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Quinolines have been synthesized in very good yields from 2-aminoarylketones and differently substi-
tuted carbonyl compounds in the presence of Yb(OTf)3 as the catalyst. The method is applicable to both
cyclic and acyclic carbonyl compounds with only slight differences in the experimental procedure.
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Quinolines represent an important group of heterocycles.
Several quinoline derivatives have been found to exert useful bio-
logical activities as anti-malarial, anti-bacterial, anti-asthmatic,
anti-hypertensive, and anti-inflammatory agents.1 In addition
quinolines are valuable synthons for the preparation of nano-and
meso-structures with enhanced electronic and photonic func-
tions.2 Because of their importance as substructures in a broad
range of natural and semisynthetic products, significant efforts
are directed to the development and construction3 of new quino-
line-based structures. Thus, the synthesis of quinolines is an
important and useful task in organic chemistry and represents a
field of research of current and growing interest. Several methods
for the synthesis of the quinoline nucleus have been reported in
the literature and among these several ‘classic’ examples in the his-
tory of organic chemistry can be cited. The Friedländer annulation,
a straightforward synthesis of the title compounds,4 is one of these
evergreen processes. This reaction is a condensation followed by a
cyclodehydration between 2-aminoarylketones and a-methylene-
ketones and it has been catalyzed by both acids and bases. For
examples, in recent years, iodine,5 Lewis acids,6 such as ZnCl2,
SnCl2, Bi(OTf)3, Y(OTf)3, AuCl3, CeCl3�7H2O, a combination of acidic
catalysts and microwave irradiation,7 ionic liquids,8 chlorotrimeth-
ylsilane,9 dodecylphosphonic acid,10 1-methylimidazolium trifluo-
roacetate11 have been proposed as promoting agents for the
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Friedländer annulation.12 Unfortunately many of these processes
suffer major or minor limitations, such as harsh reaction condi-
tions, low yields, tedious work-up procedure, low selectivity, co-
occurrence of several side reactions.5–11 Moreover in the case of
transition metal catalyzed reactions (e.g., Ce+3) there is a need of
more than stoichiometric amounts of the Lewis acids to efficiently
promote the process.

During the last two decades, rare earth metal triflates have been
found as the unique Lewis acid in that they are water tolerant reus-
able catalysts and they can effectively promote several carbon–
carbon and carbon–heteroatom bond formation reactions in high
yields.13 In continuation of our ongoing studies aimed at developing
a mild and practical protocol for the synthesis, in water or under
solvent free conditions, of useful building blocks for the synthesis
of biologically active compounds using Yb(OTf)3 as the catalyst, it
was speculated that this lanthanide salt, which was recently shown
to catalyze a wide variety of valuable and satisfactory yielding C–C
bond forming reactions13,14 might be ideal for effecting the
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Scheme 1. Yb(OTf)3 catalyzed synthesis of quinolines.
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condensation of 2-aminoacetophenones and differently cyclic and
acyclic carbonyl compounds, leading to the synthesis of differently
substituted quinolines. So, as a part of our studies aimed at
Table 1
Yb(OTf)3 promoted synthesis of quinolines
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a Yields of pure isolated products, characterized by IR, GC–MS, 1H NMR and 13C NMR.
exploring the utility of lanthanide triflate promoted reactions under
solvent free conditions, we decided to investigate the use of
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Scheme 2. Yb(OTf)3 catalyzed synthesis of naphthyridines.
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2-aminoaryl ketones and different carbonyl compounds, via the
Friedländer annulation. The use of Yb(OTf)3 to perform this kind
of process has been suggested by Muchowski and Maddox that,
however, carried out the process under harsh conditions (refluxing
toluene) providing the desired adducts in low yields.15 As a
preliminary experiment, it was used in the reaction of 2-aminoace-
tophenone (1) (2 mmol) with acetylacetone (2) (2 mmol) in the
presence of Yb(OTf)3 5 mol % under solvent free condition
(Scheme 1).

The reaction was monitored by TLC and after 45 min at room
temperature the complete conversion of the starting aromatic ami-
noketone was observed. After addition of few drops of NaOH 1 N to
precipitate Yb(III) as the corresponding hydroxide, and running a
quick work-up, consisting in dilution with H2O and extraction with
CH2Cl2, followed by purification by silica gel column chromatogra-
phy, it was possible to isolate the condensation product in a yield
of 85%. Data recorded by NMR spectroscopy and GC analysis con-
firm the structure of the desired product, namely 1-(2,4-dimethyl-
quinolin-3-yl) ethanone (3).16

Encouraged by results obtained using 2-aminoarylketone as the
substrate, we applied the same experimental conditions, to several
differently substituted a-methylene carbonyl compounds and the
corresponding quinolines were selectively obtained in good yields.
Results are summarized in Table 1.

Data reported in Table 1 show that differently linear and cyclic
a-methylene carbonyl compounds react without any significant
difference to give the corresponding quinolines ether in very good
yields ranging from 85% to 90%. Compared to the existing method-
ologies, our process is effective in avoiding the use of strong min-
eral acids, high temperatures, toxic and polluting reactants, and in
some instances more than stoichiometric loading of the catalyst.
De and Gibbs reported in 2005 that another Lewis acid belonging
to the lanthanide series, namely Y(OTf)3, was seen to effectively
provide a synthetic route to the title compounds and also they re-
ported that Yb+3 performed by far worse that Y+3 under the same
experimental conditions (e.g., use of polar protic or aprotic sol-
vents like EtOH or CH3CN). Although we obtained similar results,
herein we disclose that the use of solvent free conditions or apolar
solvents greatly enhances the catalytic efficiency of Yb(OTf)3 lead-
ing to quinolines in comparable or better yields but in shorter reac-
tion times. We can hypothesize to this aim that using EtOH or
other polar solvents led to a strong coordination of the solvent to
Yb+3 thus abolishing its catalytic capacities. This solvation effect
is completely avoided with the use of strongly apolar solvents like
CH2Cl2 thus enhancing the catalytic efficiency of our lanthanide. So
this latter topic could be regarded as a feature of novelty with re-
spect to the already reported literature in the same field. At the end
of each reaction the catalyst was recovered as previously describe-
d2a and recycled without any significant loss of its catalytic
activity.

For example, the reaction leading to compound (3) was re-
peated three additional times with the recovered Lewis acid with
yields of 84%, 82%, and 84%, respectively.

It’s noteworthy to highlight that under the same experimental
conditions inactivated ketones, like cyclohexanone do not react.

The same experimental protocol as described above was fol-
lowed using other lanthanide triflates, including Y+3 and Sc+3, or
other transition metal triflates (e.g., Bi+3) for the synthesis of com-
pound (3). Results obtained in terms of yield in the desired adducts
were in all cases worse than those provided by Yb(OTf)3 ranging
from 22% to 34%.

As a final consideration, loading of the catalyst less than 5 mol %
did not increase reaction times significantly. The same reaction
was also performed by using other metal triflates from the lantha-
nide series, but the results were worse than those obtained with
Yb(OTf)3. The reason for this discrepancy of catalytic efficiency in
the lanthanide series could be explained by the fact that Yb+3 is
the ‘hardest’ cation and thus the most oxophilic, due to its smaller
ionic radius.17

To extend the applicability of our methodology we thought also
about verifying the effectiveness of Yb(OTf)3 to activate the forma-
tion of different substituted quinoline rings from different sub-
strates and the same linear and cyclic carbonyl compounds
employed with 2-aminoacetophenone as the reactant.

The first reaction used as a model provided the use of 2-amino-
benzophenone (12) (2.0 mmol) with acetylacetone (2) (2.0 mmol)
in the presence of Yb(OTf)3 5 mol % under solvent free conditions
(Table 1).

Also in this case the desired product (13) was obtained in a very
good yield of 90% after usual work-up.

On the basis of the above result, other structurally different car-
bonyl compounds were converted into quinolines using Yb(OTf)3

in satisfactory yields ranging from 75% to 90%.
Finally, in order to generalize the process and verify its applica-

bility to aminoarylketones containing a heterocycle, we used as the
substrate 2-aminopyridine carboxaldehyde (18) that was con-
densed with cyclopentanone (6).

The reaction after 1 h showed complete conversion of the start-
ing products in the corresponding adduct condensation (19), the
structure of which was determined as described above, in quanti-
tative yield (Scheme 2).

It is noteworthy that this latter result allowed us to have access
also to the naphthyridine nucleus, another important moiety con-
tained in several biologically active compounds,18 by the same
reaction protocol.

As conclusion, in this manuscript we have demonstrated
that 2-aminoarylketones, and differently substituted carbonyl
compounds undergo an efficient condensation reaction under the
catalysis of Yb(OTf)3 hydrate yielding quinoline and naphthyridine
derivatives .The simple work-up procedure, mild reaction condi-
tions, satisfactory to very good yields make our methodology a
valid and alternative contribution to the existing processes in the
field of the quinoline synthesis.

Further investigation into the scope and other applications of
Yb(OTf)3 promoted reactions are now in progress in our laborato-
ries and will be reported in due course.
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