

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 2865-2868

Tetrahedron Letters

An expedient, regioselective synthesis of 2-alkylamino- and 2-alkylthiothiazolo[5,4-*e*]indoles

Manas Chakrabarty,^{a,*} Taraknath Kundu,^a Shiho Arima^b and Yoshihiro Harigaya^b

^aDepartment of Chemistry, Bose Institute, 93/1, A.P.C. Road, Kolkata 700009, India ^bSchool of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108, Japan

Received 22 December 2004; revised 17 February 2005; accepted 21 February 2005

Abstract—1-Benzenesulfonyl-5-aminoindole 5, prepared from 5-nitroindole 3, was condensed with alkyl isothiocyanates and separately with carbon disulfide and alkyl bromides/iodides to furnish efficiently the corresponding *N*-alkyl-thioureidoindoles **6a**–c and the alkyl *N*-(indol-5'-yl)dithiocarbamates **9a–e**, respectively. Their cyclisation using *N*-bromosuccinimide (NBS) and 1,8-diazabicy-clo[5.4.0]undec-7-ene (DBU), in the cold, followed by indolic *N*-deprotection, furnished regioselectively the 2-alkylamino- and the 2-alkylthiothiazolo[5,4-e]indoles **8a–c** and **11a–e**, respectively, in good overall yields. © 2005 Elsevier Ltd. All rights reserved.

Thiazoles are important heterocycles and continue to be synthetic targets because thiazolyl (hetero)arenes and several classes of annulated thiazoles display a diverse array of biological activities. The cruciferous phytoalexins, camalexins and spirobrassinins, are examples of thiazolyl heteroarenes,¹ whereas annulated thiazoles comprise the cytotoxic thiazoloquinazolines, -quino-lines, -acridines, -acridones, 2-cyano-thiazolobenzodioxins, 2-(4-amino)phenyl- and 2-cyanobenzothiazoles and thiazolocarbazoles,² the cytotoxic thiazoloquinazolinones,³ the antitumor and antitubercular thiazoloimidazoles,⁴ the central dopamine agonists thiazoloindans and -benzopyrans,⁵ the thiazoloxindole-based CDK-2 inhibitors⁶ and the thiazolothiazepine-based HIV-1 integrase inhibitors.⁷

Motivated by the bioactive potential of annulated thiazoles, we have recently reported a new synthetic route to thiazolocarbazoles.⁸ In continuation, we became interested in thiazoloindoles (TIs), only two isomeric types of which appear to have been synthesised up to now. Thus, for preparing polymethine dyes, 2,7,8-trimethylthiazolo[5,4-*e*]indole **1** was synthesised by the Fischer indole reaction of N-(2-methyl-6-benzothiazolyl)hydrazine with 2-butanone.⁹ Later, in search of serotonin antagonists, the 5-substituted thiazolo-[5,4-f]indole **2** was synthesised from 1-acetyl-6-aminoindoline in four steps in ca. 8% overall yield.¹⁰ We became interested in developing a new synthetic route to the [5,4-e]-TI ring contained in **1**, in which we would construct the thiazole nucleus on the benzene ring of an indole, in contrast to the construction of the pyrrole nucleus on the benzene ring of a benzothiazole, as was used in the synthesis of **1**. As a result, we have been able to develop a new synthesis of 2-alkylamino- and 2-alkylthio[5,4-e]-TIs. Our successful findings are presented in this letter.

Our plan was to cyclise *N*-alkylthioureidoindoles. Accordingly, commercially available 5-nitroindole **3** was reduced (hydrazine hydrate, palladised charcoal, refluxing methanol)^{11a} to 5-aminoindole (90%) which was then condensed with methyl isothiocyanate in

Keywords: Thiazolo[5,4-*e*]indoles; Regioselective synthesis; Thioureidoindoles; Indolyldithiocarbamates; NBS–DBU.

^{*}Corresponding author. Tel.: +91 33 23506619; fax: +91 33 23506790; e-mail: chakmanas@yahoo.co.in

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.02.125

refluxing dry methanol to furnish 5-(N-methyl)thioureidoindole efficiently (92%). However, when we attempted cyclisation using bromine in acetic acid in the cold¹² or on montmorillonite K10 clay-para-toluenesulfonic acid (TsOH) at 60 °C,8b it underwent complete decomposition in both the cases. In order to overcome this difficulty, 5-nitroindole was first protected as its N-benzenesulfonyl derivative 4 (96%) and then reduced to the 5-amino derivative 5 by transfer hydrogenation using 10% palladised charcoal and either ammonium formate^{11b} (75%) or hydrazine hydrate^{11a} (94%). The amine 5 was then condensed separately with methyl, ethyl and benzyl isothiocyanates in refluxing dry methanol to give the respective 1-benzene-sulfonyl-5-(N-alkylthioureido)indoles $6a-c^{13}$ in ca. 90% yields. The conspicuous appearance of, (i) a ¹³C NMR signal at δ 181–182 for the thiocarbonyl carbon, (ii) the peaks arising from the loss of H_2S (34 m.u.), RNH_2 (31/45/ 107 m.u.) and RNCS (73/87/149 m.u.) from the respective molecular ion-peaks in their mass spectra and (iii) supportive NMR and analytical data consolidated the structures of **6a–c**.

Since, in the case of thiazolocarbazoles, bromine in acetic acid had earlier been shown by us to lead to both angular and linear cyclisations and additionally to cause nuclear bromination,^{8a} whereas clay-TsOH at 60 °C resulted in regioselective cyclisations,^{8b} **6c**, as a representative substrate, was adsorbed on clay-TsOH and heated at 60 °C for a few hours, but unfortunately it remained completely unchanged.

Since, inter alia, NBS–DBU^{14a} and NBS–Et₃N^{14b} had been used previously for the cyclisation of the phytoalexin brassinin, an (indol-3'-yl)methyldithiocarbamate, to the corresponding indolothiazine, cylobrassinin, we decided to try NBS for the cyclisation of thioureido-(hetero)arenes to thiazolo(hetero)-arenes. Accordingly, each of **6a**–**c** was separately treated with NBS in dichloromethane at -10 °C and then with DBU, and the substrates cyclised rapidly and regioselectively to 6benzenesulfonyl-2-alkylamino-thiazolo[5,4-*e*]indoles **7a–c** in good yields.¹⁵ Subsequent indolic *N*-deprotection¹⁶ using methanolic potassium carbonate furnished the 2-alkylaminothiazolo[5,4-*e*]indoles **8a–c**¹⁷ in 48–62% overall yields starting from **3** (Scheme 1).

The appearance of two one-proton doublets at δ 7.25/ 7.39/7.27 and δ 7.20/7.32/7.20 (refer to H-4 and H-5, respectively, of the TI skeleton) with J = 8.5 Hz consolidated their angular structures, since the corresponding protons, H-4 and H-8, of the alternative linear [4,5-*f*]-TI structures would have appeared as one-proton singlets. Also, the shift of the ¹³C NMR signals of C-8 from δ 108 in **7a–c** to ca. δ 100 in **8a–c** was a pointer to the cleavage of the *N*-benzenesulfonyl group.

This success prompted us to extend this methodology for a similar synthesis 2-alkylthiothiazoloindoles. Therefore, **5** was separately treated with carbon disulfide and each of methyl, ethyl, *n*-propyl, *n*-butyl and *i*-butyl bromides/iodides in the presence of pyridine and triethylamine to furnish efficiently, the respective alkyl

For 6-8 : R = Me (a), Et (b), CH₂Ph (c)

Scheme 1. Reagents and conditions: (i) NaOH, n-Bu₄N⁺HSO₄⁻, CH₂Cl₂, rt, 1 h, PhSO₂Cl, 3 h; (ii) HCO₂NH₄, 10% Pd–C, MeOH, reflux, 6–7 h; or (iii) NH₂NH₂·H₂O, 10% Pd–C, MeOH, reflux, 3 h; (iv) RNCS (1.2 equiv), dry MeOH, reflux, 3–7 h; (v) NBS (1 equiv), CH₂Cl₂, -10 °C, 5–10 min, DBU (2 equiv), stir, 30 min; (vi) K₂CO₃ (4 equiv), MeOH–H₂O (3:1), reflux, 6–8 h.

N-(1'-benezensulfonylindol-3'-yl)dithiocarbamates **9a–e**.¹⁸ The molecular weights of **9a–e** were determined from FAB-MS, which recorded peaks corresponding to (M+H), (M+H–H₂S) and (M+H–RSH), thereby additionally consolidating the presence of the alkyl dithiocarbamate side-chain in each of them. The appearance of the thiocarbonyl carbon at δ 197 for **9a** and δ 201 for **9b–e** in their ¹³C NMR spectra lent additional support to the derived structures.

The cyclisation of **9a–e** by similar treatment with NBS– DBU, as in the cases of **6a–c**, furnished only the angularly cyclised products, viz 2-alkylthio-6-benzenesulfonylthiazolo[5,4-*e*]indoles **10a–e** in very good yields. In **10a–e**, the disappearance of the thiocarbonyl carbon signals and the appearance of signals at δ 164–165 were suggestive of cyclisations occuring. Also, the appearance of two one-proton, doublets at δ 7.8 and 8.0 with J = 9 Hz in **10a–e** demonstrated angular cyclisations. Subsequent indolic *N*-deprotection using methanolic potassium carbonate resulted in the smooth formation of the 2-alkylthiothiazolo[5,4-*e*]indoles **11a–e**¹⁹ in 64– 71% overall yields starting from **3** (Scheme 2). Cleavage

For 9-11: R = Me(a), Et (b), *n*-Pr (c), *n*-Bu (d), *i*-Bu (e)

Scheme 2. Reagents and conditions: (i) CS_2 (1.2 equiv), Py-Et₃N, 0 °C, 30–45 min, RX (1.2 equiv; R = Br for 6d and I for the remainder), 2–3 h; (ii) NBS (1 equiv), CH_2Cl_2 , -10 °C, 5–10 min, DBU (2 equiv), stir, 30 min; (iii) K₂CO₃ (4 equiv), MeOH–H₂O (3:1), reflux, 6–8 h.

÷ .	-	•	•		
Thioureidoindoles	Time (h); yields (%)	N-SO ₂ Ph-TIs	Yields (%)	2-Alkylamino-TIs	Yields (%)
6a	3.0; 90	7a	70	8a	85
6b	4.5; 92	7b	78	8b	95
6c	7.0; 89	7c	75	8c	90
Indolyldithiocarbamates	Yields (%)				
9a	95	10a	85	11a	98
9b	98	10b	82	11b	95
9c	93	10c	85	11c	94
9d	90	10d	86	11d	92
9e	90	10e	84	11e	96

Table 1. Regioselective synthesis^{a,b} of 2-alkylamino-TIs **8a–c** and 2-alkylthio-TIs **11a–e** starting from **5**

^a All products were identified by IR, ¹H and ¹³C NMR, DEPT 135, MS, elemental analysis/HRMS, and in some cases additionally by HMQC and HMBC spectra.

^bRefer to isolated pure products.

of the benzenesulfonyl groups was apparent from appropriate MS and NMR data, as well as from the lowering of the chemical shift of C-8 from δ 107–108 in **10a–e** to δ 101 in **11a–e**. A typical cyclisation procedure¹⁵ and the yields of both types of condensation products as well as the TIs (Table 1) are presented.

In conclusion, we have developed an expedient and efficient five-step, regioselective synthesis of both 2-alkylamino- and 2-alkylthiothiazolo[5,4-*e*]indoles, which involves the construction of the thiazole nucleus on the benzene ring of precursor indoles. However, the bioactive potential of the synthesised TIs remains to be explored.

Acknowledgements

The authors sincerely thank the Director, Bose Institute for laboratory facilities, the C.S.I.R., Government of India for providing a fellowship (T.K.), Mr. B. Majumder, NMR Facilities and Mr. P. Dey, Microanalytical Laboratory, both of B.I., for recording the spectra.

References and notes

- Pedras, M. S. C.; Okanga, F. I.; Zaharia, I. L.; Khan, A. Q. Phytochemistry 2000, 53, 161–176.
- 2. See Refs. 1–9 and 14–16 in Ref. 8b below.
- 3. Alexandre, F.-R.; Berecibar, A.; Wrigglesworth, R.; Besson, T. *Tetrahedron Lett.* 2003, 44, 4455–4458, and references cited therein.
- Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. *Eur. J. Med. Chem.* 2001, *36*, 743–746.
- 5. van Vliet, L. A.; Rodenhuis, N.; Wikström, H. J. Med. Chem. 2000, 43, 3549–3557.
- Davis, S. T.; Benson, B. G.; Bramson, H. N.; Chapman, D. E.; Dickerson, S. H.; Dold, K. M.; Eberwein, D. J.; Edelstein, M.; Frye, S. V.; Gampe, R. T., Jr.; Griffin, R. J.; Harris, P. A.; Hassell, A. M.; Holmes, W. D.; Hunter, R. N.; Knick, V. B.; Lackey, K.; Lovejoy, B.; Luzzio, M. J.; Murray, O.; Parker, P.; Rocque, W. J.; Shewchuk, L.; Veal, J. M.; Walker, D. H.; Kuyper, L. F. Science 2001, 291, 134–137.
- Aiello, F.; Brizzi, A.; Garofalo, A.; Grande, F.; Ragno, G.; Dayam, R.; Neamati, N. *Bioorg. Med. Chem.* 2004, *12*, 4459–4466.

- (a) Chakrabarty, M.; Ghosh, N.; Harigaya, Y. *Hetero-cycles* 2004, 62, 779–786; (b) Chakrabarty, M.; Ghosh, N.; Harigaya, Y. *Tetrahedron Lett.* 2004, 45, 4955–4957.
- Dzyabenko, V. G.; Abramenko, P. I. Zh. Org. Khim. 1988, 24, 831–835, Chem. Abstr. 1988, 109, 56555w.
- Kitazawa, N.; Ueno, K.; Takahashi, K.; Kimura, T.; Sasaki, A.; Kawano, K.; Okabe, T.; Komatsu, M.; Matsunaga, M.; Kubota, A. EP 0976732; *Chem. Abstr.* 1998, 129, 302552.
- (a) Kyziol, J. B.; Daszkiewicz, Z. Pol. J. Chem. 1983, 57, 839–847; (b) Ram, S.; Ehrenkaufer, R. E. Tetrahedron Lett. 1984, 25, 3415–3418.
- 12. Ambati, N. B.; Anand, V.; Hanumanthu, P. Synth. Commun. 1997, 27, 1487–1493.
- 13. Data of a representative member, **6a**: mp 172–174 °C; IR (nujol): 3370, 1533, 1275, 1109, 1056, 777, 731 cm⁻¹; ¹H NMR (CDCl₃): δ 3.08 (3H, d, J = 4.5 Hz), 5.98 (1H, br s), 6.66 (1H, d, J = 3.5 Hz), 7.15 (1H, d, J = 8.5 Hz), 7.40 (1H, s), 7.48 (2H, t, J = 7.5 Hz), 7.58 (1H, t, J = 7.5 Hz), 7.62 (1H, d, J = 3.5 Hz), 7.88 (2H, d, J = 7.5 Hz), 8.0 (1H, d, J = 8.5 Hz), 8.16 (1H, br s); ¹³C NMR: δ 32.4 (CH₃), 109.2, 115.3, 119.4, 123.2, 127.2 (×2), 128.3, 129.9 (×2), 134.5 (all Ar–CH), 131.9, 132.2, 133.9, 138.3 (all Ar–C), 182.3 (C=S); EI-MS: m/z 345 (M⁺), 315, 314, 311, 272, 173, 170 (100%), 141, 131, 77. Anal. Calcd for C₁₆H₁₅N₃O₂S₂: C, 55.65; H, 4.35; N, 12.17%. Found: C, 55.60; H, 4.34; N, 12.19%.
- (a) Monde, K.; Tamura, K.; Takasugi, M.; Kobayashi, K.; Somei, M. *Heterocycles* 1994, *38*, 263–267; (b) Mehta, R. G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne, M.; You, M.; Gerhäuser, C.; Pezzuto, J. M.; Moon, R. C.; Moriarty, R. M. *Carcinogenesis* 1995, *16*, 399–404.
- 15. General procedure for the cyclisation of 6a-c to 7a-c and 9a-e to 10a-e: To a solution of 6a-c/9a-e (1 mM) in CH₂Cl₂ (10 mL) at -10 °C were added NBS (1 mM), and, after 5-10 min, DBU (2 mM). The solution was stirred for another 30 min, then poured into saturated aqueous Na₂S₂O₃ (15 mL) and extracted with CH₂Cl₂ (3 × 25 mL). The pooled extracts were washed with water, dried (Na₂SO₄), the solvent removed in vacuo and the residue was purified either by crystallisation (for 10a, 10b) from CH₂Cl₂-petroleum ether, bp 60-80 °C or by column chromatogaphy over neutral alumina (for 7a-c) (elution with 25-35% EtOAc in pet. ether) or over silica gel (for 10c-e) (elution with 5-10% EtOAc in pet. ether).
- 16. Tholander, J.; Bergman, J. Tetrahedron 1999, 55, 6243-6260.
- 17. Data of a representative member, **8a**: mp 158–160 °C; IR (KBr): 3396, 3224, 3101, 1614, 1564, 1409, 761 cm⁻¹; ¹H NMR (DMSO- d_6): δ 2.90 (3H, d, J = 3 Hz),), 6.30 (1H, s), 7.20 and 7.25 (1H, d each, J = 8.5 Hz), 7.31 (1H, s), 7.51

(1H, br s), 11.13 (1H, s); ¹³C NMR: δ 31.5 (CH₃), 99.8, 110.2, 113.9, 126.4 (all Ar–CH), 120.0, 121.7, 132.6, 146.8, 165.2 (all Ar–C); EI-MS: *m*/*z* 203 (M⁺; 100%), 202, 188, 175, 174, 162, 161, 147. Anal. Calcd for C₁₀H₉N₃S: C, 59.11; H, 4.43; N, 20.69%. Found: C, 59.02; H, 4.42; N, 20.72%.

18. Data of a representative member, **9c**: mp 132–134 °C; IR (nujol): 1520, 1406, 1372, 1170, 1129, 731 cm⁻¹; ¹H NMR (CDCl₃): δ 0.97 (3H, t, J = 7 Hz), 1.69 (2H, sextet, J = 7 Hz), 3.24 (2H, t, J = 7 Hz), 6.65 (1H, dd, $J_1 = 4$ Hz, $J_2 = 1$ Hz), 7.28 (1H, br d, J = 9 Hz), 7. 45 (2H, t, J = 7.5 Hz), 7.55 (1H, tt, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz), 7.60 (1H, d, J = 4 Hz), 7.62 (1H, br s), 7.89 (2H, dt, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz), 7.99 (1H, d, J = 9 Hz), 9.10 (1H, br); ¹³C NMR: δ 13.4 (CH₃), 22.0, 38.2 (both CH₂), 109.1,

113.9, 118.3, 122.3, 126.7 (×2), 127.5, 129.3 (×2), 134.0 (all Ar–CH), 131.0, 133.4, 133.7, 138.0 (all Ar–C), 201.0 (C=S); FAB-MS: m/z 391 (M+H)⁺. Anal. Calcd for C₁₈H₁₈N₂O₂S₃: C, 55.38; H, 4.61; N, 7.18%. Found: C, 55.31; H, 4.62; N, 7.20%.

19. Data of a representative member, 11c: mp 90–92 °C; IR (KBr): 3436, 1620, 1411, 1353, 1191, 883, 788 cm⁻¹; ¹H NMR (CDCl₃): δ 1.08 (3H, t, *J* = 7.5 Hz), 1.86 (2H, sextet, *J* = 7 Hz), 3.30 (2H, t, *J* = 7 Hz), 6.61 (1H, s), 7.28 (1H, t, *J* = 2.5 Hz), 7.43 and 7.73 (1H, d each, *J* = 9 Hz), 8.68 (1H, s); ¹³C NMR: δ 12.9 (CH₃), 22.3, 35.8 (both CH₂), 101.2, 109.8, 115.6, 124.2 (all Ar–CH), 120.1, 126.5, 132.1, 147.9, 161.5 (all Ar–C) EI-MS: *m/z* 248 (M⁺), 233, 220, 215, 206 (100%), 174, 148; HR EI-MS: *m/z* 248.0434 (M⁺). Calcd for C₁₂H₁₂N₂S₂: 248.0442.