Kristallstrukturen und Schwingungsspektren von Tetrahalogenoacetylacetonatoosmaten(IV), [OsX₄(acac)]⁻, X = Cl, Br, I

K. Dallmann und W. Preetz*

Kiel, Institut für Anorganische Chemie der Christian-Albrechts-Universität

Bei der Redaktion eingegangen am 15. Mai 1997.

Inhaltsübersicht. Bei der Umsetung von Hexahalogenoosmaten(IV) mit Acetylaceton entstehen die Tetrahalogenoacetylacetonatoosmate(IV) $[OsX_4(acac)]^-$ (X = Cl, Br, I), die säulenchromatographisch gereinigt und aus wäßriger Lösung als (Ph₄P)- oder Cs-Salze ausgefällt werden. Röntgenstrukturanalysen sind an Einkristallen von (Ph₄P)[OsCl₄(acac)] (1) (triklin, Raumgruppe P1, a = 9,9661(6), b = 11,208(2), c = 13,4943(7) Å, α = 101,130(9), β = 91,948(6), γ = 96,348(8)°, Z = 2), (Ph₄P)[OsBr₄(acac)] (2) (monoklin, Raumgruppe P2₁/n, a = 9,0251(8), b = 12,423(2), c = 27,834(2) Å, β = 94,259(7)°, Z = 4) und (Ph₄P)[OsI₄(acac)] (3) (monoklin, Raumgruppe P2₁/c, a = 18,294(3), b = 10,664(2), c = 18,333(3) Å, $\beta = 117,68(2)^\circ$, Z = 4) durchgeführt worden. Der in der Reihe O < Cl < Br < I zunehmende *trans*-Einfluß zeigt sich an den O'-Os-X'-Oktaederachsen in verlängerten Os-O'-Abständen und der Verschiebung der OsO'-Valenzschwingungen zu niedrigeren Frequenzen. Die Os-X'-Bindungslängen sind im Vergleich zu denen symmetrisch koordinierter X-Os-X-Achsen etwas kürzer.

Crystal Structures and Vibrational Spectra of Tetrahalogenoacetylacetonatoosmates(IV), [OsX₄(acac)]⁻, X = Cl, Br, I

Abstract. By reaction of the hexahalogenoosmates(IV) with acetylacetone the tetrahalogenoacetylacetonatoosmates(IV) $[OsX_4(acac)]^-$ (X = Cl, Br, I) are formed, which have been purified by chromatography and precipitated from aqueous solution as tetraphenylphosphonium (Ph₄P) or cesium salts. X-ray structure determinations on single crystals have been performed of (Ph₄P)[OsCl₄(acac)] (1) (triclinic, space group PI, a = 9.9661(6), b = 11.208(2), c = 13.4943(7) Å, $\alpha = 101.130(9)$, $\beta = 91.948(6)$, $\gamma = 96.348(8)^\circ$, Z = 2), (Ph₄P)[OsBr₄(acac)] (2) (monoclinic, space group P2₁/n, a = 9.0251(8), b = 12.423(2), c = 27.834(2) Å, $\beta = 94.259(7)^\circ$, Z = 4) and (Ph₄P)[OsI₄(acac)] (3) (monoclinic, space group

P2₁/c, a = 18.294(3), b = 10.664(2), c = 18.333(3) Å, β = 117.68(2)°, Z = 4). Due to the increasing *trans* influence in the series O < Cl < Br < I the Os–O' distances of O'–Cl–X' axes are lengthened and the OsO' stretching vibrations are shifted to lower frequencies. The Os–X' bond lenghts are shorter as compared with symmetrically coordinated X–Os–X axes.

Keywords: Tetrachloroacetylacetonatoosmate(IV); Tetrabromoacetylacetonatoosmate(IV); Tetraiodoacetylacetonatoosmate(IV); Crystal Structure; IR Spectra; Raman; *trans* Influence

Einleitung

Das Acetylacetonatanion acac⁻ bildet mit zahlreichen Haupt- und Nebengruppenmetallen stabile Chelatkomplexe [1, 2]. Schon vor längerer Zeit sind durch Umsetzung der Hexahalogenoosmate(IV) K₂[OsX₆]

Prof. Dr. W. Preetz Institut für Anorganische Chemie Olshausenstraße 40 D-24098 Kiel mit Acetylaceton die Verbindungen $[OsX_4(acac)]^-$ (X = Cl, Br, I) dargestellt und charakterisiert worden [3]. Weitere Halogenomonoacetylacetonatokomplexe der Elemente der 7. und 8. Nebengruppe kennt man nur vom Tc(IV) [4] und Ru(III) [5]. Für die verwandten Os^{IV}-Komplexe *cis*- und *trans*- $[OsX_2(acac)_2]$ sind die Kristallstrukturen, Schwingungsspektren und Normalkoordinatenanalysen erst kürzlich mitgeteilt worden [6]. Im folgenden berichten wir über die Kristallstrukturen von (Ph₄P)[OsX₄(acac)] (X = Cl, Br, I) und die Schwingungsspektren von Cs[OsX₄(acac)] (X = Cl, Br, I).

^{*} Korrespondenzanschrift:

Experimentelles

a) Darstellung von $[OsX_4(acac)]^-$, X = Cl, Br, I

Die Darstellung der Komplexe folgt im wesentlichen den Arbeitsvorschriften in [3], wird jedoch um die chromatographische Reinigung erweitert. Nach der Umsetzung von $K_2[OsX_6]$ (X = Cl, Br, I) mit Acetylaceton und Eindampfen im Vakuum nimmt man den Rückstand mit Essigester auf und extrahiert die Komplexe [OsX4(acac)]- durch mehrfaches Schütteln mit Wasser. Zur weiteren Reinigung wird der beim Eindampfen der vereinigten wäßrigen Phasen verbleibende feste Rückstand in möglichst wenig Aceton gelöst und auf eine mit Dichlormethan geschüttete, ca. 10 cm lange Kieselgelsäule (Korngröße 0,04-0,063 mm) aufgetragen. Bei der Elution mit zunächst reinem Dichlormethan fallen die Salze K[OsX₄(acac)] aus und verbleiben am Säulenkopf, und man kann Nebenprodukte, darunter ein schnell laufendes Gemisch von cis- und trans- $[OsX_2(acac)_2]$, abtrennen [6]. Anschließend lassen sich mit Aceton/Dichlormethan-Gemischen (etwa 1:4) die Komplexe $[OsX_4(acac)]^-$ in reiner Form eluieren, wobei im oberen Bereich der Säule Nebenprodukte und nicht umgesetzte Ausgangsstoffe verbleiben. Die (Ph₄P)- und Cs-Salze werden aus wäßriger Lösung mit (Ph₄P)X bzw. CsX ausgefällt. Einkristalle von rotorangem (Ph₄P)[OsCl₄(acac)] (1) entstehen beim Eindiffundieren von n-Pentan über die Gasphase in eine Lösung des Salzes in CH_2Cl_2 , von rotbraunem $(Ph_4P)[OsBr_4(acac)]$ (2) durch Diffusion von Petrolether (100-140 °C) in eine Lösung des Salzes in THF und von dunkelgrünem (Ph₄P)[OsI₄(acac)] (3) durch Diffusion von Diethylether in eine Lösung des Salzes in CH₂Cl₂.

b) Röntgenstrukturanalyse

An den auf Glaskapillaren befestigten Einkristallen wurden mit einem CAD4-Vierkreisdiffraktometer der Firma Enraf-Nonius die Gitterkonstanten bestimmt und die Reflexintensitäten gemessen. Reflexsymmetrie und fehlende systematische Auslöschungen deuteten bei (1) auf das trikline Kristallsystem hin. Die Verfeinerung gelang in der zentrosymmetrischen Raumgruppe P1. Für (2) und (3) kam aufgrund systematischer Auslöschungen nur die Raumgruppe P2₁/n bzw. P2₁/c in Frage. Neben der Untergrund-, Lorentzund Polarisationskorrektur ist an den Datensätzen die Absorptionskorrektur mit dem Programm MolEN [7] durchgeführt worden. Die Strukturlösung gelang mit direkten Methoden (SIR92) [8]. Die Atomparameter wurden mit dem Programm SHELXL-93 [9] nach dem full-matrix-least-squares Verfahren gegen F² verfeinert, wobei die Wasserstoffatome isotrop verfeinert wurden. Die Angaben zur Strukturanalyse und Kristalldaten sind in Tab. 1, die Lageparameter und äquivalenten isotropen Auslenkungsparameter in Tab. 2, die wichtigen interatomaren Abstände und Winkel in Tab. 3 zusammengefaßt. Alle Rechnungen wurden auf einer IBM RS/6000 durchgeführt. Die Graphiken wurden mit ORTEPII und Diamond 1.1 gezeichnet [10, 11]. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-407205 (1), CSD-407206 (2) und CSD-407207 (3) angefordert werden.

Tabelle 1 Kristallographische Daten und Meßparameter für $(Ph_4P)[OsCl_4(acac)]$ (1), $(Ph_4P)[OsBr_4(acac)]$ (2) und $(Ph_4P)[OsI_4(acac)]$ (3)

	(1)	(2)	(3)
Formel	C ₂₉ H ₂₇ Cl ₄ O ₂ OsP	C ₂₉ H ₂₇ Br ₄ O ₂ OsP	$C_{29}H_{27}I_4O_2O_8P$
Molekulargewicht [g/mol]	770,48	948,32	1136,28
Kristallsystem	triklin	monoklin	monoklin
Raumgruppe	P1 (Nr. 2)	P 2 ₁ /n (Nr. 14)	$P 2_1/c$ (Nr. 14)
a [Å]	9,9661(6)	9,0251(8)	18,294(3)
b [Å]	11,208(2)	12,423(2)	10,664(2)
c [Å]	13,4943(7)	27,834(2)	18,333(3)
α [°]	101,130(9)		
β [°]	91,948(6)	94,259(7)	117,68(2)
γ [°]	96,348(8)		
Zellvolumen [Å ³]	1467,6(2)	3112,0(7)	3167,1(9)
Formeleinheiten	2	4	4
Röntg. Dichte [Mg/m ³]	1,744	2,024	2,383
Strahlung [Å]	– Mol	$\zeta \alpha, \lambda = 0,71069 \text{ Å} -$	
2θ-Bereich [°]	4,2–50	4,4–46	4,4–46
Abtastung	$\omega/2\theta$	$\omega/2\theta$	$\omega/2\theta$
Meßtemperatur [K]	293	293	208
max. Meßzeit pro Reflex	50 s	40 s	30 s
Korrekturen	– Untergru	nd, Polarisation, Lorentz –	
gemessene Reflexe	5483	4631	4556
unabhängige Reflexe	5162 [R(int) = 0.0211]	4312 [R(int) = 0.0301]	4397 [R(int) = 0.0671]
Parameterzahl	421	418	239
Gütefaktoren R $[I > 2\sigma(I)]$	R1 = 0,0276, wR2 = 0,0761	R1 = 0,0336, wR2 = 0,0525	R1 = 0,0662, wR2 = 0,1399
Gütefaktoren R (alle Reflexe)	R1 = 0,0299, wR2 = 0,0799	$R1 \approx 0,0927, wR2 = 0,0749$	R1 = 0,1554, wR2 = 0,1967

Tabelle 2 Lageparameter $(\times 10^4)$ und äquivalente isotropeAuslenkungsparameter $(\mathring{A}^2 \times 10^3)$ für die Anionen von $(Ph_4P)[OsCl_4(acac)]$ (1), $(Ph_4P)[OsBr_4(acac)]$ (2) und $(Ph_4P)[OsL_4(acac)]$ (3)

	Atom	X	У	Z	U _{eq}
(1)	Os	10854(1)	3103(1)	6919(1)	38(1)
	Cl1	9911(1)	4843(1)	6699(1)	64(1)
	Cl2	11680(2)	1275(1)	6997(2)	85(1)
	Cl3	12992(1)	4146(1)	7363(1)	47(1)
	Cl4	10248(2)	3384(2)	8573(1)	80(1)
	O 1	11309(3)	2909(3)	5461(3)	50(1)
	O2	9049(4)	2102(3)	6501(3)	53(1)
	C1	11142(7)	2345(7)	3696(4)	65(2)
	C2	10585(5)	2279(4)	4703(3)	44(1)
	C3	9378(6)	1581(5)	4758(4)	57(1)
	C4	8692(5)	1495(4)	5616(4)	49(1)
	C5	7400(7)	659(7)	5534(6)	72(2)
(2)	Os	-413(1)	-3967(1)	1264(1)	44(1)
	Br1	256(2)	-2612(1)	1895(1)	80(1)
	Br2	-781(1)	-5377(1)	641(1)	62(1)
	Br3	-2544(1)	-4588(1)	1689(1)	57(1)
	Br4	-1915(1)	-2671(1)	777(1)	72(1)
	O 1	903(8)	-5010(5)	1656(2)	51(2)
	O2	1344(8)	-3475(5)	915(3)	60(2)
	C1	3035(18)	-5801(19)	2027(6)	99(7)
	C2	2330(13)	-5017(9)	1672(4)	55(3)
	C3	3167(12)	-4447(11)	1368(5)	66(4)
	C4	2667(12)	-3784(9)	994(4)	59(3)
	C5	3698(14)	-3365(12)	643(6)	87(5)
(3)	Os	6892(1)	1901(1)	4166(1)	26(1)
	I1	6996(1)	1295(2)	5632(1)	38(1)
	I2	6618(1)	2188(2)	2612(1)	39(1)
	I3	6645(1)	4301(2)	4310(1)	38(1)
	I4	8514(1)	2170(2)	4819(1)	43(1)
	01	5644(11)	1646(17)	3726(11)	33(5)
	O2	7062(11)	54(16)	3998(11)	27(4)
	C1	4322(26)	672(38)	3227(25)	43(10)
	C2	5265(17)	615(25)	3419(16)	25(6)
	C3	5622(20)	-500(32)	3335(20)	45(8)
	C4	6421(15)	-738(23)	3609(14)	18(6)
	C5	6709(20)	-1918(33)	3409(20)	42(8)

Tabelle 3 Ausgewählte Bindungslängen [Å] und Bindungswinkel [°] in den Anionen $[OsX_4(acac)]^-$ (X = Cl (1), Br (2), I (3))

	(1)	(2)	(3)
Os-X1	2,3207(13)	2,4750(14)	2,684(2)
Os-X2	2,3103(14)	2,4709(13)	2,671(2)
Os-X3	2,3150(11)	2,4551(11)	2,634(2)
Os–X4	2,3035(14)	2,4476(12)	2,651(2)
Os-O1	2,011(3)	2,022(6)	2,06(2)
Os-O2	2,013(3)	2,016(7)	2,04(2)
O1–C2	1,274(6)	1,286(12)	1,28(3)
O2–C4	1,273(6)	1,258(12)	1,35(3)
C1C2	1,497(8)	1,50(2)	1,59(5)
C2C3	1,373(8)	1,37(2)	1,40(4)
C3C4	1,378(8)	1,38(2)	1,33(4)
C4C5	1,494(8)	1,49(2)	1,47(4)
O1-Os-O2	90,15(14)	90,2(3)	91,9(7)
O1OsX1	86,52(11)	87,1(2)	84,8(5)
O1-Os-X2	89,80(12)	88,1(2)	88,5(5)
O1-Os-X3	88,40(10)	89,3(2)	87,5(5)
O1-Os-X4	177,11(11)	177,6(2)	176,5(5)
O2-Os-X1	89,36(12)	88,7(2)	88,5(5)
O2–Os–X2	86,60(12)	86,9(2)	85,2(5)
O2-Os-X3	176,44(11)	179,3(2)	177,4(5)
O2-Os-X4	88,73(11)	87,5(2)	87,4(5)
X1-Os-X2	174,52(5)	173,51(5)	170,61(8)
X1–Os–X3	93,80(5)	91,76(5)	93,96(7)
X1–Os–X4	90,81(7)	92,39(5)	91,72(7)
X2–Os–X3	90,14(5)	92,64(4)	92,29(7)
X2-Os-X4	92,79(8)	92,15(5)	94,91(7)
X3–Os–X4	92,87(5)	92,98(4)	93,32(7)
Os01C2	126,2(3)	124,7(7)	124(2)
Os-O2-C4	125,4(3)	126,5(7)	122(2)
O1C2C1	114,9(5)	113,8(12)	112(2)
O1C2C3	125,0(5)	124,9(10)	126(3)
O2C4C3	125,3(5)	124,6(11)	128(3)
O2C4C5	115,2(5)	114,2(12)	110(2)
C1-C2-C3	120,1(5)	121,1(12)	121(3)
C2-C3-C4	126,9(5)	127,6(10)	127(3)
<u>C3-C4-C5</u>	119,5(5)	121,2(12)	122(3)

c) Spektren

Die Registrierung der IR-Spektren erfolgte an den Cäsiumsalzen im Bereich unterhalb 500 cm⁻¹ mit einem FT-Spektrometer IFS-66 der Fa. Bruker, Karlsruhe, an Polyethylenpreßlingen, oberhalb 500 cm⁻¹ mit einem FT-Spektrometer Genesis der Fa. ATI Matson, Unicom GmbH, Kassel, an KBr-Preßlingen. Die Raman-Spektren der Cäsiumsalze wurden mit einem FT-Raman-Spektrometer IFS66 der Fa. Bruker, Karlsruhe, an KBr-Preßlingen bei Anregung mit einem Nd: YAG-Laser der Wellenlänge 1064 nm registriert. Die Meßtemperatur betrug jeweils 10 K.

Ergebnisse und Diskussion

Beschreibung der Kristallstrukturen

In Abb. 1 ist die Struktur des Komplexanions $[OsCl_4(acac)]^-$ mit der Numerierung der Atome wie-

Abb. 1 Molekülstruktur von $[OsCl_4(acac)]^-$ mit Atombezeichnungen und 50% Schwingungsellipsoiden (H-Atome als Kugeln gleicher Größe)

dergegeben. Auch bei den nicht abgebildeten Molekülionen der Bromo- und Iodoverbindung befinden sich alle Atome auf allgemeinen Lagen, und es gilt die gleiche Zählung. In den untereinander sehr ähnlichen Komplexanionen bilden die vertikale X-Os-X-Achse und die beiden dazu senkrechten unsymmetrisch koordinierten O'-Os-X'-Achsen ein verzerrtes Oktaedergerüst. Den in der Reihe O < CI < Br < Izunehmenden *trans*-Einfluß erkennt man an der Aufweitung der Os-O'-Abstände von 2,012 (CI), 2,019 (Br) auf 2,05 Å (I). Dementsprechend sind die mittleren Bindungslängen Os-X' bezüglich der sym-

Abb. 2 Stereographische Darstellungen der Elementarzellen von $(Ph_4P)[OsCl_4(acac)]$ (1), $(Ph_4P)[OsBr_4(acac)]$ (2) und $(Ph_4P)[OsI_4(acac)]$ (3)

(1) IR	Ra	(2) IR	Ra	(3) IR	Ra	Zuordnung
3000		2996)		
2972		2969		Į		$\nu(CH)$
2918		2915		2918		
2848		2846		2846		
1541	1533	1536	1533	1540	1541	$v(CO') + \delta(CCC) + v(CC)$
1524	1515	1524	1516	1525	1532	$\delta(\text{CCH}) + \nu(\text{CC})$
1410		1409		1418	1411	$\delta_{ m as}(m CH_3)$
1362	1365	1360	1362	1358		$\delta_{ m s}(m CH_3)$
			1343	1322	1329	v(CO') + v(CC)
1309		1308	1316			v(CO') + v(CC)
1287	1288	1285	1285	1281	1283	$\nu(\text{CCH}_3) + \nu(\text{CC})$
1200		1198		1196		$\nu(\text{CCH}_3) + \delta(\text{CCH})$
1190		1189				$\nu(\text{CCH}_3) + \delta(\text{CCH})$
1034		1033		1033		
1020		1021		1020		$\rho(CH_3)$
1009		1010		1010		
945		939	948	939	942	$\nu(CO') + \nu(CC) + \nu(CCH_3)$
939			937			$v(CO') + v(CC) + v(CCH_3)$
800		807	<i>.</i>	812		$\pi(CH)$
688	687	685	684	677	683	$\nu(\text{OsO'}) + \nu(\text{CCH}_3) + \delta(\text{O'CC})$
649		649	648	649	650	$\pi(\text{CCH}_3) + \tau(\text{O'CCC})$
615	<i>c.c.</i> 0	610		602	602	v(OsO') + v(CC) + v(CO')
144	553	4.64	1/2		552	$\pi(CH_3CC(O'))$
466	470	461	463	451	453	$v(\text{OsO}) + v(\text{CCH}_3) + v(\text{CO})$
428	247	425		423		$\partial(\text{CCCH}_3) + v(\text{CO}) + v(\text{OsO})$
340 225	347					$v_{s}(OsCl_{2})$
323 209	329					$v_{as}(OsCl_2)$
308	200					$v_{as}(CIOsCI)$
202	209	202	202	200		$v_{\rm s}({\rm COSCI})$
293	290	292	295	280		$V(OSO) + \partial(OCCH_3)$
247	201		252	262	260)	
247	248		232	202	200	Pingdeformationen
241	230			236	238	Ringdeformationen
		246	243	220	,	ν (OsBr'a)
		218	245			$v_{as}(OSDI_2)$ v (BrOsBr)
		210	215			$v_{as}(D(SBr'_{as}))$
		189	190			$v_{s}(OBR_{2})$
172	174	200	170			(210021)
166	161					$\delta(OsCb), \delta(ClOsCb)$
156	149					0(0002);0(010001)
137						
				176		$v_{as}(OsI_2)$
				170	172	$v_{s}(OsI_{2})$
				135	138	$v(OsI_2)$
			172			× -/
			144			
	128					
	111		_			
		114	ļ			$\delta(\text{OsBr}_2'), \delta(\text{BrOsBr})$
		109	110 J			
		89	89		87	
76		78				$\pi(\text{CCH}_3) + \rho(\text{O'CCC})$
				70	,	$\delta(OsI_2)$

Tabelle 4 Zuordnung der bei 10 K gemessenen IR- und Raman-Frequenzen $[cm^{-1}]$ von Cs $[OsX_4(acac)]$, X = Cl(1), X = Br(2), X = I(3), Cl' und Br' in *trans*-Position zu O'

Abb. 3 Schwingungsspektren von Cs[OsX₄(acac)], X=Cl (1), Br (2), I (3) (10 K, $\lambda_0 = 1064$ nm)

metrischen X-Os-X-Achse etwas kürzer. Eine weitere Verringerung der Os-X'-Abstände um 0,3-0,6% ist bei den verwandten Oxalatokomplexen $[OsX_4ox]^{2-}$ gefunden worden [13]. In der X-Os-X-Achse liegt der durchschnittliche Os-Cl-Abstand mit 2,316 Å zwischen dem von trans-[OsCl₂(acac)₂] mit 2,314 Å [6] und $[HP(C_6H_5)_3]_2[OsCl_6]$ mit 2,335 Å [12], der durchschnittliche Os-Br-Abstand mit 2,473 Å zwischen dem von trans-[OsBr₂(acac)₂] mit 2,459 Å [6] und $[HP(C_6H_5)_3]_2[OsBr_6]$ mit 2,490 Å [12]. Aus sterischen Gründen sind alle Winkel zwischen benachbarten Halogenliganden größer, alle X-Os-O'-Winkel kleiner als 90°. Die vertikale Achse zeigt mit zunehmender Größe der Halogene eine zunehmende Winkelung in Richtung zum acac-Liganden. Der O'-Os-O'-Winkel ist geringfügig größer als 90°, der Chelatring annähernd aber nicht völlig eben. Die Bindungslängen innerhalb der acac-Liganden entsprechen denen in cisund trans-[OsX₂(acac)₂], die in [6] ausführlich diskutiert worden sind. Die Stereopaare der drei (Ph₄P)-Salze zeigt Abb. 2. Die Kationen weisen bezüglich der Bindungslängen und Winkel keine Besonderheiten auf und sind mit ihren Lageparametern und äquivalenten isotropen Auslenkungsparametern im Hinterlegungsmaterial erfaßt.

Schwingungsspektren

Abb. 3 zeigt die bei 10 K an den Cäsiumsalzen registrierten IR- und Raman-Spektren. Oberhalb von 700 cm⁻¹ treten nur Schwingungen innerhalb des acac-Liganden auf, so daß die Spektren hier praktisch gleich und daher für diesen Bereich repräsentativ nur für Cs[OsCl₄(acac)] abgebildet sind. Die relativ niedrige Lage der Bande um 1540 cm⁻¹ mit überwiegendem Charakter einer CO-Valenzschwingung ist typisch für über beide O-Atome chelatartig koordinierte Acetylacetonatanionen. Charakteristische Unterschiede beobachtet man unterhalb 700 cm⁻¹ für die OsO⁻-, OsX'- und OsX-Valenz- und Deformationsschwingungen. Der in der Reihe Cl < Br < I zunehmende trans-Einfluß hat die langwellige Verschiebung der IR-Schwingungen mit großem OsO'-Anteil zur Folge. auf $Cs[OsCl_4(acac)]$ Sie beträgt bezogen für Cs[OsBr₄(acac)] im Mittel 0,7% (maximal 1,07%), für $Cs[OsI_4(acac)]$ im Mittel 2,2% (maximal 3,2%). In Tab. 4 sind alle gemessenen Schwingungsfrequenzen zusammengestellt und entsprechend den für verwandte Verbindungen vorliegenden Normalkoordinatenanalysen zugeordnet worden [6, 13-18].

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die Unterstützung mit Sachmitteln.

Literatur

- [1] J. P. Fackler, Progr. Inorg. Chem. 1966, 7, 361.
- [2] R. C. Mehrotra, R. Bohra, D. P. Gaur, Metal β-Diketonates and Allied Derivatives, Academic Press, London, New York, San Francisco, 1978.
- [3] G. Schätzel, W. Preetz, Z. Naturforsch. 1976, 31 b, 749.
- [4] U. Mazzi, E. Roncari, G. Bandoli, *Transition Met. Chem.* 1979, 4, 151.
- [5] B. C. Paul, R. K. Poddar, Transition Met. Chem. 1993, 18, 96.
- [6] K. Dallmann, W. Preetz, Z. Naturforsch. 1997, 52 b, 965.
- [7] C. K. Fair, An interactive Intelligent System for Crystal Structure Analysis, Enraf-Nonius, Delft, Niederlande, 1990.
- [8] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *SIR92, Program for Crystal Structure Solution*, Universität Bari 1992.
- [9] G. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, Universität Göttingen 1993.
- [10] C. K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, TN., USA, 1976.
- [11] K. Brandenburg, Diamond, Version 1.1., 1996.
- [12] P. D. Robinson, C. C. Hinckley, M. Matusz, P. A. Kibala, Acta Crystallogr. 1988, C44, 619.
- [13] W. Preetz, A. Krull, Z. Naturforsch. 1997, 52 b, 315.
- [14] G. T. Behnke, Nakamoto, Inorg. Chem. 1967, 6, 433.
- [15] S. Pinchas, B. L. Silver, I. Laulicht, J. Chem. Phys. 1967, 46, 1506.
- [16] M. Mikami, I. Nakagawa, T. Shimanouchi, Spectrochim. Acta 1967, 23 A, 1037.
- [17] H. Junge, H. Musso, Spectrochim. Acta 1968, 24A, 1219.
- [18] T. Schönherr, U. Rosellen, H.-H. Schmidtke, Spectrochim. Acta 1993, 49 A, 357.