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Abstract: An electrochemical process has been developed for chemoselective oxidation of 

primary alcohols in lignin to the corresponding carboxylic acids. The electrochemical oxidation 

reactions proceed under mildly basic conditions and employ 2,2,6,6-tetramethyl-1-piperidine N-

oxyl (TEMPO) and 4-acetamido-TEMPO (ACT) as catalytic mediators. Lignin model compounds 

and related alcohols are used to conduct structure-reactivity studies that provide insights into the 

origin of the reaction selectivity. The method is applied to the oxidation of lignin extracted from 

poplar wood chips via a mild acidolysis method, and the reaction affords a novel polyelectrolyte 

material. Gel permeation chromatography data for the oxidized lignin shows that this material has 

a molecular weight and molecular weight distribution very similar to that of the extracted lignin, 

but notable differences are also evident. Base titration reveals a significant increase in the acid 

content, and the oxidized lignin has much higher water solubility relative to the extracted lignin. 

Treatment of the oxidized lignin under acidic conditions results in depolymerization of the material 

into characterized aromatic monomers in nearly 30 wt% yield.  
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 2 

Introduction 

Lignin is a major constituent of nonedible biomass that is biosynthesized via radical coupling 

of phenylpropanoid units.1 The lignin polymer, which features a non-regular pattern of methoxy-

substituted aromatic groups linked together via aliphatic ether fragments (Scheme 1a), represents 

the largest source of naturally occurring aromatic chemicals in nature. The complex structure and 

composition of the covalent bonds in the polymer backbone, however, complicate selective 

breakdown of this material, and it is typically treated as a waste product and burned as an energy 

source in the paper and pulp industry.2 Marketable applications have been identified for lignin,3-8 

but the installation of cellulosic ethanol plants and preparations for future biorefineries have 

highlighted the need to gain increased value from lignin and/or lignin-derived materials.9-12 Major 

efforts have been directed toward conversion of lignin into low molecular weight chemicals that 

could potentially serve as fuels or as feedstocks for the chemical industry.13-20 These efforts have 

led to a number of effective lignin depolymerization approaches, including pyrolysis, acid or base 

treatment, catalytic hydrogenolysis or related reductive methods, and oxidation methods. The 

reduction and oxidation methods have been shown to be capable of converting lignin into a small 

collection of aromatic monomers in relatively high yields (i.e., ≥ 30 wt% relative to the lignin 

precursor). 

The electron-rich aromatic groups in lignin are susceptible to outer-sphere electron transfer,21 

and oxidative degradation of lignin by laccase and peroxidase enzymes is the primary pathway for 

lignin breakdown in nature.22,23 In addition, the aliphatic ethers that connect the aromatic groups 

in the polymer chain often feature primary or secondary alcohols that are susceptible to oxidation 

(Scheme 1a). The most prevalent fragment is the b-O-4 unit, which features a benzylic secondary 

alcohol and a primary aliphatic alcohol (Scheme 1b).9 In 2013, we evaluated a wide range of 
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 3 

stoichiometric and catalytic alcohol oxidation methods in an effort to assess their ability to promote 

selective oxidation of one of these two alcohols.24 In fact, a number of oxidation methods and 

reagents examined led to chemoselective oxidation of a single alcohol in the b-O-4 unit, and both 

oxidation products undergo facile cleavage of C–C and/or C–O bonds of the aliphatic ether linker 

to afford monoaromatic products (Scheme 1c).25,26  

 
Scheme 1. a) Representative Structure of Lignin, b) Lignin Units Bearing Alcohol Groups, and 
c) Chemoselective Alcohol Oxidation Strategies for Cleavage of b-O-4 Lignin Model. 
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 4 

Numerous selective alcohol oxidation methods have now been identified for lignin and lignin 

model compounds by our group and others, and the majority of these examples promote selective 

oxidation of the secondary benzylic position.24,27-41 Although partial oxidation of primary alcohols 

in lignin was observed in the process of oxidative pulp treatment by TEMPO/bleach (TEMPO = 

2,2,6,6-tetramethyl-1-piperidine N-oxyl),42-44 relatively few methods have been identified for 

selective oxidation of the primary alcohols in lignin, and successful examples typically afford the 

aldehyde as the product.24,45-48 

Organic aminoxyls (also called nitroxyls), such as TEMPO and ACT (4-acetamido-TEMPO) 

(Scheme 2a), are especially effective stoichiometric reagents and catalysts for alcohol oxidation in 

lignin.24,28,29,42,45 Aminoxyl-mediated alcohol oxidation has an extensive history,49 and catalytic 

methods are widely used in industrial chemical synthesis.50,51 The methods are initiated by 

oxidation of the aminoxyl radical (or the corresponding hydroxylamine) to the oxoammonium 

species. Under acidic conditions, the oxammonium promotes alcohol oxidation via a bimolecular 

hydride transfer mechanism that strongly favors reaction with the secondary benzylic alcohol in 

lignin (Scheme 2b). In contrast, under basic conditions, the oxoammonium mediates alcohol 

oxidation by an inner sphere mechanism that favors reaction with the less sterically hindered 

primary alcohol (Scheme 2b).49,52,53 The different conditions pair different terminal oxidants with 

the aminoxyl catalyst, however. The acidic conditions are capable of using O2,24,29,54 while basic 

conditions typically employ chlorine- or hypervalent iodine-based oxidants.24,42-45 The NOx-based 

co-catalyst that enables aerobic regeneration of the oxoammonium species under acidic 

conditions55 is not effective under basic conditions. On the other hand, aminoxyl catalysts have 

been widely studied in the context of electrochemical alcohol oxidation,56,57 including oxidation 
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 5 

of biomass-derived carbohydrates and sugars,58-61 and such approaches would provide a 

sustainable alternative to the use of undesirable stoichiometric oxidants (Schemes 2c and 2d).62-66  

 

Scheme 2. a) Structure of TEMPO and ACT; b) Mechanism of Alcohol Oxidation by 
Oxoammonium Under Basic and Acidic Conditions; c) Chemical and d) Electrochemical 
Oxidation of Lignin Mediated by Aminoxyl Radicals. 
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 6 

Results and Discussion 

Electrochemical Study. We initiated our study using cyclic voltammetry (CV) and 

chronoamperometry72,73  for the study of TEMPO-mediated electrochemical oxidation of the β-O-

4 lignin model 1a under mild basic conditions (pH 10, Figure 1). In the absence of 1a, the CV of 

TEMPO shows an anodic peak corresponding to oxidation of TEMPO to oxoammonium 

(TEMPO+) (labeled A1 in Figure 1, trace a) and a cathodic peak for the reduction of 

electrogenerated TEMPO+ at the electrode surface (labeled C1 in Figure 1, trace a). Two major 

changes are observed for the CV of TEMPO in the presence of 1a (Figure 1 trace b): the cathodic 

peak is absent and the anodic peak current exhibits a 10-fold increase in magnitude. These changes, 

which indicate the consumption of TEMPO+ and generation/regeneration of TEMPOH (the 

reduced form of TEMPO) by the substrate, respectively, provide evidence for an electrocatalytic 

 

 

Figure 1. Cyclic voltammograms (left) and chronoamperograms (right) of 1.0 mM TEMPO in the 
presence (red, b and d) and absence (blue, a and c) of 10 mM 1a. Solution condition: H2O/CH3CN 
(70/30), NaHCO3/Na2CO3 electrolyte (0.07/0.07 M, pH 10), scan rate for cyclic voltammetry is 10 
mVs–1 and applied potential for chronoamperometry is 0.7 V vs. Ag/AgCl, the above scheme 
represents the possible mechanism for TEMPO catalyzed alcohol oxidation. 
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 7 

reaction. The enhancement of the oxidation peak current in the presence of the lignin model 

compound is proportional to the catalytic turnovers that occur on the CV time scale. 

Chronoamperometry was used to obtain quantitative data complementary to the CV data. A 

chronoamperogram of TEMPO in the absence of 1a (Figure 1, trace c) shows the diffusion-

controlled oxidation current corresponding to the oxidation of TEMPO to TEMPO+ at the electrode 

surface. Addition of 1a to the TEMPO solution leads to an increase in the oxidation current (Figure 

1, trace d) due to the catalytic turnover of TEMPOH. Integration of the resulting current/time 

traces, depicted by the shaded regions under the chronoamperogram traces, provides the total 

consumed charge in the redox reaction. The ratio of the consumed charge in the presence and 

absence of substrate during the chronoamperometry experiments, together with the reaction 

stoichiometry, provides the basis for the TOF of the catalytic reactions.74  

Analogous chronoamperometry experiments were then conducted with a number of different 

model compounds and subunits bearing lignin-type alcohol groups (1a – 7a, Figure 2). The results 

clearly demonstrate higher TOFs with primary alcohols (e.g., 2a > 3a), in addition to higher 

reactivity with alcohols bearing an ether oxygen atom in the b position of the alcohol (1a > 4a, 2a 

> 5a and 6a/7a > 3a). The presence of electron-donating methoxy group on the benzene ring has 

minimal effect on the reactivity of benzylic alcohol groups toward oxidation by TEMPO+ (6a vs 

7a). 
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 8 

 

Figure 2. TOFs for TEMPO-catalyzed electrochemical oxidation of various lignin-related 
alcohols, derived by chronoamperometric experiments. Alcohol structures are shown in red; gray 
portions of the structures are not part of molecule, but are included to show the relationship to the 
lignin substructures. Reaction conditions: H2O/CH3CN (70/30), NaHCO3/Na2CO3 electrolyte (pH 
10), applied potential for chronoamperometry 0.7 V vs. Ag/AgCl.  
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 9 

S2-S4 in Supporting Information). As a result of these observation, bulk electrolysis experiments 

were carried out with ACT. 

  

Figure 3. Cyclic voltammograms of 1.0 mM TEMPO and ACT in the absence (a and b) and 
presence of 10 mM 1a (c and d), highlighting the increased activity of ACT. Solution condition: 
H2O/CH3CN (70/30), NaHCO3/Na2CO3 electrolyte (0.07/0.07 M, pH 10), scan rate for cyclic 
voltammetry is 10 mVs–1 and applied potential for chronoamperometry is 0.7 V vs. Ag/AgCl. 
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 10 

 

Table 1. ACT mediated electrolysis reactions of various lignin models. 
 

 
Conditions: 0.05 mmol of ACT and 1 mmol of each substrate in 8 mL H2O/CH3CN (70/30), 
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trimethoxybenzene. 
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 11 

carboxylic acid (2c and 5c) or ketone (3b, 7b and 8b) products. Oxidation of compound 4a, bearing 

a β-1 linkage (i.e., lacking the ether present in 1a; see also, Scheme 1b), results in cleavage of the 

aliphatic ether unit, affording products that arise from the retro-aldol reaction of the initially 

formed aldehyde intermediate to generate 3,4-dimethoxybenzaldehyde and the homologous 

aliphatic aldehyde fragment. The aliphatic aldehyde then undergoes oxidation to generate 

carboxylic acid 4d, while the benzaldehyde does not undergo oxidation under these reaction 

conditions due to its lower susceptibility to hydrate formation.70 Lignin models bearing a free 

phenol group, 9a and 9b, undergo direct electron transfer at the electrode surface at potentials 

similar to redox potentials of ACT or TEMPO; therefore, subjecting these molecules to the 

standard electrochemical oxidation conditions affords 2,6-dimethoxyquinone (9c) as the major 

product.75  

Substrates 1a and 4a differ only in the presence or absence of a β-ether group in the aliphatic 

tether between the two aryl groups; however, these two substrates exhibit substantial differences 

in reactivity toward oxidative cleavage. To probe the basis for these differences, we analyzed the 

reaction progress for the simplified substrate analogs 2a and 5a (Figure 4a). The data show nearly 

direct conversion of 2a into the corresponding carboxylic acid 2c, with little build-up of the 

intermediate aldehyde 2b (Figure 4b). In contrast, the oxidation of 5a leads to significant build-up 

of the intermediate aldehyde 5b (Figure 4c). This difference is again rationalized by the relative 

preference for formation of the aldehyde hydrate, which is favored for more electron deficient 

aldehydes (2b > 5b).76 These results suggest the aldehyde product arising from initial oxidation of 

4a may have sufficient lifetime to undergo retro-aldol cleavage of the C–C bond, while the 

analogous intermediate derived from oxidation of 1a has negligible lifetime and undergoes further 

oxidation to the carboxylic acid product 1c. 
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 12 

   
Figure 4. (a) Reaction sequence showing oxidation of alcohols 2a and 5a to aldehydes 2b and 5b 
and then to carboxylic acids 2c and 5c. (b and c) Reaction progress data showing the concentration 
profiles of the alcohol, aldehyde and carboxylic acids as a function of charge passed for the 
oxidation of 2a and 5a during the bulk electrolysis reactions. (d) Mechanistic proposal to account 
for the products obtained from oxidation and oxidative cleavage of the β-O-4 substrate 1a. 
Reaction conditions: 0.05 mmol of ACT and 1 mmol of each substrate in 8 mL H2O/CH3CN 
(70/30), NaHCO3/Na2CO3 electrolyte pH 10, electrolysis at 0.80 V vs. Ag/AgCl. 
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 13 

however, increasing quantities of retro-aldol C–C cleavage products 1b and 1c were observed 

(entries 3 and 4).  

 
Table 2. Oxidation and oxidative cleavage of β-O-4 lignin linkage.a 

 
a Reaction conditions: 0.05 mmol of ACT and 1 mmol 1a in 8 mL solution, electrolysis at 0.80 V, the 
reactions were terminated when the currents reached to 5% of the initial current. Reported yields obtained 
by 1H NMR spectroscopy (internal standard = 1,3,5-trimethoxybenzene). 

 

Lignin Oxidation and Characterization of Oxidized Lignin. With these insights from the 

lignin model studies in hand, we turned our attention to experiments with lignin itself. The lignin 

sample was obtained from poplar wood chips via a previously reported mild acidolysis extraction 
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analysis; see Supporting Information for details), with considerable retention of the desired b-O-4 

subunits. The CV of ACT in the presence of poplar lignin demonstrates a well-defined oxidative 

catalytic feature (Figure 5a, red trace), while the lignin in the absence of ACT doesn’t show 

significant redox activity in the potential range of ACT oxidation (Figure 5a, blue trace). Bulk 

electrolysis of the lignin under constant-potential conditions (0.80 V vs Ag/AgCl, Figure 5b) 

suggests a removal of somewhat more than 2e– per monomer unit of lignin (i.e., 2.4 e– per each 

180 AU of lignin). The oxidized lignin exhibits significantly higher solubility in water than the 
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 14 

original unoxidized lignin (14 g/L vs < 2 g/L, respectively, at pH 9). This observation is 

rationalized by the presence of carboxylate functional groups that will enhance the water solubility 

of the polymer. An acid-base titration of the oxidized lignin with NaOH (Figure 5c) reveals the 

presence of approximately 2.3 mmol of acid functional groups per gram of the oxidized lignin. 

This value may be compared to the much lower value of approximately 0.2 mmol of acid per gram 

of unoxidized lignin. 
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Figure 5. (a) Cyclic voltammograms of poplar lignin (blue), ACT (black) and mixture of ACT and 
lignin (red); (b) ACT mediated electrochemical oxidation of lignin; the resulting current and 
consumed charge curves for controlled potential electrolysis (at 0.80 V vs Ag/AgCl). Reaction 
Conditions: 0.23 mmol of ACT and 100 mg of lignin in 8 mL H2O/CH3CN (70/30), 
NaHCO3/Na2CO3 electrolyte pH 10, scan rate for cyclic voltammetry 100 mVs–1, electrolysis at 
0.80 V vs. Ag/AgCl. c) Acid-Base of oxidized lignin; and titration curves of lignin before (black 
trace) and after ACT-mediated oxidation (green trace) in 10 ml mixture of H2O/CH3CN (70/30) 
using 0.01 M aqueous NaOH.  
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Analysis of the lignin before and after oxidation by gel-permeation chromatography (GPC) 

revealed an approximately 30% reduction in the molecular weight of the material (Figure 6), as 

reflected by the Mn and Mw values derived for untreated and oxidized lignin: 1.94 and 7.92 kDa 

(untreated) and 1.49 and 5.05 kDa (oxidized), respectively. This observation suggests that some 

depolymerization occurs as a result of the electrochemical oxidation at pH 10; however, the 

material clearly retains a polymeric structure. Analysis of the 2D 1H-13C HSQC NMR spectra of 

the lignin samples before and after oxidation provides further evidence for conversion of primary 

alcohol groups to the corresponding carboxylic acids (Figure 7). The oxidized lignin exhibits a 

decrease in intensity of the signal corresponding to the g- and b-hydrogens for the b-O-4 and b-5 

lignin residues, together with the appearance of a new signal corresponding to the b-hydrogen of 

the oxidized b-O-4 residue. Moreover, the signal corresponding to the a-hydrogens of the b-O-4 

lignin residues remain comparatively unchanged, supporting preferential oxidation of the primary 

aliphatic over the secondary benzylic alcohol groups.  

 
Figure 6. GPC chromatograms of (a) untreated and (b) oxidized poplar lignin. Conditions: PSS 
PolarSil Linear S column with solution of 0.1 M lithium bromide (LiBr) in dimethyl formamide 
(DMF) as the mobile phase (flow rate of 0.3 mL/min). 
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Figure 7. HSQC spectra of lignin before (left) and after (right) ACT-mediated electrochemical 
oxidation: a) aliphatic region, and c) aromatic region, b) and d) structures of lignin fragments with 
corresponding NMR signals.  
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oxidative depolymerization of lignin under more basic conditions. Efforts to achieve this goal, 

however, led to suboptimal results. Bulk electrolysis of the lignin sample at pH 12, for example, 

afforded ≤ 8 wt% yield of monomeric aromatic products relative to the mass of the initial lignin 

(see section 5 in the Supporting Information for details). The products derived from lignin 

depolymerization under these conditions are susceptible to recondensation/oligomerization or 

oxidative degradation.78-82  

In order to bypass this complication, we targeted a two-step oxidation/depolymerization 

sequence in which the lignin polymer could be oxidized and then treated under modified conditions 

to induce depolymerization. Cleavage of β-hydroxy acids has been reported under basic 

conditions;83 however, subjecting the oxidized model compound 1c or oxidized lignin material to 

more basic conditions (0.1 M NaOH, see section 9, Supporting Information) afforded less than 5% 

yield of cleavage products. In contrast, treatment of the oxidized lignin model compound 1c under 

various acidic conditions generated a mixture of the monomeric aromatic compounds, 1d-h 

(Figure 8a). This distribution of products may be rationalized by the reaction sequence shown in 

Figure 8b. The process is initiated by acid-induced elimination of the benzylic hydroxyl group 

from 1a to afford a vinyl ether that is susceptible to hydrolysis and generation of an a-ketoacid 

that resembles the Hibbert ketones.84-86 Subsequent decarboxylation of the ketoacid generates the 

observed products, guaiacol 1f and the aliphatic aldehyde 1g. The aldehyde 1g is susceptible to 

acid-catalyzed dimerization, via aldol condensation, electrophilic addition to the arene, and loss of 

water to form the naphthalene derivative 1h. Building on a report by Barta and de Vries, the H2SO4 

conditions from Figure 8a, entry 3 were repeated in the presence of ethylene glycol (eq 1).87 Under 

these conditions, 1g was trapped as the acetal 1i, which prevented further conversion of 1g into 

1h. In addition to the products obtained from the sequence in Figure 8b, a small quantity of 
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products arising from retro-aldol cleavage of 1c, generating 1d and 1e (Figure 8c) were also 

observed under the conditions noted in entries 1, 2, and 5 of Figure 8a.  

 

 
Figure 8. Acid-induced cleavage data with 1c (a) together with major and b) minor cleavage 
pathways that explain the origin of the observed depolymerization products. Reaction conditions 
for (a): 70 mg 1c, 5 mL solvent, 110 °C (100 °C for entry 3), yields of 1d-h determined by 1H 
NMR spectroscopy (int. std. = trimethoxybenzene). Note: yield obtained for 1h is multiplied by 
two to account for the dimeric nature of this product. 
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the benzylic position.26 Both conditions induced depolymerization of the resulting lignin, as 

revealed by GPC analysis of the material (cf. Figure S8). HPLC analysis of the product mixtures 

revealed significant quantities of aromatic products (Figure 9), with higher depolymerization 

yields from treatment with formic acid relative to those obtained when using sulfuric acid: 29 wt% 

(H2O/HCO2H) and 24 wt% (H2SO4; yields reported vs the original mass of untreated lignin). The 

significant yield of syringyl (S)- and guaiacyl (G)-derived aldehydes is consistent with the 

reactivity observed with the model compound 1c in Figure 8b and 8c. On the other hand, the 

significant yield of S- and G-derived a-diketones and carboxylic acids suggests that other cleavage 

pathways are occurring within the oxidized lignin that are not evident from the oxidized model 

compound 1c. We note that the HSQC NMR data in Figure 7 indicates the electrochemical 

oxidation leads to some oxidation of the benzylic alcohol groups, in addition to oxidation of the 

primary alcohols that produce the carboxylated lignin. Acid treatment of lignin oxidized at the 

benzylic position has been shown to generate a-diketones.26  

 
Figure 9. Aromatic monomers (weight percent) obtained from treatment of oxidized lignin with 
(a) sulfuric acid and (b) formic acid. Reaction conditions: 50 mg oxidized lignin, 6 mL 1 M H2SO4 
in CH3CN for (a) and 5 mL H2O/HCO2H 1:9 for (b), 100 °C for 12 h for (a) and 110 °C for 24 h, 
product yields determined by HPLC (see Supporting Information for details). 
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Overall, the results show that oxidation of the primary alcohols within lignin provides the basis 

for effective depolymerization of lignin into low molecular weight aromatic compounds. The 

yields of aromatic monomers are somewhat lower than those obtained from oxidation methods 

that favor reaction with the benzylic position;26,39 however, optimal results can vary as a function 

of the biomass source material, lignin extraction method, among other variables. In this context, 

the present methods offer a useful complement for future consideration. 

 

Conclusion. 

The aminoxyl-mediated electrochemical oxidation method described here exhibits high 

selectivity for oxidation of primary alcohols groups within lignin model compounds, and the 

method has been shown to be effective for the oxidation of lignin extracted from poplar. Structure-

reactivity correlations of small molecules has provided valuable insights into the reaction 

selectivity, including the synergistic role of other functional groups within the lignin structure on 

the oxidative reactivity of the alcohols. Conversion of the primary alcohols in lignin to carboxylic 

acids results in formation of a polyelectrolyte that is complementary to established lignosulfonate 

materials88 and that warrants further investigation among the growing number of other lignin-

derived polymer applications.89-91 In addition, the electrocatalytic oxidation method renders the 

modified lignin susceptible to depolymerization, allowing for conversion of lignin into monomeric 

aromatic chemicals in good yields.  
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