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Biodegradation pathways of taxol in cultured cells of
Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942,
Marchantia polymorpha, Nicotiana tabacum, and Glycine max
were investigated using a water-soluble taxol derivative, 7-ace-
tyltaxol-200-yl glucoside, as the substrate. Although cyanobacte-
ria, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC
7942, and a lower plant, M. polymorpha, catalyzed the epimeri-
zation at 7-position of taxol skeleton, no epimerization occurred
with higher plants, N. tabacum and G. max. On the other hand,
Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, M.
polymorpha, and N. tabacum catalyzed hydrolysis at 13-position
of taxol to give baccatin III and 10-deacetyl baccatin III. Both
cyanobacteria cells also deacetylated 7-epi-baccatin III at its
10-position. M. polymorpha and G. max deacetylated at 10-
position of taxol.

Taxol, a diterpenoid from the Pacific Yew Taxus brevifiolia,
is one of the most important anticancer drugs, and is used for
treatment of ovarian, breast, and various other cancers world-
wide.1 From the pharmacological point of view, the pathway
of the biological degradation of taxol is interesting and impor-
tant. However, little attention has been paid to the biological
degradation of taxol by cultured cells, because it is hardly dis-
solved in aqueous solution. Use of an ester-linked taxol–sugar
conjugate, which is higher water-soluble than taxol and would
be hydrolyzed by hydrolytic enzymes in the living cells, is a
new approach to biodegradation research of taxol. Additionally,
taxol–sugar conjugates have attracted much attention clinically,
because of their potential to be useful prodrugs.2 The biodegra-
dation pathway of taxol–sugar conjugates is also important.
Herein, we report the biodegradation of taxol with cultured cells
of Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942,
Marchantia polymorpha, Nicotiana tabacum, and Glycine
max using a water-soluble taxol derivative, 7-acetyltaxol-200-yl
glucoside, as the substrate.

Biotransformation of 7-acetyltaxol-200-yl glucoside (1)3 was
examined by incubating 1 with each cell cultures.4 Yield of the
products was calculated on the basis of the peak area from HPLC
using the calibration curves prepared by the HPLC analyses of
each compounds. The structures of the products were identified
based on their HRFABMS, 1H and 13CNMR, H–H COSY,
C–H COSY, and HMBC data (Figure 1).

Biotransformation of 1 with cultured Synechocystis sp. PCC
6803 cells gave taxol (2, 7%), 7-epi-taxol (4, 2%),5 the cytotox-
icity of which is only slightly less than that of taxol,6 baccatin III

(5, 33%), 10-deacetylbaccatin III (6, 16%), 7-epi-baccatin III (7,
27%), and 10-deacetyl-7-epi-baccatin III (8, 10%) (Table 1). No
products which retained the (glucosyloxy)acetyl (GOA) group at
their 7-position were detected. These suggest that the GOA
group of 1 was readily hydrolyzed to give taxol (2), and that
other hydrolysis and epimerization products 4–8 were produced
by the action of Synechocystis sp. PCC 6803 cells on 2. Feeding
experiment of 7-epi-taxol (4) or baccatin III (5) established that
7-epi-baccatin III (7) was produced from both 4 and 5. These
findings revealed that Synechocystis sp. PCC 6803 hydrolyzed
10-acetoxy group of baccatin III and 7-epi-baccatin III, and
13-TSC (taxol side chain) group of taxol skeleton, and that epi-
merization of taxol and baccatin III occurred at their 7-positions.
No formation of ketone intermediates was found during the
incubation period. Also Synechococcus sp. PCC 7942 converted
1 into 2 (31%), 4 (24%), 5 (23%), 6 (4%), 7 (15%), and
8 (2%).

In contrast, biotransformation of 1 by cultured cells of liver-
wort M. polymorpha or higher plants, N. tabacum and G. max,
was examined. Biotransformation was performed under illumi-
nation (4000 lux, M. polymorpha) or in the dark (N. tabacum

1: R1 = GOAO, R2 = H, R3 = TSC, R4 = Ac; 2: R1 = OH, R2 = H, R3 = TSC, R4 = Ac;
3: R1 = OH, R2,R4 = H, R3 = TSC; 4: R1 = H, R2 = OH, R3 = TSC, R4 = Ac;
5: R1 = OH, R2,R3 = H, R4 = Ac; 6: R1 = OH, R2,R3,R4 = H;
7: R1,R3 = H, R2 = OH, R4 = Ac; 8: R1,R3,R4 = H, R2 = OH.
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Figure 1. Structures of substrate 1 and biotransformation prod-
ucts 2–8.

Table 1. Biotransformation of 7-acetyltaxol-200-yl glucoside (1)
by cultured cells

Cell line Products/%

2 3 4 5 6 7 8

Synechocystis sp. PCC 6803 7 0 2 33 16 27 10
Synechococcus sp. PCC 7942 31 0 24 23 4 15 2
M. polymorpha 17 10 8 2 8 0 0
N. tabacum 25 0 0 11 10 0 0
G. max 16 6 0 0 0 0 0
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andG. max) in freshly prepared medium (MSK-2 medium forM.
polymorpha and MS medium for N. tabacum and G. max). After
the 7 day-incubation of 1with culturedM. polymorpha cells, five
products 2 (17%), 3 (10%), 4 (8%), 5 (2%), and 6 (8%) were iso-
lated. Feeding experiment of 10-deacetyltaxol (3) or baccatin III
(5) revealed that 10-deacetylbaccatin III (6) was predominantly
formed from 5 rather than 3. On the other hand, cultured
N. tabacum cells converted 1 into three products 2 (25%), 5
(11%), and 6 (10%). Biotransformation of 1 with G. max
gave only two products 2 (16%) and 3 (6%). No epimerization
occurred through the transformation with both N. tabacum
and G. max. In the case of the biotransformation by these
three cell cultures, a large amount of unreacted substrate 1 was
recovered.

The results of this experiment revealed, for the first time, di-
verse biodegradation pathways of taxol in cultured cells by using
a water-soluble taxol derivative, 7-acetyltaxol-200-yl glucoside,
as the substrate. Two cyanobacteria, Synechocystis sp. PCC
6803 and Synechococcus sp. PCC 7942, were able to catalyze
hydrolysis at 13-position of taxol, deacetylation at 10-position
of baccatin III and 7-epi-baccatin III, and epimerization at
7-position of taxol and baccatin III. Liverwort M. polymorpha
could catalyze hydrolysis at 13-position of taxol, deacetylation
at 10-position of taxol and baccatin III, and epimerization at
7-position of taxol. On the other hand, higher plants, N. tabacum
and G. max, could not catalyze epimerization of taxol skeleton.
Hydrolysis occurred at 13-position of taxol (N. tabacum),
and 10-position of taxol (G. max) or baccatin III (N. tabacum).
Further studies on the enzymes participating in the hydrolysis
and epimerization of these taxoid compounds are now in
progress.
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