 115.4 (q, JC-F 

= 3.8 Hz) ppm. The spectroscopic data matched that previously reported21e.

N-m-Tolylformamide(2o), yellow oil, 19 mg (71%). 1H NMR (400 MHz, CDCl3): δ 8.68 (d, J = 

11.6 Hz, 0.54H), 8.78 (d, J = 1.2 Hz, 0.48H), 7.70 (brs, 0.49H), 7.41 (m, 0.50H), 7.30 (m, 0.50H), 

7.23 (m, 0.93H), 7.01 (brs, 0.34H), 6.96 (d, J = 7.6 Hz, 1.04H), 6.88 (m, 1.08H) ppm. 13C{1H} NMR 

(100 MHz, CDCl3): δ 162.4, 158.8, 139.9, 139.2, 136.7, 136.5, 129.6, 129.0, 126.1, 125.7, 120.6, 

119.6, 117.0, 115.9, 21.5, 21.4 ppm. The spectroscopic data matched that previously reported21b.

N-o-Tolylformamide(2p), brown solid, 15 mg (55%). 1H NMR (400 MHz, CDCl3): δ 8.48 (m, 

0.62H), 8.37 (brs, 0.39H), 7.85 (d, J = 8.0 Hz, 0.39H), 7.16-7.01 (m, 3.80H), 2.23 (s, 3H) ppm. 

13C{1H} NMR (100 MHz, CDCl3): δ 163.9, 159.6, 135.2, 134.7, 131.3, 130.6, 130.1, 129.1, 127.1, 

126.7, 126.1, 125.6, 123.3, 120.9, 17.7, 17.6 ppm. The spectroscopic data matched that previously 

reported21b.

N-([1,1'-Biphenyl]-2-yl)formamide(2q), yellow solid, 20 mg (50%). 1H NMR (400 MHz, 

CDCl3): δ 8.62 (d, J = 11.2 Hz, 0.44H), 8.32 (d, J = 7.6 Hz, 0.52H), 8.23 (d, J = 2.0 Hz, 0.49H), 

7.46-7.21 (m, 7.46H), 7.17-7.13 (m, 1.31H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 161.9, 158.9, 
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137.8, 137.3, 133.8, 133.7, 132.9, 131.9, 131.2, 130.2, 129.3, 129.2, 129.1, 128.8, 128.7, 128.2, 

128.1, 125.3, 124.6, 121.4, 121.3, 118.1 ppm. The spectroscopic data matched that previously 

reported21f.

N-(3,4-Dimethylphenyl)formamide(2r), yellow solid, 23 mg (77%). 1H NMR (400 MHz, 

CDCl3): δ 8.62 (m, 0.49H), 8.33 (m, 0.45H), 8.23 (m, 0.45H), 7.43 (brs, 0.36H), 7.24 (m, 0.46H), 

7.05 (m, 0.64H), 6.85 (m, 1.05H), 6.82 (t, J = 9.2 Hz, 1.14H), 2.23 (m, 6H) ppm. 13C{1H} NMR 

(100 MHz, CDCl3): δ 162.9, 159.1, 138.2, 137.4, 134.6, 134.4, 133.8, 133.2, 130.7, 130.0, 121.4, 

120.5, 117.5, 116.4, 19.9, 19.2, 19.1 ppm. The spectroscopic data matched that previously 

reported21f.

N-(5,6,7,8-Tetrahydronaphthalen-1-yl)formamide(2s), brown solid, 23 mg (65%). 1H NMR 

(400 MHz, CDCl3): δ 8.52 (d, J = 11.2 Hz, 0.66H), 8.43 (s, 0.28H), 7.89 (m, 0.63H), 7.30 (d, J = 7.6 

Hz, 0.29H), 7.12 (m, 1.25H), 6.96 (m, 1.62H), 2.79 (m, 2H), 2.61 (m, 2H), 1.85 (d, J = 5.6 Hz, 2H), 

1.77 (d, J = 5.6 Hz, 2H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 163.4, 159.1, 139.2, 138.3, 

134.8, 134.3, 128.8, 127.7, 127.1, 126.6, 126.1, 125.9, 120.5, 117.9, 29.8, 29.7, 24.6, 24.5, 22.8, 

22.7, 22.5, 22.4 ppm. HRMS (EI-TOF) m/z calcd for C11H13NO:175.0997, found 175.0999. The 

compound was reported previously 21g.

N-(Quinolin-6-yl)formamide(2t), black solid, 25 mg (73%). 1H NMR (400 MHz, CDCl3): δ 9.48 

(d, J = 11.2 Hz, 0.21H), 9.33 (s, 0.46H), 8.85-8.73 (m, 0.97H), 8.43 (s, 0.50H), 8.36 (d, J = 2.4 Hz, 

0.51H), 8.00 (d, J = 8.4 Hz, 0.97H), 7.93 (d, J = 5.2 Hz, 0.52H), 7.56 (dd, J1 = 9.2 Hz, J2 = 2.4 Hz, 

0.51H), 7.44 (m, 0.48H), 7.34 (m, 0.24H), 7.29 (q, J = 4.4 Hz, 0.51H) ppm. 13C{1H} NMR (100 

MHz, CDCl3): δ 162.9, 159.8, 149.7, 149.4, 145.8, 145.4, 136.2, 135.6, 135.4, 135.3, 131.2, 129.9, 
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128.9, 123.3, 122.3, 122.2, 121.8, 116.8, 114.4 ppm. The spectroscopic data matched that previously 

reported21h.

N-(4-Phenoxyphenyl)formamide(2z), yellow solid, 38 mg (90%). 1H NMR (400 MHz, CDCl3): δ 

8.51 (d, J = 11.6 Hz, 0.44H), 8.29 (d, J = 1.6 Hz, 0.56H), 7.62 (brs, 0.41H), 7.43(m, 1.18H), 7.26 

(m, 2.05H), 7.23 (brs, 0.51H), 7.07-6.91 (m, 5.96H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 

162.6, 158.8, 157.3, 157.1, 155.1, 154.0, 132.2, 131.8, 129.9, 129.8, 123.6, 123.3, 121.8, 121.3, 

120.1, 119.6, 118.8, 118.6 ppm. The spectroscopic data matched that previously reported19b.

N-(9-oxo-9H-Fluoren-2-yl)formamide (2aa), brown solid, 27 mg (61%). 1H NMR (400 MHz, 

DMSO-d6): δ 10.42 (s, 0.79H), 10.28 (d, J = 11.6 Hz, 0.21H), 8.85 (d, J = 11.2 Hz, 0.22H), 8.26 (m, 

0.85H), 7.91 (d, J = 8.8 Hz, 0.21H), 7.86 (d, J = 1.6 Hz, 0.84H), 7.68-7.63 (m, 3.00H), 7.54-7.50 (m, 

2.33H), 7.38-7.32 (m, 0.54H), 7.28-7.24 (m, 1.10H), 7.00 (m, 0.18H), 6.48 (m, 0.23H) ppm. 13C{1H} 

NMR (100 MHz, DMSO-d6): δ 192.8, 192.7, 162.5, 160.0, 144.0, 139.7, 139.4, 139.3, 138.7, 138.6, 

135.5, 135.4, 134.6, 134.0, 133.4, 133.2, 128.7, 128.6, 124.7, 124.0, 122.8, 122.2, 121.8, 120.7, 

114.7, 112.8 ppm. HRMS (EI-TOF) m/z calcd for C14H9NO2: 223.0633, found 223.0636. The 

compound was reported previously 19f.

Gram-scale reaction for the synthesis of 2a: A 50 mL round bottom flask was equipped with 

magnetic stir bar and cooling coil was charged with N-(2-(5-nitropyridin-2-yl)ethyl)aniline (1a, 3.5 

mmol, 0.85 g), toluene (12 mL). Then, DBU (7 mmol, 1.05 mL), TEMPO (7 mmol, 1.05 g) and CuI 

(2.8 mmol, 0.53 g) were added to the solution. The reaction mixture was exposed to the open air and 

was stirred for 2 h at 65 oC by oil bath. After the reaction was completed, the reaction mixture was 

directly purified by column chromatography [100 g silica gel was treated with 2 mL aqua ammonia 
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(25% m/m)] with petroleum ether/CH2Cl2 = 1:1 to give C(sp3)-C(sp3) bond cleavage product 2a in 

70% yield (0.27 g).

Synthesis of N,N-diphenylhydrazine 4u : To a solution of 

6-(2-(phenylamino)ethyl)nicotinonitrile (1u, 0.2 mmol, 44.6 mg) in toluene (1.5 mL) was added 

DBU (0.4 mmol, 60 μL) and CuI (0.16 mmol, 38 mg). The resulting solution was stirred for 2 h at 

65 oC under air atmosphere by oil bath. After the reaction was completed, the reaction mixture was 

directly purified by column chromatography with petroleum ether/CH2Cl2 = 2:1 to give 4u in 15% 

yield (6.8 mg).

6,6'-((1,2-Diphenylhydrazine-1,2-diyl)bis(ethane-2,1-diyl))dinicotinonitrile (4u), orange solid, 

Mp 167-169 °C. 1H NMR (400 MHz, CDCl3): δ 8.70 (d, J = 2.0 Hz, 1H), 7.73 (dd, J1 = 8.0 Hz, J2 = 

2.4 Hz, 1H), 7.15-7.09 (m, 3H), 6.77-6.69 (m, 3H), 3.84 (m, 2H), 3.16 (t, J = 7.6 Hz, 2H) ppm. 

13C{1H} NMR (100 MHz, CDCl3): δ 163.7, 152.2, 148.0, 139.6, 129.4, 123.6, 119.1, 116.8, 113.0, 

107.7, 49.4, 36.7 ppm. HRMS (ESI-TOF) calcd for [M+Na]+ C28H24N6Na : 467.1960, found 

467.1961. 

5-Nitropicolinaldehyde (5a), 1H NMR (400 MHz, DMSO-d6): δ 10.09 (d, J = 0.8 Hz, 1H), 9.56 

(s, 1H), 8.81 (dd, J1 = 8.4 Hz, J2 = 2.4 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H) ppm. 13C{1H} NMR (100 

MHz, DMSO-d6): δ 192.4, 155.7, 146.5, 145.8, 133.8, 122.9 ppm. The spectroscopic data matched 

that previously reported22.

5-Nitropicolinic acid (6a), 1H NMR (400 MHz, DMSO-d6): δ 9.47 (bs, 1H), 8.76 (bs, 1H), 8.29 

(bs, 1H) ppm. 13C{1H} NMR (100 MHz, DMSO-d6): δ 165.23, 153.4, 146.1, 145.1, 133.5, 125.8 

ppm. The spectroscopic data matched that previously reported23.
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Supporting Information

Experiment details and spectroscopic data. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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