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Enables Mild, Homogeneous C–N Cross-Coupling 
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Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States   

 

ABSTRACT: Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues 

associated with heterogeneous reaction conditions. Still, homogeneous C–N cross-coupling approaches cannot yet employ bases as 

weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, 

despite some advantages of such systems over analogous Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) 

precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines 

using triethylamine (TEA) as base. The method is tolerant of sterically-congested coupling partners, as well as those bearing base- 

and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the 

electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the 

resultant Ni(II)–amido complex. Moreover, we determined that precluding Lewis acid-base complexation between the Ni catalyst 

and the base, due to steric factors, is important for avoiding catalyst inhibition.  

INTRODUCTION 

The development of metal-catalyzed carbon–nitrogen 

(C–N) bond-forming reactions has had a transformative impact 

on the synthesis of pharmaceuticals, agrochemicals, organic 

materials and fine chemicals.1 Catalysts based on palladium and 

copper have been broadly employed to facilitate the cross-

coupling of aryl (pseudo)halides with amine nucleophiles, but 

these reactions have traditionally required the addition of 

inorganic bases.2 In recent years, however, there has been 

increased interest in the use of soluble organic bases in place of 

commonly used inorganic reagents for cross-coupling reactions 

generally.3 These single-phase reactions are easily transferrable 

to high-throughput reaction screening settings, continuous flow 

chemistry, and microfluidic screening platforms.4 Moreover, 

the use of weak organic bases avoids functional group 

incompatibility issues associated with nucleophilic alkoxide 

and metal amide bases, especially in combination with amines.5 

Previously, several phosphazene,6 guanidine,6 amidine,7 and 

alkyl amine8 bases have been shown to facilitate Pd- and Cu-

catalyzed9 C–N bond formation. The weakest among these, 

alkyl amine bases stand out as an attractive class of reagents, 

particularly since their steric properties, nucleophilicity, and 

basicity can be precisely tuned.10 Furthermore, many 

trialkylamine reagents, including triethylamine (TEA), are 

produced on large scale directly from alcohols and ammonia,11 

making them as inexpensive as common organic solvents.  

Previously, our research group demonstrated that a 

bulky, electron-deficient Pd catalyst can facilitate C–N bond 

formation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-

ene (DBU).12 Mechanistic investigations13 and in-depth reaction 

optimization studies14  suggested that other organic bases, 

including TEA and diisopropylethylamine (DIPEA, Hünig’s 

base) could facilitate the cross-coupling of aryl triflates and 

anilines, albeit with  

 

 

Figure 1. (A) Inorganic bases used in traditional Pd-, Ni-, and 

Cu-catalyzed C–N cross-coupling methods. (B) Amidine, 

guanidine, and phosphazene bases used in Pd-catalyzed 

amination and Ni-catalyzed photo- or electrocatalysis. (C) 

Nickel-catalyzed C–N cross coupling of aryl triflates and 

amines facilitated by triethylamine. 
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slower reaction rates. We considered whether an electron-

deficient catalyst based on nickel might allow for these very 

mild and inexpensive trialkylamine bases to be used more 

effectively in C–N cross-coupling.  

The use of Ni was of particular interest to us because 

the use of weak, soluble organic bases in Ni-catalyzed aryl 

amination has not yet been systematically explored. Since the 

first reports of Ni-catalyzed amination,15 the transformation has 

been significantly improved in terms of scope and efficiency 

through rational ligand design,16 the development of 

photocatalytic variants,17 and using electrochemistry.18 While 

these efforts have greatly expanded the number and type of 

electrophiles19 and nucleophiles20 that can be cross-coupled 

under practical conditions, the majority of Ni-catalyzed 

methods remain predominantly reliant on inorganic bases such 

as metal tert-butoxides and phosphates to facilitate C–N 

formation (Figure 1A). Many useful solutions that are 

compatible with organic bases take advantage of energy input 

through either photo- or electrocatalysis. These protocols are 

primarily limited to the coupling of strongly coordinating 

nucleophiles such as aliphatic amines (Figure 1, B).17,18 

Providing a complementary approach, we herein describe the 

rational discovery of a Ni (pre)catalyst capable of effecting 

arylation of weakly binding aniline nucleophiles using a 

trialkylamine base. 

 

RESULTS AND DISCUSSION 

Our studies began with an evaluation of commercially 

available bidentate phosphine ligands and organic bases in a 

model transformation, the Ni-catalyzed cross-coupling of 

phenyl triflate (1) and aniline. Selected results from these 

studies are summarized in Table 1 (see Supporting Information 

for further experimental details). When we used Ni(COD)2 (4 

mol%) and 1,1′-bis(diphenylphosphino)ferrocene (L1, DPPF) 

as precatalysts and triethylamine (TEA) as base, a 6% yield of 

the desired product was observed, with unreacted 1 making up 

the remainder of the mass balance. As in our previous work on 

Pd-catalyzed amination, we predicted that a more electron-

deficient metal center would better facilitate the deprotonation 

of an amine-bound Ni complex by a base as weak as TEA.12a 

Accordingly, we prepared several DPPF derivatives bearing 

electron-withdrawing trifluoromethyl (–CF3) substituents on 

the P-aryl groups.21 Indeed, use of the fourfold 

trifluoromethylated ligand L2 ([CF3]4-DPPF) resulted in 32% 

yield of the desired product. The yield was further increased to 

94% by employing the further trifluoromethylated ligand L3 

([CF3]8-DPPF). A Ni-based catalyst bearing this ligand had 

previously been shown to facilitate the cross-coupling of aryl 

chlorides with indoles and primary aliphatic amines using 

NaOt-Bu as the base. 22  

The ferrocene backbone was also found to be 

important to the success of these reactions: other ligands 

containing similar trifluoromethylated aryl groups, such a 1,2-

bis(diphenylphosphino)benzene (DPPBz) derivative (L5, 

[CF3]8-DPPBz) were less effective in promoting the C–N 

coupling reaction. TEA, besides being advantageous in terms of 

cost and mildness, was also uniquely efficacious as a base. 

Several stronger bases that had been reported to facilitate Pd-

catalyzed amination reactions, including DBU and 7-methyl-

1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), were essentially 

unable to promote our Ni-catalyzed transformation. Other 

alkylamine bases, such as 1,4-diazabicyclo[2.2.2]octane 

(DABCO) and DIPEA, could be used instead of TEA, but with 

lower reaction yields.  
 

 

 

Table 1. Comparison of ligands and bases in the Ni-catalyzed 

cross-coupling of phenyl triflate (1) and aniline. 

 

 

 

 

Figure 2. Synthesis and crystal structure of an L3-bound 

methallyl triflate–nickel oxidative addition complex. 

Thermal ellipsoids are shown at 50% probability. Hydrogen 

atoms are omitted for clarity. 

aGC yields were determined relative to hexamethylbenzene 

internal standard and are reported as a single run. Reaction 

conditions: phenyl triflate (0.20 mmol), aniline (0.24 mmol), 

base (0.40 mmol), Ni(COD)2 (0.016 mmol, 4 mol% Ni), 

ligand (0.016 mmol, 4 mol%), and 2-MeTHF (0.40 mL, 0.50 

M). 2-MeTHF =  2-methyltetrahydrofuran.  
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Table 2. Amination of Aryl Triflates using P1a 

 

aIsolated yields are reported as the average of two runs. Unless noted, standard reaction conditions: aryl triflate (1.0 mmol), aryl 

amine (1.2 mmol), triethylamine (2.0 mmol), P1 (0.04 mmol, 4% Ni), 2-MeTHF (2.0 mL, 0.5 M), 100 °C for 16 h. bSingle reaction 

performed without stirring. c5.0 mmol scale reaction using 2.0% Ni. d1.5 equiv of aryl amine was used. 

 

 

Although Ni(COD)2 is a convenient source of Ni(0) for 

reaction discovery and mechanistic studies, the complex is highly 

sensitive to air and moisture, generally requiring the use of an inert 

atmosphere glovebox to handle.23 To alleviate the associated 

operational complications, we aimed to develop an air-stable Ni 

precatalyst bearing L3, the most effective ligand.24 Our initial 

efforts focused on the use of σ-aryl “oxidative addition” (OA) 

complexes of aryl bromides and chlorides.25 However, OA 

complexes bearing L3 and various aryl groups,26 including o-tolyl 

and mesityl, were unable to facilitate the reaction, even when 

activated with reducing additives including phenylboronic acid and 

activated olefins. We hypothesized that the presence of strongly 

associating halide anions inhibits C–N coupling by outcompeting 

aniline for binding to Ni (see below for further mechanistic 

discussion).27 Predicated on this lack of reactivity, we sought to 

prepare OA complexes bearing non-coordinating triflate anions.28 

However, due to the propensity of coordinatively unsaturated Ni(II) 

complexes to undergo bimetallic decomposition pathways, our 

attempts to isolate Ni(II) σ-aryl complexes bearing triflate anions 

were not successful. Based on the work of Nolan29 and Hazari,30 we 

hypothesized that the introduction of an η3-allyl group would 

saturate the Ni coordination sphere without introducing new 

strongly-coordinating ligands such as halides. Combining a 

commercially available methallyl nickel chloride dimer with L3 in 

the presence of THF led to the formation of L3-Ni(Cl)(η3-

methallyl).31 This complex was not purified, but immediately 

treated with trimethylsilyl triflate (TMS–OTf), upon which a 

methallyl nickel triflate complex was rapidly formed.32 The 
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Figure 3. The proposed catalytic cycle for the nickel-

catalyzed cross-coupling of aryl halides with anilines: I, 

activation of P1; II, oxidative addition of an aryl triflate; III, 

aniline binding to OA complex; IV, deprotonation of an 

amine-bound OA complex; V, reductive elimination of an 

amido complex.  
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structure of this complex (P1) was unambiguously characterized using X-ray diffraction (Figure 2). Under optimized reaction 

conditions, this precatalyst (P1) facilitated the C–N coupling reaction and provided the desired product in  

  

98% yield in 2 h. Analysis of the crude reaction mixture 

(GC/MS) showed that N-methallyl aniline was formed during 

the reaction, consistent with activation of P1 through outer-

sphere nucleophilic attack by aniline at the methallyl ligand.33   

 

Using this new precatalyst, we explored the scope of 

the cross-coupling reaction by testing a variety of aryl triflate 

electrophiles and amine nucleophiles. In contrast to some Pd-

catalyzed amination procedures, in particular those facilitated 

by soluble organic bases, this methodology is tolerant of 

sterically encumbered coupling partners. Specifically, aryl 

triflates and anilines bearing bulky ortho-substituents, such as 

trifluoromethyl (2b), benzyl (2h), morpholino (2m) and phenyl 

(2n), underwent coupling in high yields. In contrast to 

traditional Ni-catalyzed amination protocols that work well for 

strongly coordinating alkylamine nucleophiles, the current 

method is especially effective for weakly coordinating anilines, 

including those bearing cyano (2c), trifluoromethoxy (2q), and 

carbonyl substituents (2a, 2j). Additionally, secondary aryl 

amines, including indoline (2g) and a 3-substituted indole (2p) 

could be arylated in high yields.22 We note, however, that 

aliphatic amines do not react under these conditions, likely due 

to their decreased acidity compared to anilines.34 Coupling 

partners containing heterocycles, including pyridines (2a, 2r), a 

quinoline (2e), a thiophene (2c), and a pyrrole (2i) were 

tolerated well. Several electrophilic functional groups, 

including methyl esters (2a-c, 2h, 2n) and nitriles (2c, 2g, 2p), 

remained intact under the mildly basic reaction conditions. An 

α,ß-unsaturated ester (2j), and a coumarin derivative (2k) could 

be cross-coupled under these reaction conditions, despite their 

potential to react with anilines in metal-catalyzed aza-Michael 

reactions.35 Moreover, substrates bearing redox-sensitive 

functional groups, including an anthraquinone (2l) are 

tolerated.36 Finally, because reproducibility issues associated 

with stirring rate can occur in amination protocols featuring 

inorganic bases37 or electric potentials,18b we wished to 

demonstrate that this method is not dependent on mixing 

efficiency. To show this, we prepared 2f without using a stir bar 

or external agitation. The desired product was obtained in 93% 

yield, which is in line with that obtained when magnetic stirring 

Figure 4. Computed energy profiles for the Ni-catalyzed cross-coupling of 1 and aniline. Gibbs free energy values calculated with 

M06/6-311+G(d,p)-SDD(Ni,Fe)//B3LYP/6-31G(d)-SDD(Ni,Fe).  
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was used. This result suggests that these single-phase reactions 

are less prone to reproducibility issues when varied stirring 

techniques are used. 

 

Table 3. Ligand effects on deprotonation and reductive 

elimination. a  

 

 

 

The proposed catalytic cycle of this Ni-catalyzed 

amination reaction is summarized in Figure 3.20b,38 First, 

activation of P1 via nucleophilic attack of the aniline at the 

methallyl group provides a L3-supported Ni(0) catalyst. Next, 

Ni undergoes oxidative insertion into the aryl triflate. Then, the 

amine binds to the Lewis acidic Ni(II) metal center, acidifying 

its hydrogens for deprotonation by TEA. Finally, reductive 

elimination from resultant Ni(II)–amido complex affords the 

desired product and regenerates the Ni(0) catalyst. Although 

this proposed mechanism is directly analogous to that of other 

Ni- and Pd- catalyzed C–N cross-coupling reactions,13 it was 

important to determine how the highly fluorinated ligand L3 

might affect the elementary steps, and importantly, how it is 

able to facilitate the catalytic transformation using such a weak 

base (TEA).  

 

Using density functional theory (DFT) calculations 

we obtained a model of the catalytic mechanism using phenyl 

triflate (1) and aniline as substrates. The energy profile of this 

mechanism is illustrated in Figure 4. The binding of phenyl 

triflate to L3-Ni(0) (complex I) was found to be exergonic by 

10.1 kcal/mol (II). From this π-complex, oxidative addition 

through an SNAr-type mechanism39 was predicted to be 

extremely rapid, with a barrier of only 9.0 kcal/mol (II-TS), and 

thermodynamically favorable, releasing 26.5 kcal/mol of free 

energy (III). In the ground state of the resultant Ni(II) complex 

III, the triflate anion was bound to Ni, although its dissociation 

appeared possible under the reaction conditions (+16.9 

kcal/mol, IV). Regardless, the displacement of the triflate 

ligand by aniline is only slightly endergonic (+7.5 kcal/mol, V). 

Interestingly, deprotonation of this cationic Ni–aniline complex 

by TEA was predicted to be slightly favorable in free energy (-

0.7 kcal/mol, VI). Reductive elimination from this amido 

complex through a three-membered transition state (+16.4 

kcal/mol, VI-TS) would then provide the diphenylamine 

product.   

 Considering our original hypothesis that the electron-

deficiency of the ligand had a favorable influence on the 

thermodynamics of the deprotonation step, we more closely 

examined the effect of varying the phosphine ligand on this 

process. Table 3 shows the pKa of several amine-bound Ni(II) 

complexes analogous to Vas well as triethylammonium triflate 

and aniline for comparison purposes. The free energy change 

associated with the proton transfer step can be calculated on the 

basis of pKa differences. The deprotonation of weakly acidic 

aniline (pKa = 28) by triethylamine (pKaH+ = 12.5)40 is 

thermodynamically highly disfavored. However, association of 

the aniline to cationic Ni(II) results in dramatic acidification, to 

the extent of roughly 13 pKa units in THF when the ligand is 

DPPF (L1). With the addition of electron-withdrawing groups 

on the ligand, the amine is further acidified. Indeed, in the 

complex with L3, the aniline is sufficiently activated that it is 

predicted to be more acidic (pKa = 12.2) than triethylammonium 

triflate. Thus, deprotonation by triethylamine is in this case 

slightly thermodynamically favorable. 

We also found that the barrier to reductive elimination 

is also somewhat affected by the electronic properties of the 

phosphine ligand: as the number of trifluoromethyl substituents 

on the catalyst increase, the reductive elimination is 

increasingly facile. For comparison, we also evaluated an 

analogue derived of L3 from DPPBz (L4). With the L4-ligated 

catalyst, the free energy of deprotonation and barrier to 

reductive elimination were both higher (+1.9 kcal/mol and +1.5 

kcal/mol, respectively) than from the L3-bound complexes. 
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Thus, not only the identity of the P-aryl groups, but the 

backbone structure of the chelating ligand significantly 

influences these steps. The combined barrier from 

deprotonation–reductive elimination sequence is also shown in 

Table 3. The net activation energies are qualitatively consistent 

with the experimentally determined yields using these catalysts. 

Finally, our model also explained the superior 

performance of triethylamine compared to other organic bases, 

even those that were significantly stronger bases. Previously, in 

experimental13a and theoretical13b mechanistic studies of Pd-

catalyzed amination using DBU, we found that off-cycle 

binding of the base to Pd could have an inhibitory effect. We 

investigated the relative binding ability of TEA, DBU, and 

aniline to the cationic intermediate IV (Figure 5). As a 

reference, we had found earlier that the binding of triflate to IV 

is exergonic by 16.9 kcal/mol. Due presumably to steric 

interactions, the binding of TEA to IV is significantly 

disfavored (∆G° = +7.8 kcal/mol), in a manner similar to well-

known “frustrated” Lewis acid-base pairs.41 Accordingly, 

aniline can outcompete the base for binding (∆G° = –9.4 

kcal/mol for aniline binding to IV), and the productive reaction 

can take place. In contrast, when DBU is present, we found that 

it tightly coordinates to IV (∆G° = –20.8 kcal/mol), 

sequestering Ni in this off-cycle resting state and thus 

increasing the overall activation energy for cross-coupling. We 

believe that this effect explains the unique effectiveness of TEA 

compared to stronger, more nucleophilic organic bases.  

 

CONCLUSION 

In summary, we have developed a novel Ni(II) 

precatalyst bearing an electron-deficient DPPF-derived ligand 

(L3) that is able to facilitate the cross-coupling of aryl triflates 

with primary anilines, as well as indolines and indoles. The 

precatalyst is a rare example of a bench-stable cationic Ni(II) 

triflate complex and represents a new class of halide-free Ni 

precatalysts that might have general applicability to reactions 

currently requiring Ni(COD)2. Using DFT calculations, 

relationships between ligand structure and the energetics of the 

key deprotonation and reductive elimination steps were 

elucidated. Moreover, we determined that the unique 

effectiveness of alkylamine bases can be attributed to their 

steric bulk, which prevents unwanted binding to cationic Ni 

intermediates. We anticipate that these mechanistic insights can 

assist in the development of new Ni-catalyzed cross-coupling 

methodologies that employ soluble organic bases.  
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