Synthesis of Novel Functionalized Derivatives of 5-Nitro-3,4-dihydropyrimidin-2(1*H*)-one by the Cyclocondensation of 1-Chlorobenzyl Isocyanates with *N*,S- and *N*,*N*-Nitroketeneacetals

Volodymyr A. Sukach,^a Andriy V. Bol'but,^a Alexander Yu. Petin,^b Mykhaylo V. Vovk*^a

^a Institute of Organic Chemistry National Academy of Science of Ukraine, Murmans'ka 5, 02094 Kiev, Ukraine

^b Research and Development Center for Chemistry and Biology, National Taras Shevchenko University, Volodymyrs'ka 62, 01033 Kiev, Ukraine

Received 7 September 2006; revised 14 December 2006

Abstract: The cyclocondensation of 1-chlorobenzyl isocyanates with *S*,*N*- and *N*,*N*-nitroketeneacetals has been employed to synthesize hitherto-unknown 6-methylthio-5-nitro-3,4-dihydropyrimidin-2(1*H*)-ones, 8-nitro-2,3,6,7-tetrahydroimidazo[1,2-c]pyrimidin-5(1*H*)-ones and 9-nitro-1,2,3,4,7,8-hexahydro-6*H*-pyrimido[1,6-a]pyrimidin-6(1*H*)-ones. Substitution of the methylthio group in 6-methylthio-5-nitro-3,4-dihydropyrimidin-2(1*H*)-ones, which exist in tautomeric equilibrium with 4-imino-5-nitro-3,4,5,6-tetrahydropyrimidin-2(1*H*)-ones. The compounds obtained, if boiled in dioxane in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), eliminate the nitro groups to give substituted 4-imino-3,4-dihydropyrimidin-2(1*H*)-ones.

Key words: heterocyclization, tautomerism, 1-chlorobenzyl isocyanates, *S*,*N*- and *N*,*N*-nitroketeneacetals, 3,4-dihydropyrimidones

The chemistry of 3,4-dihydropyrimidine (DHPM) derivatives, heterocyclic systems of the general formula **1** (Figure 1), has been under vigorous development over the past two decades.¹ Compounds of this class are remarkable for their diverse biological activity and the scaffold represented by structure **1** is hence of paramount importance in medicinal and combinatorial chemistry.² The DHPM nucleus is also contained in a number of biologically significant natural products as, for instance, in batzelladine alkaloids and saxitoxin.³

Classical synthetic access to DHPMs **1** is based on the Biginelli reaction,⁴ which has recently been notably developed through the use of new, efficient Lewis acid catalysts and by applying microwave exposure as well as solid-phase and fluorine-phase strategies.⁵ Modified ap-

SYNTHESIS 2007, No. 6, pp 0835–0844 Advanced online publication: 13.02.2007 DOI: 10.1055/s-2007-965933; Art ID: P10906SS © Georg Thieme Verlag Stuttgart · New York proaches to DHPM synthesis, for example those proposed by Atwald and Shutalev,⁶ have also been reported. The condensed DHPM nucleus of the alkaloids batzelladines B and D was constructed using the condensation between acetoacetic ester and a complex derivative of N- α -hydroxyalkyl urea;⁷ in a more recent example, vinyl carbodiimides were cycloadded to chiral cyclic imines.⁸ To obtain partially hydrogenated derivatives of pyrrolo[1,2c]pyrimidine, constituting the heterocyclic system of saxitoxin, Kishi suggested the condensation of 2-carbethoxymethylidenepyrrolidine with isocyanic acid and acetaldehyde.⁹

In contrast to the developments summarized above, the existing literature offers only scant evidence of 6-alkoxy-, 6-alkylthio-, and 6-amino-substituted DHPMs. Their condensed analogues, partially hydrogenated oxazolo(thiazolo)pyrimidines, result from the cycloaddition of alkenyloxazolines(thiazolines) to aryl and arylsulfonyl isocyanates.¹⁰ The first representatives of 6-amino-3,4-di-hydropyrimidin-2(1*H*)-ones were synthesized principally following the Biginelli reaction, with the difference being that malonodinitrile or cyanoacetic acid was used instead of acetoacetic ester.¹¹ It is only very recently that the derivatives of 6-ethoxy- and 6-thiocarbamido-3,4-dihydropyrimidin-2(1*H*)-one have been obtained.¹²

Our previous studies on the reaction of 1-chloroalkyl isocyanates with C,N-, C,O- and C,S binucleophilic reagents, led us to a new strategy of constructing functionalized 3,4dihydropyrimidones **2**. This approach was based on the [3+3] cyclocondensation of bielectrophilic 1-chloroalkyl isocyanates **3**,¹³ containing the synthon $[-C=N-C=O]^{2+}$, and binucleophilic, deactivated enamines **4**, representing the synthon $[-C=C-N-]^{2-}$ (see Scheme 1).

In this way, starting from 1-chlorobenzyl isocyanates and ethyl β -aminocrotonates or β -aminoenones, a number of hitherto-unknown 1-aryl-substituted 3,4-dihydropyrimidones and 2,3-dihydropyrimido[6,1-c][1,4]benzothiazin-1(1*H*)-ones have been obtained.¹⁴ Further research along these lines was aimed at the synthesis of new dihydropyrimidine derivatives containing functional groups of various electronic nature at positions 5 and 6. It appeared, therefore, expedient to run cyclocondensations of this kind with another class of deactivated enamines, *S*,*N*-nitroketeneacetals **5**. Such compounds were chosen because

Fax +380(44)5732643; E-mail: mvovk@i.com.ua

Scheme 1 Retrosynthetic route to functionalized 3,4-dihydropyrimidin-2(1H)-ones 2

they are easily accessible and constitute highly reactive 1,3-C,N-binucleophiles.¹⁵ Previously reported cyclizations of compounds 5 with such bielectrophiles as glyoxal, ethyl glyoxylate, oxalyl chloride and chlorothioformyl chloride, furnished pyrrole and thiazole derivatives.¹⁶ The systematic research on the reactions of these highly versatile enamines with propargyl bromide,17 3-bromopropionyl chloride¹⁸ and itaconic anhydride¹⁹ enabled Junjappa and co-workers to develop synthetic routes to functionalized pyrroles and γ -lactones.

We have found that heating 1-chlorobenzyl isocyanate (3a) and *N*-methylnitroketeneacetal (5a) in methylene chloride for four hours, provided 1-methyl-6-methylthio-5-nitro-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (**6a**) in 36% yield. Conducting the reaction in the presence of triethylamine (Et₃N) or N,N-diisopropylethylamine (DIPEA), used as hydrogen chloride acceptors, resulted in a reduced yield of compound **6a**.

Scheme 2

To obtain compounds **6** with various substituents \mathbb{R}^1 and \mathbf{R}^2 , we started from *N*-alkylnitroketeneacetals **5a**–**c** and 1chlorobenzyl isocyanates **3a-g** (see Scheme 2 and Table 1). It can be seen that the yields of pyrimidones 6 increased up to 79% when acceptor substituents are present on the aromatic ring of the starting isocyanates 3. With Naryl-substituted S,N-nitroketeneacetals, a mixture of unidentifiable products was formed. The isomeric compound 7 was not detected in the reaction mixture.

Since compounds 3 exist as equilibrium mixtures of the isocyanate and N-chloroformylimine tautomeric forms,²⁰ each having two electrophilic centers, there are several

 Table 1
 1-Alkyl-4-aryl-6-methylthio-5-nitro-3,4-dihydropyrimi din-2(1H)-ones 6

6	\mathbb{R}^1	\mathbb{R}^2	Yield (%) ^a
a	Ph	Me	36
b	$2-FC_6H_4$	Me	62
c	$3-BrC_6H_4$	Me	60
d	$3-NO_2C_6H_4$	Me	79
e	$4\text{-}BrC_6H_4$	Me	55
f	$4-NO_2C_6H_4$	Me	77
g	$3,4-Cl_2C_6H_3$	Me	73
h	$3-BrC_6H_4$	Bn	56
i	3,4-Cl ₂ C ₆ H ₃	CH_2CH_2Ph	44

^a Pure, isolated yield.

possibilities for the initial step of the reaction between 3 and 5 (see Scheme 3). The reaction is most likely to start with the Mannich addition of the nucleophilic β -carbon atom in the enamine moiety of S,N-nitroketeneacetal 5 to the activated C=N double bond of the N-chloroformylimine form 3' of 1-chlorobenzyl isocyanate 3 (path a). It is highly probable that the formation of new C–C and N-H bonds in this step proceeds by the diazaene mechanism,²¹ as in the Michael addition and, as a result, intermediate 8 forms which rapidly cyclizes to the product 6. An alternative reaction mechanism, discussed in our previous work,^{14a} is assumed to proceed in two stages, namely isocyanatoalkylation of enamine 5 with the isocyanate form of compound 3, followed by the intramolecular carbamoylation of the alkylamino group. However, the nature of the amino group in reagents 5 was found to affect the course of the reaction and, hence, one cannot rule out the possibility that the carbamoylation of the amino group is just the initial reaction step, which leads to intermedi-

Downloaded by: York University libraries. Copyrighted material.

Scheme 3

ates 9 and subsequently to the pyrimidine ring closure (path b).

Though 5-nitro derivatives of classical DHPMs have so far been rather poorly studied, they are known to be efficient calcium channel modulators, antihypertensive agents and calcitonin mimetics.²² It should be noted that compounds **6** constitute the first representatives of 3,4-di-hydropyrimidin-2(1*H*)-ones containing the 6-methylthio group, which imparts pronounced nucleofugic properties to nucleophilic substitution reactions. It was found that compounds **6** readily reacted with aliphatic primary and secondary amines as well as ammonia, at room temperature in dioxane, so that the amino group replaced the methylthio group, affording 6-dialkylaminodihydropyrimidones **10a** and **10b** as well as 6-amino- and 6-alkyl-

aminodihydropyrimidones **11d**,**f**,**i**,**k**,**l**,**p** in high yields (Table 2, entries 5, 9, 12, 14, 15 and 19).

Aromatic amines enter into this reaction only on boiling in dioxane to give 6-arylaminodihydropyrimidones in 51–91% yields (Table 2, entries 4–6, 8, 10, 11, 13, 16–18 and 20). For instance, aniline, *p*-toluidine and *p*-anisidine react on boiling for four hours, whereas less basic 4-chloro-aniline requires boiling for 16 hours and 4-cyanoaniline is actually inert under such conditions.

To synthesize the condensed analogues of 6-amino-3,4dihydropyrimidones, we started from cyclic N,N-nitroketeneacetals **12a** and **12b**.

Compounds 12 reacted with isocyanates 3 at room temperature, in methylene chloride, in the presence of a weakly nucleophilic organic base (DIPEA), to furnish the

Downloaded by: York University libraries. Copyrighted material.

O ₂ N (R ³) ₂ N	R ¹ NH NH diox)₂NH 6 <u>R³t</u> kane 6 dioxar	$\frac{VH_2}{NH_2} \rightarrow \frac{O_2}{NH_2}$	$N \rightarrow NH \qquad \longrightarrow \qquad O_2N$ $N \rightarrow NH \qquad \longrightarrow \qquad NH$ $N \rightarrow NH$		
	10		- 2	11'	11"	
Entry	Compd	R ¹	\mathbb{R}^2	\mathbb{R}^3	Ratio 11':11", DMSO- d_6 (CDCl ₃)	Yield (%) ^a
1	10a	Ph	Me	$(\mathbf{R}^3)_2\mathbf{N} = 1$ -pyrrolidinyl	_	55
2	10b	$4-BrC_6H_4$	Me	$(\mathbf{R}^3)_2\mathbf{N} = 4$ -morpholinyl	-	51
4	11a	Ph	Me	Ph	0:100 (0:100)	87
5	11b	Ph	Me	$4-ClC_6H_4$	0:100 (0:100)	82
6	11c	Ph	Me	$4-MeOC_6H_4$	16:84 (13:87)	90
7	11d	$2-FC_6H_4$	Me	Н	100:0	64
8	11e	$3-BrC_6H_4$	Me	Ph	15:85 (13:82)	78
9	11f	$3-BrC_6H_4$	Bn	Bn	45:55 (80:20)	57
10	11g	$3-BrC_6H_4$	Bn	Ph	0:100 (0:100)	45
11	11h	$4-BrC_6H_4$	Me	$4-MeOC_6H_4$	31:69 (28:72)	85
12	11i	$3-NO_2C_6H_4$	Me	Bn	83:17 (100:0)	61
13	11j	$3-NO_2C_6H_4$	Me	4-MeOC ₆ H ₄	54:46	91
14	11k	$3-NO_2C_6H_4$	Me	Me	98:2 (100:0)	58
15	111	$4-NO_2C_6H_4$	Me	Н	100:0	67
16	11m	$4-NO_2C_6H_4$	Me	Ph	24:76	87
17	11n	$4-NO_2C_6H_4$	Me	$4-ClC_6H_4$	11:89	75
18	110	$4-NO_2C_6H_4$	Me	$4-MeOC_6H_4$	32:68	90
19	11p	$3,4-Cl_2C_6H_3$	Me	Bn	91:9 (100:0)	54
20	11q	3,4-Cl ₂ C ₆ H ₃	Me	$4-MeC_6H_4$	27:73	83

Table 2Synthesis of 1-Alkyl-6-amino-4-aryl-5-nitro-3,4-dihydropyrimidin-2-ones 10 and 11

^a Pure, isolated yield.

derivatives of 8-nitro-2,3,6,7-tetrahydroimidazo[1,2c]pyrimidin-5(1*H*)-one **13a** and **13d** and 9-nitro-1,2,3,4,7,8-hexahydro-6*H*-pyrimido[1,6-a]pyrimidin-6(1H)-one **13b** and **13c** in high yields (see Table 3). Starting from *N*,*N*'-dibenzylnitroketeneacetal (**12c**) and the corresponding isocyanate **3c**, compound **11f** was also thus-obtained in 43% yield.

Table 3 Synthesis of 8-Nitro-2,3,6,7-tetrahydroimidazo[1,2-c]pyrimidin-5(1H)-ones **13a** and **13d**, and 9-Nitro-1,2,3,4,7,8-hexahydro-6*H*-pyrimido[1,6-a]pyrimidin-6(1*H*)-ones **13b** and **13c**

R ¹ -	+ O ₂ N - C	$\begin{array}{c} \begin{array}{c} \text{DIPEA} \\ \text{CH}_2\text{Cl}_2 \end{array} \\ \end{array} \\ \begin{array}{c} \text{O}_2\text{N} \\ \text{HN} \\ \text{HN} \\ n \end{array} \\ \end{array} \\ \begin{array}{c} \text{NH} \\ \text{O}_2 \\ \text{NH} \\ \text{O}_2 \\ $
3a–g	12a,b	13a–d
Compd 13	R ¹ ; n	Yield (%) ^a
a	Ph; 0	70
b	3-NO ₂ C ₆ H ₄ ; 1	85
c	4-NO ₂ C ₆ H ₄ ; 1	83
d	3,4-Cl ₂ C ₆ H ₃ ; 0	74

^a Pure, isolated yield.

On heating a dioxane solution of 4-aryl-6-monoalkyl(aryl)amino-5-nitro-3,4-dihydropyrimidin-2(1H)-ones **11**, in the presence of catalytic amounts of a strong organic base (DBU), the nitro group is eliminated and the derivatives of 6-aryl-4-monoalkyl(aryl)imino-3,4-dihydropyrimidin-2(1H)-ones **14a–f** result in high yields (see Table 4).

Table 4Synthesis of 3-Alkyl-6-aryl-4-alkyl(aryl)imino-3,4-di-hydropyrimidin-2(1H)-ones14

11 DBU dioxane	$ \begin{array}{c} $	A ¹ NH NH A ² 1"	- HONO N [≤] I R ³	R ¹ NH I R ² 14a-f
Compd 14	\mathbb{R}^1	\mathbb{R}^2	R ³	Yield (%) ^a
a	Ph	Me	Ph	84
b	$3-BrC_6H_4$	Bn	Ph	70
c	$3-NO_2C_6H_4$	Me	4-MeOC ₆ H ₄	88
d	$4-NO_2C_6H_4$	Me	4-MeOC ₆ H ₄	85
e	3,4-Cl ₂ C ₆ H ₃	Me	Bn	65
f	3.4-Cl ₂ C ₄ H ₂	Me	4-MeC ₄ H ₄	90

^a Pure, isolated yield.

An analogous process, in which a nitro group functions as a leaving group, has previously been observed for aliphatic nitro compounds²³ as well as in the Barton–Zard pyrrole synthesis.²⁴ Presumably, nitro group elimination proceeds through 1,2-anti elimination of nitrous acid from the amidine tautomeric form 11", as this process is much facilitated by the location of the proton H⁶ and the nitro group in the stable anti-periplanar conformation. It is then evident that the elimination of this kind should be impossible for compounds 10, which is indeed the case. Released nitrous acid rapidly decomposes and therefore a catalytic amount of DBU is needed for the reaction to go to completion. It has been ascertained that the basicity of the amine involved is of significance, since the conversion described above does not occur in the presence of triethylamine. 4-Iminopyrimidin-2-ones 14 thus synthesized represent hitherto-unknown cytosine derivatives.²⁵

All solvents were purified and dried by standard methods. ¹H NMR spectra were recorded in DMSO- d_6 or CDCl₃ on a Varian Mercury spectrometer (400 MHz) using TMS as internal standard. ¹³C NMR spectra were recorded in DMSO- d_6 on a Varian Mercury spectrometer (125 MHz, TMS internal standard). APCI MS data were obtained on an Agilent 1100\DAD\MSD VL G1965a.

2-Methylamino-2-methylthionitroethene (**5a**) is commercially available and was used as received. 1-Chloroalkyl isocyanates **3a**–**g**,^{14,26} 2-benzylamino-2-methylthionitroethene (**5b**),²⁷ 2-phenethylamino-2-methylthionitroethene (**5c**),²⁸ 2,2-dibenzylaminonitroethene (**12c**),²⁹ 2-(nitromethylen)imidazolidine (**12a**)³⁰ and 2-(nitromethylen)hexahydropyrimidine (**12b**)³¹ were prepared according to literature procedures.

1-Alkyl-4-aryl-6-methylthio-5-nitro-3,4-dihydropyrimidin-2(1*H*)-ones 6; General Procedure

To a stirred solution of *S*,*N*-nitroketeneacetal (**5a–c**; 0.01 mol) in CH₂Cl₂ (30 mL) at r.t., a solution of the corresponding 1-chlorobenzyl isocyanate (**3a–g**; 0.01 mol) in CH₂Cl₂ (20 mL) was added. The reaction mixture was heated for 4 h then the solvent was evaporated in vacuo and the residue was crystallized from EtOH.

1-Alkyl-6-amino-4-aryl-5-nitro-3,4-dihydropyrimidin-2(1*H*)ones 10 and 11; General Procedure

To a solution of dihydropyrimidone (**6a–h**; 0.01 mol) in anhyd dioxane (30 mL), the corresponding amine was added. The reaction mixture was stirred at r.t. for 24 h (in the case of aliphatic amines and ammonia) or heated for 6 h (in the case of *p*-chloraniline, 16 h). The solvent was evaporated in vacuo and the residue was crystallized from EtOH.

4-(3-Bromophenyl)-1,6-dibenzyl-5-nitro-3,4-dihydropyrimidin-2(1*H*)-ones (11f), 8-Nitro-2,3,6,7-tetrahydroimidazo[1,2c]pyrimidin-5(1*H*)-ones (13a,d) and 9-Nitro-1,2,3,4,7,8-hexahydro-6*H*-pyrimido[1,6-a]pyrimidin-6-ones (13b,c); General Procedure

To a stirred solution of *N*,*N*-nitroketeneacetal (**12a–c**; 0.01 mol) and DIPEA (0.01 mol) in CH₂Cl₂ (30 mL) at r.t., a solution of the corresponding 1-chlorobenzyl isocyanate (**3a,e–g**; 0.01 mol) in CH₂Cl₂ (20 mL) was added. The reaction mixture was stirred for 12 h at r.t. and the precipitate formed was filtered, washed with H₂O (10 × 3 mL) and crystallized from EtOH.

3-Alkyl-6-aryl-4-benzyl(aryl)imino-3,4-dihydropyrimidin-2(1*H*)-ones (14a–f); General Procedure

To a solution of the corresponding 6-aminodihydropyrimidone (0.01 mol) in anhyd dioxane (30 mL), DBU (0.3 g, 0.002 mol) was added. The reaction mixture was heated for 6 h then the solvent was evaporated in vacuo and the residue was crystallized from EtOH.

Structure Assignments and Analytical Data

The structure of synthesized 3,4-dihydropyrimidones **6a–i** was confirmed by ¹H and ¹³C NMR spectroscopic as well as APCI MS data. In DMSO- d_6 , characteristic ¹H resonance doublets were observed at 5.6–5.8 and 8.5–8.9 ppm, arising from the CH and NH protons, respectively, with spin-spin coupling constants (SSCC) of 3.0–4.8 Hz. The ¹³C resonance peaks for the carbon atom C-4 were exhibited at 52–53 ppm, unequivocally pointing to the 3,4-dihydropyrimidone structure and ruling out formation of regioisomeric 2,3dihydropyrimidone **7**.³²

The structure of the obtained 6-amino-substituted 5-nitro-3,4-dihydropyrimidin-2(1*H*)-ones **10** and **11** was supported by 1 H and 13 C NMR spectroscopy as well as by APCI MS spectrometry. The ¹H NMR spectra of compounds 10 in DMSO- d_6 displayed doublets at 5.6–5.7 and 8.7–8.8 ppm, originating from the CH and NH protons, respectively, with SSCC of 3-4 Hz. 6-Aminopyrimidones 11d and 111 gave signals, arising from the NH₂ group, that appeared as two broadened singlets at 8.7-8.8 and 10.1-10.2 ppm as a result of the intramolecular hydrogen bond formation; 6-monoalkylaminopyrimidones 11f,i,k,p were characterized by the broad signals from the exocyclic NH protons at 10.1–10.6 ppm. The ¹H NMR spectra of these compounds, when measured in DMSO- d_6 , were indicative of another tautomeric form, 4-imino-3,4,5,6-tetrahydropyrimidin-2(1H)-one (11''), in addition to the main form 11', with the content ratio 11' to 11" of 45:55, 83:17, 98:2, and 91:9 for 11f,i,k and p, respectively. In a CDCl₃ solution, the ¹H NMR spectra showed no evidence of the 11" form or, in the case of 11f, suggests its lowered content (see Table 2). The tautomerism between forms 11' and 11''can be regarded as a particular case of the keteneaminal-amidine tautomerism observed previously for some acyclic compounds.³³ Unlike 6-alkylaminopyrimidones, for which the keteneaminal form predominates, their 6-arylamino counterparts tend to exist in the amidine form (see Table 2), and it becomes the only possible form, both in DMSO- d_6 and CDCl₃ solutions, for compounds **11a**,**b**,**g**, suggesting that they should be considered as 4-imino-3,4,5,6-tetrahydropyrimidin-2(1H)-one derivatives. The ¹H NMR signals from the protons H-5 and H-6 normally appear as slightly split multiplets. The resonance of the proton H-5 is exhibited as a doublet at 5.8–5.9 ppm with a very small SSCC of 2.0–2.5 Hz. The multiplet at 5.5-5.6 arises from the proton H-6 and its spin coupling with the NH proton is characterized by the SSCC of 4.4-4.5 Hz. The ¹³C NMR spectrum displays signals arising from the carbon atoms H-6 and H-5 at 52-53 and 78-79 ppm, respectively.

The established relationships between the nature of the substituents and the tautomeric equilibrium position are consistent with the electronic and steric structure of compounds **11**. A strong electron-donor amino or alkylamino group at position 6 of 3,4-dihydropyrimidones, stabilizes form **11'** due to its efficient conjugation with the nitro group at position 5 through the double bond of the keteneaminal moiety. With an acceptor aryl substituent in the 6arylamino group, the conjugation of the aromatic ring with the endocyclic nitrogen atom, through the imino group of the amidine moiety, becomes energetically preferable so that form **11''** tends to prevail and its content rises with increasing acceptor character of the aryl residue (Table 2, entries 4–6 and 16–18). It is notable that the equilibrium position is also highly dependent on the nature of the 4-aryl substituent, since the stronger its acceptor properties, the more stabilized is the keteneaminal form **11'** (entries 6, 11, 13 and 18). A more bulky benzyl substituent at position 1 causes the equilibrium to shift towards amidine form 11'' (*cf* entries 8 and 10). A distinctive feature of the tautomerism found for aminopyrimidones 11 is that the equilibrium between the tautomeric forms is established rather slowly. This is evidenced by the APCI MS spectra of compounds 11, which exhibits two peaks on the chromatogram with much the same intensity ratio as the content ratio of the tautomeric forms derived from the ¹H NMR spectra in DMSO-*d*₆. Moreover, the mass spectra show two molecular ion peaks, with the values [M - 1] and [M + 1], corresponding to the deprotonated ketene-aminal form 11'' (containing an acidic NH proton) and the protonated amidine form 11'' (containing a basic imino group), respectively. Two spots were also observed on the thin-layer chromatogram, however, attempts at separating these tautomers by preparatory TLC provided samples with varying ratios of the tautomeric forms.

Though structure **11**" permits the existence of the *cis* and *trans* isomers, only the isomer with the *cis* configuration of the protons H-5 and H-6 was observed in solution; it is evidently most thermodynamically stable due to the dynamic *cis–trans* equilibrium that is likely to involve the intermediate keteneaminal form **11**'. Structural determination of these compounds was performed by ¹H NMR spectroscopy with the difference NOE experiments in a DMSO-*d*₆ solution using compound **11b** as an example.

Figure 2 Structure of compound 11b

The SSCC for the protons H-5 and H-6 was found to be 2.45 Hz. On irradiation of H-5, an NOE enhancement was detected for the proton H-6 and *ortho* protons H-10 and H-7 in the aryl rings, whereas irradiation of H-6 revealed a coupling with H-5 and also with H-10 and H-1 (see Figure 2). These observations suggest that the protons H-5 and H-6 reside on the same side of the pyrimidine ring³⁴ and the imino group has the *E*-configuration. The *cis* configuration is probably characteristic of all the other derivatives of structure **11**".

The ¹H NMR spectra of condensed pyrimidines **13** in DMSO- d_6 showed characteristic doublets of the CH and NH protons at 5.4–5.6 and 9.4–11.1 ppm, respectively, with SSCC of 3–4 Hz. The ¹³H NMR signal of the C-4 carbon atom was found at 52–53 ppm, as in the case of compounds **10** and **11** (in the ketenaminal form).

The structure of compounds 14 was determined using APCI MS spectrometry as well as ¹H and ¹³C NMR spectroscopy. The molecular ion peaks in the APCI spectra were found at [M + 1]. The ¹H NMR spectra displayed singlets arising from the protons H-5 and H-1 at 5.6–6.2 and 10.8–11.0 ppm, respectively. The methylene group of the benzyl residue in compound 14e was not spin-coupled to the NH proton and generated a singlet at 4.6 ppm, thus corroborating the structure of 6-aryl-4-benzyliminopyrimidin-2-one. The ¹³C NMR signal of C-5 was observed at 90–92 ppm.

The structure of compound **14c** was thoroughly studied by ¹H NMR spectroscopy and difference NOE experiments in a CDCl₃, since the prevailing tautomeric form of pyrimidines **14a–d**,**f** which may be either 4-arylimino-3,4-dihydropyrimidin-2(1*H*)-one (**14c**'') or 6-arylaminopyrimidin-2(1*H*)-one (**14c**'') could not be unequivocally determined (Scheme 4).

Scheme 4 Structure of compound 14c

Irradiation at the H-1 proton frequency give rise to an NOE enhancement of the signals arising from the *ortho* protons (H-10 and H-14) of the 6-aryl ring. The H-5 proton was spin-coupled to both the H-10 and H-14 protons and to the *ortho* protons (H-7) of the *p*-anisyl residue, but not to the H-1 proton. An NOE enhancement of the H-1 signal was also absent from the spectra recorded after irradiation of the H-7 protons. Taken together, this evidence suggests that only one tautomeric form, **14c'**, exists in a solution, since otherwise the NOE would manifest itself in a way that might be expected for structure **14c''**, i.e. an enhancement of the signal from the H-4 protons on irradiation at H-5, but not for H-10 and H-14 on irradiation of H-4.

Compd	Mp (°C) ^b	¹ H NMR, DMSO- <i>d</i> ₆ (δ ppm)	¹³ C NMR, DMSO- d_6 (δ ppm)	MS (APCI), <i>m/z</i>
6a	178–180	2.47 (s, 3 H), 3.29 (s, 3 H), 5.69 (d, <i>J</i> = Hz, 1 H), 7.21 (d, <i>J</i> = 7.0 Hz, 2 H), 7.30 (t, <i>J</i> = 7.0 Hz, 1 H), 7.36 (t, <i>J</i> = 7.0 Hz, 2 H), 8.71 (d, <i>J</i> = Hz, 1 H)	18.20, 34.97, 52.99, 125.75, 128.20, 128.97, 140.64, 151.89, 155.46	280 [M + 1]
6b	144–146	2.48 (s, 3 H), 3.36 (s, 3 H), 5.85 (d, <i>J</i> = 3.9 Hz, 1 H), 7.10– 7.42 (m, 4 H), 8.58 (d, <i>J</i> = 3.9 Hz, 1 H)	18.10, 35.02, 49.28, 115.82, 124.77, 127.23, 128.72, 130.41, 151.46, 155.08, 158.85, 160.82	299 [M + 1]
6с	195–197	2.48 (s, 3 H), 3.29 (s, 3 H), 5.71 (d, <i>J</i> = 4.0 Hz, 1 H), 7.20 (d, <i>J</i> = 8.0 Hz, 1 H), 7.33 (t, <i>J</i> = 8.0 Hz, 1 H), 7.41 (s, 1 H), 7.51 (d, <i>J</i> = 8.0 Hz, 1 H), 8.71 (d, <i>J</i> = 4.0 Hz, 1 H)	18.28, 34.85, 52.48, 122.02, 124.64, 127.97, 128.87, 131.08, 131.25, 143.27, 151.57, 156.14	360 [M + 1]
6d	165–167	2.48 (s, 3 H), 3.29 (s, 3 H), 5.87 (d, <i>J</i> = 3.6 Hz, 1 H), 7.67 (m, 2 H), 8.08 (s, 1 H), 7.51 (d, <i>J</i> = 8.0 Hz, 1 H), 8.17 (m, 1 H), 8.90 (d, <i>J</i> = 3.6 Hz, 1 H)	18.31, 34.70, 52.32, 120.74, 123.10, 127.23, 130.69, 132.28, 142.76, 147.99, 151.40, 156.82	325 [M + 1]
6e	200–202	2.48 (s, 3 H), 3.30 (s, 3 H), 5.68 (d, <i>J</i> = 4.5 Hz, 1 H), 7.17 (d, <i>J</i> = 8.4 Hz, 2 H), 7.50 (d, <i>J</i> = 8.4 Hz, 2 H), 8.74 (d, <i>J</i> = 4.5 Hz, 1 H)	18.74, 35.28, 52.99, 121.83, 128.54, 132.34, 140.54, 152.15, 155.67, 156.32	360 [M + 1]
6f	181–183	2.49 (s, 3 H), 3.29 (s, 3 H), 5.85 (d, $J = 4.0$ Hz, 1 H), 7.52 (d, $J = 8.5$ Hz, 2 H), 8.23 (d, $J = 8.5$ Hz, 2 H), 8.91 (d, $J = 4.0$ Hz, 1 H)	18.35, 34.78, 52.53, 124.18, 127.27, 134.00, 147.28, 147.77, 151.46, 156.90	325 [M + 1]
6g	145–147	2.48 (s, 3 H), 3.28 (s, 3 H), 5.73 (d, $J = 4.2$ Hz, 1 H), 7.19 (dd, $J^1 = 8.5$ Hz, $J^2 = 2$ Hz, 1 H), 7.47 (d, $J = 2$ Hz, 1 H), 7.62 (d, $J = 8.5$ Hz, 1 H), 8.77 (d, $J = 4.2$ Hz, 1 H)	18.34, 34.75, 52.11, 126.02, 127.42, 128.17, 130.87, 131.21, 131.44, 141.65, 151.40, 156.49	350 [M + 1]
6h	131–133	2.48 (s, 3 H), 5.03 (d, <i>J</i> = 15.6 Hz, 1 H), 5.18 (d, <i>J</i> = 15.6 Hz, 1 H), 5.70 (d, <i>J</i> = 4.8 Hz, 1 H), 7.03–7.50 (m, 9 H), 8.89 (d, <i>J</i> = 4.8 Hz, 1 H)	19.03, 49.42, 52.79, 122.44, 125.20, 127.54, 127.85, 128.90, 129.24, 131.52, 137.66, 143.81, 151.56, 155.28	435 [M + 1]
6i	152–154	2.49 (s, 3 H), 2.74 (m, 2 H), 4.05 (m, 1 H), 4.20 (m, 1 H), 5.68 (d, <i>J</i> = 4.8 Hz, 1 H), 7.05–7.29 (m, 6 H), 7.43 (s, 1 H), 7.54 (d, <i>J</i> = 8.4 Hz, 1 H), 8.90 (d, <i>J</i> = 4.8 Hz, 1 H)	18.43, 35.08, 46.71, 51.75, 125.78, 126.31, 127.70, 127.93, 128.24, 128.38, 130.68, 131.04, 131.33, 137.61, 141.56, 150.62, 154.79	440 [M + 1]
10a	194–196	1.89 (m, 2 H), 2.06 (m, 2 H), 2.96 (s, 3 H), 3.09 (m, 2 H), 3.69 (m, 1 H), 5.71 (d, <i>J</i> = 3.0 Hz, 1 H), 7.21–7.35 (m, 5 H), 8.74 (d, <i>J</i> = 3.0 Hz, 1 H)	24.89, 34.80, 50.72, 51.85, 112.50, 125.13, 127.40, 128.62, 141.76, 152.65, 154.07	302 [M + 1]
10b	231–233	3.21 (m, 2 H), 3.36 (m, 2 H), 3.68 (m, 2 H), 3.78 (m, 2 H), 5.58 (d, <i>J</i> = 4.2 Hz, 1 H), 7.19 (d, <i>J</i> = 7.5 Hz, 2 H), 7.50 (d, <i>J</i> = 7.5 Hz, 2 H), 8.83 (d, <i>J</i> = 4.2 Hz, 1 H)	34.57, 50.29, 51.62, 65.85, 113.44, 121.16, 127.96, 132.07, 141.70, 154.19, 155.47	399 [M + 1]
11a	155–157	3.17 (s, 3 H), 5.26 (m, 1 H), 5.59 (s, 1 H), 6.10 (d, <i>J</i> = 7.2 Hz, 2 H), 7.02 (t, <i>J</i> = 7.2 Hz, 1 H), 7.15–7.42 (m, 7 H), 8.47 (d, <i>J</i> = 4.0 Hz, 1 H)	28.93, 52.60, 78.64, 119.53, 123.73, 125.78, 128.56, 129.00, 129.08, 135.99, 144.65, 146.84, 152.20	325 [M + 1]

 $[\]label{eq:Table 5} Table \ 5 \ \ Analytical \ Data \ for \ Compounds \ 6, \ 10, \ 11, \ 13 \ \text{and} \ 14^a$

Compd	Mp (°C) ^b	¹ H NMR, DMSO- <i>d</i> ₆ (δ ppm)	¹³ C NMR, DMSO- d_6 (δ ppm)	MS (APCI), <i>m/z</i>
11b	196–198	3.19 (s, 3 H), 5.27 (m, 1 H), 5.72 (d, <i>J</i> = 2.45 Hz, 1 H), 6.09 (d, <i>J</i> = 8.4 Hz, 2 H), 7.17 (d, <i>J</i> = 8.4 Hz, 2 H), 7.26 (d, <i>J</i> = 6.6 Hz, 2 H), 7.41 (m, 3 H), 8.51 (d, <i>J</i> = 4.5 Hz, 1 H)	28.97, 52.44, 78.69, 121.36, 125.64, 127.93, 118.55, 128.96, 128.99, 135.78, 145.29, 145.75, 152.03	360 [M + 1]
11c	164–166	2.72 (s, 0.57 H), 3.19 (s, 3 H), 3.72 (s, 3 H), 3.80 (s, 0.57 H), 5.28 (m, 1 H), 5.66 (s, 1 H), 5.75 (d, $J = 4.0$ Hz, 0.19 H), 6.09 (d, $J = 8.4$ Hz, 2 H), 6.76 (d, $J = 8.4$ Hz, 2 H), 7.00 (d, $J = 8.8$ Hz, 0.38 H), 7.18 (d, $J = 8.8$ Hz, 0.38 H), 7.20–7.44 (m, 5.95 H), 8.44 (s, 1 H), 8.72 (d, $J = 4.0$ Hz, 0.19 H), 11.42 (s, 0.19 H) [2.77 (s, 0.45 H), 3.37 (s, 3 H), 3.71 (s, 3 H), 3.79 (s, 0.45 H), 5.32 (m, 2 H), 6.00 (d, $J = 4.4$ Hz, 0.15 H), 6.11 (d, $J = 8.8$ Hz, 2 H), 6.68 (m, 3.15 H), 6.90 (d, $J = 8.4$ Hz, 0.30 H), 7.03 (d, $J = 8.4$ Hz, 0.30 H), 7.15 (d, $J = 8.0$ Hz, 2 H), 7.27–7.40 (m, 3.75 H), 11.73 (s, 0.15 H)] ^c	_	355 [M + 1] 353 [M – 1]
11d	252–254	3.22 (s, 3 H), 5.64 (d, <i>J</i> = 3.0 Hz, 1 H), 7.06–7.14 (m, 2 H), 7.23–7.32 (m, 2 H), 8.48 (d, <i>J</i> = 3.0 Hz, 1 H), 8.73 (br s, 1 H), 10.28 (br s, 1 H)	29.09, 47.88, 115.43, 124.29, 128.79, 129.36, 129.60, 149.79, 153.48, 159.08, 161.03	265 [M – 1]
11e	167–169	2.73 (s, 0.51 H), 3.20 (s, 3 H), 5.28 (m, 1 H), 5.71–5.74 (m, 1.17 H), 6.18 (d, J = 7.2 Hz, 2 H), 7.06 (t, J = 7.4 Hz, 1 H), 7.19–7.53 (m, 7.53 H), 8.54 (d, J = 3.6 Hz, 1 H), 8.81 (d, J = 4.0 Hz, 0.17 H), 11.12 (s, 0.17 H)	-	405 [M + 1] 403 [M – 1]
11f	180–182	4.52–4.60 (m, 3.5 H), 5.09–5.14 (m, 1.5 H), 5.32 (m, 0.25 H), 5.64 (s, 0.25 H), 5.90 (d, $J = 3.0$ Hz, 1 H), 6.72–7.31 (m, 17.75 H), 10.42 (br s, 1 H) ^c	-	495 [M + 1] 493 [M – 1]
11g	186–188	5.03 (m, 2 H), 5.31 (m, 1 H), 5.78 (d, $J = 2.4$ Hz, 1 H), 6.14 (d, $J = 7.5$ Hz, 2 H), 7.04 (t, $J = 6.6$ Hz, 1 H), 7.21– 7.38 (m, 9 H), 7.47 (s, 1 H), 7.55 (d, $J = 8.1$ Hz, 1 H), 8.63 (d, $J = 4.0$ Hz, 1 H)	45.17, 52.26, 78.75, 120.06, 122.79, 124.50, 125.53, 127.35, 127.91, 128.57, 129.49, 129.71, 131.60, 132.07, 137.90, 139.06, 144.46, 147.08, 152.41	481 [M + 1]
11h	171–173	2.80 (s, 1.14 H), 3.40 (s, 3 H), 3.76 (s, 3 H), 3.82 (1.14 H), 5.34 (m, 2 H), 5.99 (d, $J = 0.38$ H) ^c	-	435 [M + 1] 433 [M – 1]
11i	176–178	3.16 (s, 0.6 H), 3.22 (s, 3 H), 4.52 (d, $J = 15.2$ Hz, 0.2 H), 4.60 (d, $J = 15.2$ Hz, 0.2 H), 4.67 (d, $J = 13.6$ Hz, 0.2 H), 4.81 (d, $J = 13.6$ Hz, 0.2 H), 5.57 (s, 0.2 H), 5.76 (d, J = 4.4 Hz, 1 H), 6.93 (m, 0.2 H), 7.11 (m, 0.4 H), 7.30– 7.68 (m, 8.4 H), 8.03–8.19 (m, 2.4 H), 8.47 (s, 0.2 H), 8.82 (d, $J = 4.4$ Hz, 1 H), 10.33 (br s, 1 H)	-	384 [M + 1] 382 [M – 1]
11j	236–238	2.74 (s, 3 H), 3.24 (s, 2.43 H), 3.73 (s, 2.43 H), 3.81 (s, 3 H), 5.43–5.46 (m, 1 H), 5.90–5.93 (m, 1.81 H), 6.18 (d, $J = 8.1$ Hz, 1.62 H), 6.76 (d, $J = 8.1$ Hz, 1.62 H), 7.00 (d, $J = 7.8$ Hz, 2 H), 7.19 (d, $J = 8.0$ Hz, 1.62 H), 7.42–7.53 (m, 3.62 H), 8.15–8.27 (m, 3.62 H), 8.54 (d, $J = 2.7$ Hz, 0.81 H), 8.79 (d, $J = 2.4$ Hz, 1 H), 11.38 (s, 0.81 H)	_	400 [M + 1] 398 [M – 1]
11k	221–223	3.20 (s, 3 H), 3.23 (s, 3 H), 5.77 (d, <i>J</i> = 4.0 Hz, 1 H), 7.63 (m, 2 H), 8.08 (s, 1 H), 8.12 (s, 1 H), 8.77 (d, <i>J</i> = 4.0 Hz, 1 H), 10.13 (br s, 1 H)	33.49, 34.46, 51.49, 109.21, 121.10, 123.16, 130.89, 132.77, 144.48, 148.45, 153.15, 156.10	306 [M – 1]
111	263–265	3.21 (s, 3 H), 5.62 (d, <i>J</i> = 2.7 Hz, 1 H), 7.50 (d, <i>J</i> = 8.1 Hz, 2 H), 8.15 (d, <i>J</i> = 8.1 Hz, 2 H), 8.67 (d, <i>J</i> = 2.7 Hz, 1 H), 8.79 (br s, 1 H), 10.19 (br s, 1 H)	29.42, 51.65, 105.33, 123.78, 127.85, 146.96, 149.45, 150.07, 153.51	292 [M – 1]

Table 5Analytical Data for Compounds 6, 10, 11, 13 and 14^{a} (continued)

 $Mp \; (^{\circ}C)^{b}$

Compd

11m

11n

110

11p

11q

13a

13b

13c

13d

14a

14b

14c

207–209	2.76 (s, 0.96 H), 3.22 (s, 3 H), 5.44 (m, 1 H), 5.82 (d, J = 4.4 Hz, 1 H), 5.88 (d, $J = 4.8$ Hz, 0.32 H), 6.23 (d, J = 7.6 Hz, 2 H), 7.06 (t, $J = 7.6$ Hz, 1 H), 7.15–7.30 (m, 3.28 H), 7.42 (t, $J = 8.0$ Hz, 0.32 H), 7.55–7.62 (m, 2.64 H), 8.25 (d, $J = 8.0$ Hz, 0.32 H), 8.31 (d, $J = 8.8$ Hz, 2 H), 8.64 (d, $J = 4.4$ Hz, 1 H), 8.92 (d, $J = 4.8$ Hz, 0.32 H), 11.12 (s, 0.32 H)	_	370 [M + 1] 368 [M – 1]
218–220	2.8 (s, 0.36 H), 3.20 (s, 3 H), 5.43 (m, 1 H), 5.86 (d, J = 2.0 Hz, 0.12 H), 5.93 (s, 1 H), 6.22 (d, $J = 8.0$ Hz, 2 H), 7.25 (m, 2.48 H), 7.40 (d, $J = 8.4$ Hz, 0.12 H), 8.26 (m, 2.24 H), 8.67 (d. $J = 4.0$ Hz, 1 H), 8.90 (d, $J = 2.0$ Hz, 0.12 H), 10.88 (s, 0.12 H)	_	405 [M + 1] 403 [M - 1]
203–205	2.72 (s, 1.38 H), 3.20 (s, 3 H), 3.72 (3 H), 3.80 (s, 1.38 H), 5.43 (m, 1 H), 5.87 (m, 1.46 H), 6.17 (d, $J = 8.1$ Hz, 2 H), 6.78 (d, $J = 8.1$ Hz, 2 H), 6.99 (d, $J = 8.1$ Hz, 0.92 H), 7.18 (d, $J = 8.1$ Hz, 0.92 H), 7.54–7.60 (m, 2.92 H), 8.22 (d, J = 7.8 Hz, 0.92 H), 8.28 (d, $J = 7.8$ Hz, 2 H), 8.59 (d, J = 2.5 Hz, 1 H), 8.85 (d, $J = 3.3$ Hz, 0.46 H), 11.38 (s, 0.46 H)	_	400 [M + 1] 398 [M – 1]
180–182	3.33 (s, 3 H), 4.64 (dd, J^1 = 5.2 Hz, J^2 = 12.8 Hz, 2 H), 5.89 (d, J = 4.0 Hz, 1 H), 6.42 (d, J = 4.0 Hz, 1 H), 7.05 (d, J = 8.4 Hz, 1 H), 7.15–7.39 (m, 7 H), 10.63 (br s, 1 H) ^c	-	409 [M + 1] 407 [M – 1]
199–201	2.27 (s, 3 H), 2.33 (s, 1.11 H), 2.70 (s, 1.11 H), 3.20 (s, 3 H), 5.26 (m, 1 H), 5.74 (d, $J = 3.3$ Hz, 0.37 H), 5.79 (s, 1 H), 6.12 (d, $J = 8.1$ Hz, 2 H), 7.05 (d, $J = 8.1$ Hz, 2 H), 7.10–7.26 (m, 2.85 H), 7.47–7.65 (m, 2.74 H), 8.56 (d, $J = 3.9$ Hz, 1 H), 8.81 (d, $J = 3.3$ Hz, 0.37 H), 11.23 (s, 0.37 H)	-	409 [M + 1] 407 [M - 1]
243–245	3.75–3.93 (m, 4 H), 5.43 (d, <i>J</i> = 3.0 Hz, 1 H), 7.27–7.30 (m, 5 H), 8.29 (d, <i>J</i> = 3.0 Hz, 1 H), 9.42 (br s, 1 H)	42.89, 43.35, 53.49, 103.53, 126.43, 127.56, 128.34, 142.55, 149.98, 151.81	261 [M + 1]
239–241	2.01 (m, 2 H), 3.48–3.81 (m, 4 H), 5.62 (d, <i>J</i> = 3.3 Hz, 1 H), 7.61 (t, <i>J</i> = 7.5 Hz, 1 H), 7.69 (d, <i>J</i> = 7.5 Hz, 1 H), 8.10–8.14 (m, 2 H), 8.64 (d, <i>J</i> = 3.3 Hz, 1 H), 11.06 (br s, 1 H)	18.96, 38.78, 39.17, 51.58, 104.41, 121.36, 122.58, 130.15, 132.92, 144.40, 147.67, 149.56, 150.52	320 [M + 1]
233–235	1.91 (m, 2 H), 3.45–3.83 (m, 4 H), 5.61 (d, <i>J</i> = 2.4 Hz, 1 H), 7.54 (d, <i>J</i> = 8.0 Hz, 2 H), 8.15 (d, <i>J</i> = 8.0 Hz, 2 H), 8.63 (d, <i>J</i> = 2.4 Hz, 1 H), 11.04 (s, 1 H)	19.45, 39.32, 40.36, 52.20, 104.90, 124.19, 128.40, 147.38, 150.00, 150.11, 150.97	320 [M + 1]
258–260	3.78-3.96 (m, 4 H), 5.48 (d, J = 2.7 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 1 H), 7.49 (s, 1 H), 7.53 (d, J = 8.4 Hz, 1 H), 8.32 (d, J = 2.7 Hz, 1 H), 9.49 (br s, 1 H)	42.89, 43.40, 52.82, 102.63, 126.88, 128.74, 130.13, 130.59, 130.86, 143.53, 149.52, 151.66	331 [M + 1]
216–218	5.57 (s, 1 H), 6.83 (d, <i>J</i> = 7.2 Hz, 2 H), 7.00 (t, <i>J</i> = 7.2 Hz, 1 H), 7.30–7.48 (m, 7 H), 10.95 (s, 1 H)	28.00, 90.92, 121.60, 122.25, 126.41, 128.81, 129.14, 130.58, 132.04, 146.46, 149.85, 150.84, 151.45	278 [M + 1]
252–254	5.23 (s, 2 H), 5.60 (s, 1 H), 6.71 (d, <i>J</i> = 7.5 Hz, 2 H), 6.97 (t, <i>J</i> = 7.2 Hz, 1 H), 7.25–7.60 (m, 9 H), 7.59 (d, <i>J</i> = 7.2 Hz, 1 H), 7.70 (s, 1 H), 10.99 (s, 1 H)	43.30, 91.74, 121.34, 121.79, 122.30, 125.59, 126.68, 127.54, 128.00, 129.02, 129.13, 130.74, 133.16, 134.24, 137.52, 145.30, 149.23, 149.82, 151.11	434 [M + 1]
238–240	3.47 (s, 3 H), 3.81 (s, 3 H), 5.99 (s, 1 H), 6.79 (d, $J = 8.7$ Hz, 2 H), 6.89 (d, $J = 8.7$ Hz, 2 H), 7.63 (t, $J = 8.1$ Hz, 1 H), 7.86 (d, $J = 7.5$ Hz, 1 H), 8.31 (d, $J = 7.5$ Hz, 1 H), 8.59 (s, 1 H), 11.02 (s, 1 H) ^c	28.19, 55.06, 92.11, 114.44, 121.36, 122.72, 124.83, 130.29, 132.91, 147.77, 151.79, 155.15 (other signals absent)	353 [M + 1]

Table 5 Analytical Data for Compounds 6, 10, 11, 13 and 14^{a} (continued) ¹H NMR, DMSO-*d*₆ (δ ppm)

MS (APCI), m/z

¹³C NMR, DMSO-*d*₆ (δ ppm)

Compd	$Mp \ (^{\circ}C)^{b}$	¹ H NMR, DMSO- d_6 (δ ppm)	¹³ C NMR, DMSO- d_6 (δ ppm)	MS (APCI), m/z
14d	270–272	3.30 (s, 3 H), 3.74 (s, 3 H), 5.78 (s, 1 H), 6.84 (d, <i>J</i> = 8.1 Hz, 2 H), 6.90 (d, <i>J</i> = 8.1 Hz, 2 H), 7.82 (d, <i>J</i> = 8.4 Hz, 2 H), 8.23 (d, <i>J</i> = 8.4 Hz, 2 H), 10.85 (br s, 1 H)	28.22, 55.07, 114.45, 122.82, 123.72, 128.00, 148.28, 151.66, 155.24 (other signals absent)	353 [M + 1]
14e	217–219	3.42 (s, 3 H), 4.60 (s, 2 H), 6.21 (s, 1 H), 7.23–7.41 (m, 5 H), 7.59 (d, <i>J</i> = 8.7 Hz, 1 H), 7.87 (d, <i>J</i> = 8.7 Hz, 1 H), 8.10 (s, 1 H), 8.13 (s, 1 H)	29.31, 45.21, 82.54, 126.87, 126.93, 127.06, 128.36, 128.60, 130.49, 131.29, 132.90, 137.87, 138.14, 155.66, 157.49, 162.28	362 [M + 1]
14f	263–265	2.28 (s, 3 H), 3.32 (s, 3 H), 5.62 (s, 1 H), 6.66 (d, <i>J</i> = 7.2 Hz, 2 H), 7.06 (d, <i>J</i> = 7.2 Hz, 2 H), 7.39 (d, <i>J</i> = 7.8 Hz, 1 H), 7.59 (d, <i>J</i> = 7.8 Hz, 1 H), 7.74 (s, 1 H), 10.94 (s, 1 H)	20.27, 27.99, 91.23, 121.52, 126.62, 128.36, 129.49, 130.73, 131.20, 131.43, 132.87, 132.97, 143.62, 146.04, 150.75, 151.43	362 [M + 1]

 Table 5
 Analytical Data for Compounds 6, 10, 11, 13 and 14^a (continued)

^a Satisfactory microanalysis obtained: C ±0.30, H ±0.08, N ±0.16.

^b Melting points are uncorrected.

^c Recorded in CDCl₃.

References

- (1) For reviews, see: (a) Kappe, C. O. *Tetrahedron* 1993, 49, 6937. (b) Kappe, C. O. *Acc. Chem. Res.* 2000, *33*, 879. (c) Kappe, C. O. *Eur. J. Med. Chem.* 2000, *35*, 1043.
- (2) (a) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L. *Science* **1999**, *286*, 971. (b) Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O'Reilly, B. C.; Schwartz, J.; Malley, M. F. *J. Med. Chem.* **1992**, *35*, 3254. (c) Stadler, A.; Kappe, C. O. *J. Comb. Chem.* **2001**, *3*, 624.
- (3) (a) Patil, A. D.; Freyer, A. J.; Taylor, P. B.; Carte, B.; Zuber, G.; Johnson, R. K.; Faulkner, D. J. *J. Org. Chem.* **1997**, *62*, 1814. (b) Bordner, J.; Tiessen, W. E.; Bates, H. A.; Rapoport, H. J. Am. Chem. Soc. **1975**, *97*, 6008.
- (4) (a) Biginelli, P. *Gazz. Chim. Ital.* 1893, *23*, 360.
 (b) Folkers, K.; Johnson, T. B. *J. Am. Chem. Soc.* 1933, *55*, 3781.
- (5) (a) Lu, J.; Ma, H. Synlett 2000, 63. (b) Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864.
 (c) Ranu, B. C.; Hayra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270. (d) Zavyalov, S. J.; Kulikova, L. B. Khim.-Farm. Zh. 1992, 1655. (e) Stadler, A.; Kappe, C. O. J. Chem. Soc., Perkin Trans. 1 2000, 1363. (f) Stefani, H. A.; Gatti, P. M. Synth. Commun. 2000, 30, 2165. (g) Lewandowski, K.; Murer, P.; Svec, F.; Frechet, J. M. J. J. Comb. Chem. 1999, 1, 105. (h) Kappe, C. O. Bioorg. Med. Chem. Lett. 2000, 10, 49. (i) Studer, A.; Jeger, P.; Wipf, P.; Curran, D. P. J. Org. Chem. 1997, 62, 2917.
- (6) (a) O'Reilly, B. C.; Atwal, K. S. *Heterocycles* 1987, 26, 1185. (b) Atwal, K. S.; Rovnyak, G. C.; O'Reilly, B. C.; Schwartz, J. J. Org. Chem. 1989, 54, 5898. (c) Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.; Kuznetsov, A. Y. *Molecules* 1998, 3, 100.
- (7) McDonald, A. I.; Overman, L. E. J. Org. Chem. **1999**, 64, 1520.
- (8) Arnold, M. A.; Duron, S. G.; Gin, G. Y. J. Am. Chem. Soc. 2005, 127, 6924.
- (9) (a) Hong, C. Y.; Kishi, Y. J. Am. Chem. Soc. 1992, 114, 7001. (b) Taguchi, H.; Yazawa, H.; Arnett, J. F.; Kishi, Y. *Tetrahedron Lett.* 1977, 627.
- (10) (a) Elliott, M. C.; Kruiswijk, E. J. Chem. Soc., Perkin Trans. 1 1999, 3157. (b) Elliott, M. C.; Kruiswijk, E. Chem. Commun. 1997, 2311. (c) Elliott, M. C.; Monk, A. E.; Kruiswijk, E.; Hibbs, D. E.; Jenkins, R. L.; Jones, D. V. Synlett 1999, 1379.

- (11) (a) Fawzy, N. M. Boll. Chim. Farm. 2004, 143, 70.
 (b) Hall, R.; Swain, G. Pat. GB868030, 1959; Chem. Abstr. 1962, 56, 1463.
- (12) Sharma, P.; Rane, N.; Gurram, V. K. Bioorg. Med. Chem. Lett. 2004, 14, 4185.
- (13) (a) Sinitsa, A. D.; Parkhomenko, N. A.; Markovskii, L. N. J. Gen. Chem. USSR 1983, 53, 308. (b) Sinitsa, A. D.;
 Parkhomenko, N. A.; Povolotskii, M. I.; Markovskii, L. N. J. Gen. Chem. USSR 1984, 54, 633. (c) Sinitsa, A. D.;
 Parkhomenko, N. A.; Markovskii, L. N. J. Gen. Chem. USSR 1980, 50, 683.
- (14) (a) Sukach, V. A.; Bol'but, A. V.; Sinitsa, A. D.; Vovk, M. V. *Synlett* 2006, 375. (b) Vovk, M. V.; Sukach, V. A. *Russ. J. Org. Chem.* 2005, 41, 1240.
- (15) For reviews, see: (a) Rajappa, S. *Tetrahedron* 1981, *37*, 1458. (b) Rajappa, S. *Tetrahedron* 1999, *55*, 7065.
- (16) (a) Schafer, V. H.; Bartho, B.; Gewald, K. J. Prakt. Chem. 1977, 319, 149. (b) Powell, J. E. Pat. US4033955, 1977; Chem. Abstr. 1977, 87, 117889. (c) Tieman, C. H. Pat. US4033954, 1977; Chem. Abstr. 1977, 87, 102367.
- (17) Gupta, A. K.; Reddy, K. R.; Ila, H.; Junjappa, H. J. Chem. Soc., Perkin Trans. 1 1995, 1725.
- (18) Chakrabarti, S.; Srivastava, M. C.; Ila, H.; Junjappa, H. *Synlett* **2003**, 2369.
- (19) Chakrabarti, S.; Panda, K.; Misra, N. C.; Ila, H.; Junjappa, H. Synlett 2005, 1437.
- (20) (a) Holtschmidt, H. *Angew. Chem.* 1962, 74, 848.
 (b) Holtschmidt, H.; Degener, E.; Schmelzer, H.-G.; Tarnov, H.; Zecher, W. *Angew. Chem.* 1968, 80, 942.
- (21) Ambroise, L.; Desmaele, D.; d'Angelo, J. *Tetrahedron Lett.* 1994, 35, 9705.
- (22) (a) Sedova, V. F.; Voevoda, T. V.; Tolstikova, T. G.; Shkurko, O. P. *Pharm. Chem. J.* 2002, *36*, 284.
 (b) Remennikov, G. Y.; Sharavan, S. S.; Boldyrev, I. V.; Kapran, N. A.; Kurilenko, I. K. *Pharm. Chem. J.* 1994, *28*, 322. (c) Remennikov, G. Y.; Sharavan, S. S.; Boldyrev, I. V.; Kurilenko, I. K.; Klebanov, B. M.; Kukhar, V. P. *Pharm. Chem. J.* 1991, *25*, 185. (d) Matthews, J. M.; Liotta, F.; Hageman, W.; Rivero, R. A.; Westover, L.; Yang, M.; Xu, J.; Demarest, K. *Bioorg. Med. Chem. Lett.* 2004, *14*, 1155.
- (23) (a) Chow, Y. L. In *The Chemistry of Amino, Nitro, and Nitroso Compounds and their Derivatives*, Suppl. F, Vol. 1; Patai, S., Ed.; Wiley-Interscience: Hoboken NJ, **1982**, 181.
 (b) Alameda-Angulo, C.; Quiclet-Sire, B.; Schmidt, E.; Zard, S. Z. *Org. Lett.* **2005**, *7*, 3489.

Synthesis 2007, No. 6, 835-844 © Thieme Stuttgart · New York

- (24) (a) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. *Tetrahedron* **1990**, *46*, 7587. (b) Boelle, J.; Schneider, R.; Gerardin, P.; Loubinoux, B. *Synthesis* **1997**, 1451. (c) Lash, T. D.; Bellettini, J. R.; Bastian, J. A.; Couch, K. B. *Synthesis* **1994**, 170.
- (25) Bansi, L.; Ramesh, G. M.; de Souza, N. J. J. Org. Chem. 1990, 55, 5117.
- (26) Sinitsa, A. D.; Bonadyk, S. V.; Markovskii, L. N. J. Org. Chem. USSR 1978, 14, 1030.
- (27) Vidaluc, J.-L.; Calmel, F.; Bigg, D.; Carilla, E.; Stenger, A.; Chopin, P.; Briley, M. J. Med. Chem. 1994, 37, 689.
- (28) Mertens, H.; Troschuetz, R.; Roth, H. J. Arch. Pharm. **1986**, *319*, 161.
- (29) Sone, M.; Tominaga, Y.; Matsuda, Y.; Kobaysshi, G. Yakugaku Zasshi 1977, 97, 262; Chem. Abstr. 1977, 87, 53195v.

- (30) Reddy, A. V. N.; Maiti, S. N.; Singh, I. P.; Micetich, R. G. Synth. Commun. 1989, 19, 3021.
- (31) Foks, H.; Pancechowska-Ksepko, D.; Janowiec, M.; Zwolska, Z.; Augustynowicz-Kopec, E. *Phosphorus, Sulfur Silicon Relat. Elem.* 2005, 180, 2291.
- (32) Vovk, M. V.; Sukach, V. A.; Chernega, A. N.; Pyrozhenko, V. V.; Bol'but, A. V.; Pinchuk, A. M. *Heteroat. Chem.* 2005, 16, 426.
- (33) (a) Huang, Z.-T.; Gan, W.-X.; Li, L.-P. *J. Prakt. Chem.* 1990, *332*, 1035. (b) Maybhate, S. P.; Deshmukh, A. R. A. S.; Rajappa, S. *Tetrahedron* 1991, *47*, 3887.
- (34) Becker, C. W.; Dembofsky, B. T.; Hall, J. E.; Jacobs, R. T.; Pivonka, D. E.; Ohnmacht, C. J. *Synthesis* **2005**, 2549.