The Journal of Organic Chemistry

Article

Use of Phenols as Nucleophiles in the Zbiral Oxidative Deamination of N-Acetyl Neuraminic Acid. Isolation and Characterization of Tricyclic 3-Keto-2-Deoxy-nonulosonic Acid (KDN) Derivatives via an Intermediate Vinyl Diazonium Ion

Mohammed Hawsawi, Anura Wickramasinghe, and David Crich

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02279 • Publication Date (Web): 13 Oct 2019 Downloaded from pubs.acs.org on October 21, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Use of Phenols as Nucleophiles in the Zbiral Oxidative Deamination of *N*-Acetyl Neuraminic Acid. Isolation and Characterization of Tricyclic 3-Keto-2-Deoxy-nonulosonic Acid (KDN) Derivatives via an Intermediate Vinyl Diazonium Ion

Mohammed Hawsawi,^a Anura Wickramasinghe,^{a,b*} and David Crich^{a,b,c,d,*}

a) Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202,
 USA

b) Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West
 Green Street, Athens, GA 30602, USA

c) Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA

d) Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens,

GA 30602, USA

awick@uga.edu; David.Crich@uga.edu

Graphical abstract

Abstract

It is well established that the *N*-nitrososamide derived from peracetylated derivatives of *N*acetylneuraminic acid on treatment with a mixture of sodium isopropoxide and trifluoroethanol, followed by addition of acetic acid gives an oxidative deamination product in which the AcN(NO)-C5 bond is replaced a AcO-C5 with retention of configuration, affording a practical synthesis of 2-keto-3-deoxy-D-glycero-D-galactononulosonic acid (KDN) derivatives. Application of other strong acids, including hydrogen fluoride, thioacetic acid, trifluoromethanesulfonic acid and hydrogen azide, functions similarly to afford KDN derivatives functionalized at the 5-position. We describe our attempts to extend the range of useful nucleophiles employed in this oxidative deamination process to include phenols and thiophenols, resulting in the discovery of a new branch of the general reaction and the formation of a series of products resulting from substitution of the 5-acetamido group and of the 4-acetoxy group from neuraminic acid. A mechanistic rationale for the formation of these products is advanced according to which, in the absence of acids of pKa \leq 8, the intermediate diazonium ion resulting from elimination of acetic acid nitrogen from the nitrosoacetamide undergoes elimination of acetic acid from the 4-position to afford a highly

electrophilic alkenediazonium ion. Reversible conjugate addition of the nucleophile to the 4position then initiates the reaction cascade leading to the ultimate products.

Introduction

The oxidative degradation of aliphatic amides by thermolysis of their *N*-nitroso derivatives in the presence and absence of external carboxylic acids giving rise to the corresponding esters with loss of nitrogen was first described by White.¹⁻⁴ An extensive series of studies employing ¹⁸O-labelling experiments, and variation of solvent, substrate, and external acid demonstrated that under thermal conditions the reaction proceeds with a preponderance of with retention of configuration when applied to chiral secondary and tertiary amides leading to the suggestion of a mechanism involving the formation and collapse of a series of two tight ion pairs, following initial N \rightarrow O migration of the acyl moiety (Scheme 1).¹⁻⁴

Scheme 1. White Mechanism for Oxidative Deamination of N-Nitroso Amides

Among the numerous applications of this reaction some of the more important are in the field of carbohydrate chemistry⁵ and in particular in the conversion of the widely available *N*-acetyl neuraminic acid (NeuAc, **1**) and its derivatives to the less widely available but increasingly

biologically relevant 3-keto-2-deoxy-nonulsonic acid (KDN, **3**) derivatives (Scheme 2).⁶⁻⁸ Indeed, this has proven to be a pivotal transformation in the synthesis of the pseudaminic acid, glycosides such as found in the lipopolysaccharides from *Pseudomonas aeruginosa* and other pathogens.⁹⁻¹¹

Scheme 2. Ogura and Zbiral's NeuAc to KDN Conversion.

The oxidative deamination protocol was first applied to NeuAc by Ogura and coworkers who relied on simple White-type thermal degradation of the *N*-nitroso amide **2**, obtaining a KDN derivative **3** and, albeit without supporting spectral data, the product of a ring contraction **4** with inversion of configuration at the site of reaction (Scheme 2).¹² It was Zbiral and Schreiner, however, who developed practical conditions for the NeuAc to KDN conversion involving the stepwise treatment of the *N*-nitroso amide with sodium isopropoxide and trifluoroethanol followed rapidly by acetic acid.⁶ The Zbiral laboratory also observed the formation of and characterized the ring contraction product (Scheme 2).⁶ In our laboratory we modified the Zbiral conditions to render them compatible with NeuAc thioglycosides, leading to a ready preparation of a KDN donor and ultimately to the highly stereocontrolled synthesis of KDN-*a*-glycosides.⁷ We further modified the Zbiral conditions to permit replacement of the previously ubiquitous acetic acid nucleophile by thioacetic acid, hydrogen fluoride, triflic acid, and levulinic acid derivatives, leading to the

formation of the corresponding desacetamido acetylthio, trifloxy, fluoro, and levulinoxyl derivatives, each with retention of configuration.^{8, 13} We also demonstrated the compatibility of the reaction with NeuAc di- and trisaccharides and its potential for application in the development of improved aminoglycoside antibiotics.^{13, 14} The very high levels of retention of configuration in these reactions prompted us to probe the reaction mechanism, leading to the exclusion of participation by the neighboring esters and the invocation of participation by the pyranoside ring oxygen via a 1-oxabicyclo[3.1.0]hexanium-type intermediate **10**,¹⁵ which also satisfactorily accounts for the formation of the ring contraction product observed by the early workers in the field (Scheme 3). Although unusual, such 1-oxabicyclo[3.1.0]hexane-type intermediates have been invoked by Corey and coworkers in the course of a total synthesis of glabrescol,¹⁶ and by Stevens,¹⁷ Hanessian,¹⁸ Horton,¹⁹ and Cassinelli²⁰ in a variety of pyranoside to furanoside ring contractions. Equivalent 1-thiabicyclo[3.1.0]hexanium²¹ and 1-azabicyclo[3.1.0]hexanium²² are also widely postulated in the literature.

ACS Paragon Plus Environment

Scheme 3. Proposed Mechanism of Zbiral Reaction and Ring Contraction

Continuing our earlier studies on the use of alternative nucleophiles to the original acetic acid with the goal of preparing novel NeuAc derivatives with which to probe and exploit structural differences between sialic acid binding proteins of different origins, we turned to the use of phenols as nucleophiles. As we report, a series of structurally interesting derivatives were formed albeit not the simple 5-*O*-aryl KDN ones initially envisaged. Rather, *cine*-substitution occurs leading to the formation of a series of vinyl ethers and, in the case of ambient nucleophiles such as β -naphthol, the formation of structurally unusual tricyclic systems. These products shed further light on the mechanism of the Zbiral reaction in the presence of weakly acidic nucleophiles and invoke the formation of a little studied class of electrophile, the vinyl diaozonium ions,²³⁻³⁰ as intermediates.

Results

Methyl (methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-(*N*-nitrosoacetamido)-D-glycero- β -D-galacto-non-2-ulopyranosid)onate **5** was prepared according to a procedure reported in the literature^{7, 15} from commercially available *N*-acetylneuraminic (NeuAc) by nitrosylation of the corresponding amide **12** with nitrosyl tetrafluoroborate (NOBF₄) and pyridine in dichloromethane at – 10 °C; it was used immediately for the oxidative deamination without further purification. The deamination reactions were typically affected by treatment of the nitrosoamide **5** with sodium trifluoroethoxide in the presence of 18-crown-6 in anhydrous dichloromethane at – 10 °C, as described previously,¹⁵ followed after 10 mins (sufficient time for the consumption of **5**) by addition of an excess of the putative nucleophile. After stirring for a further 5 mins the reactions were quenched by addition of aqueous sodium bicarbonate, washed with aqueous sodium hydroxide to remove the excess nucleophile, and then subjected to chromatographic purification

to afford the products (Table 1). Under these conditions the use of levulinic acid as nucleophile afforded the typical substitution product 13 with retention of configuration in 31% isolated yield, accompanied by the regioisomeric elimination products 14 and 15 in 34% combined yield (Table 1, entry 1). Replacement of the carboxylic acid nucleophile by phenol resulted in the isolation of the disubstitution product 16, in which the acetoxy group at the 4-position was substituted by phenol with retention of configuration in addition to replacement of the nitrosoamide at the 5position with inversion of configuration (Table 1, entry 2). Additionally, enol ether 17 was isolated from this reaction in 31% yield. The use of β -naphthol as nucleophile on the other hand afforded the tricyclic product 18 in 57% yield along with the azo dye 19 in 13% yield (Table 1, entry 3). Returning to simple monocyclic phenols, the use of *p*-methoxyphenol afforded 36% of the enol ether 20 (Table 1, entry 4), whereas that of *p*-nitrophenol gave 9% of the typical substitution product 21 and 9% of the elimination product 22 (Table 1, entry 5). The use of 3,5dimethoxyphenol on the other hand resulted in the isolation of the tricyclic adduct 23 in 34% yield (Table 1, entry 6). Turning to the use of heteroaromatic phenols as nucleophiles, attempted use of 2-quinolinol gave only the elimination products 14 and 15 in 86% combined yield (Table 1, entry 7), whereas 3-quinolinol afforded 24 and 25 in 21 and 12% yield, respectively (Table 1, entry 8). With the use of 6-quinolinol on the other hand the pattern of reactivity seen with β -naphthol and 3,5-dimethoxyphenol was again observed with the isolation of the tricyclic product 26 in 53% yield (Table 1, entry 9). This latter reaction was conducted in the poorly nucleophilic hexafluoroisopropanol^{31, 32} as solvent owing to the limited solubility of the nucleophile in the more typical dichloromethane. The same pattern was reverted to with 5-hydroxyindole resulting in the isolation of the tricyclic product 27 in 3% yield when the reaction was conducted at -10 °C (Table 1, entry 10), and in 27% yield when the reaction temperature was lowered to -40 °C (Table 1, entry

11). The formation of **27** was accompanied by that of the elimination products **14** and **15** in 35% and 7% combined yield at -10 and -40 °C, respectively (Table 1, entries 10 and 11), while 9% of the azo dye **28** was also isolated from the reaction at the lower temperature (Table 1, entry 11).

 Table 1. Application of Levulinic Acid and of Phenols as Nucleophiles in the Zbiral Reaction^a

Page 10 of 46

a) Unless otherwise stated all reactions were conducted at -10 °C in dichloromethane. b) Nucleophiles were employed in 10-20 fold excess as detailed in the Supporting Information. c) The elimination products 14 and 15 are the major side products in all reactions as determined by inspection of the crude reaction mixtures by mass spectrometry and NMR spectroscopy, albeit they were not isolated and quantified in every case. d) 6-Hydroxyquinoline was added as a solution in hexafluoroisopropanol. e) This reaction was performed at -40 °C.

Attention was next turned to the use of thiophenols as nucleophiles. With the parent, the direct substitution product **29** was isolated in 23% yield and retention of configuration (Table 2, entry 1), accompanied by the reduction product **30** in 19% yield. The use of 2-aminothiophenol on the other hand gave 58% of the substitution product **31**, but in the form of a 3:1 axial:equatorial mixture of isomers (Table 2, entry 2), together with the reduction product **30** in 20% yield. Finally, the use of 2-mercaptonaphthalene as nucleophile gave the substitution with retention product **32a** in 30% yield, contaminated with a minor amount of the stereoisomer **32b** (25%), and the reduction product **30** (13%) (Table 2, entry 3).

Entry	Nucleophile ^b	p <i>K</i> a	Products (% yield) ^c
1	Thiophenol	6.6 ³⁵	$\begin{array}{c ccccc} AcO & OMe & AcO & OMe \\ \hline PhS & O & CO_2Me \\ OAc & AcO \\ \hline 29, 23\% & 30, 19\% \end{array}$
2	2-Aminothiophenol	6.59 ³⁷	Aco $Aco OAc OMe$ $Aco CO_2Me$ Aco Aco OAc OMe $Aco CO_2Me$ Aco Aco OAc OMe $Aco CO_2Me$ Aco Aco OAc OMe $Aco CO_2Me$ Aco Aco OAc OMe Aco Aco OAc OAc OMe Aco Aco OAc OAc OMe Aco Aco OAc OAc OMe Aco Aco OAc
3	2-Mercaptonaphthalene	5.935	$AcO \stackrel{AcO}{\bigcirc} OAc \stackrel{OMe}{\bigcirc} OAc \stackrel{AcO}{\bigcirc} OAc \stackrel{OMe}{\bigcirc} OAc \stackrel{AcO}{\bigcirc} OAc \stackrel{OMe}{\frown} OAc \stackrel{AcO}{\frown} OAc \stackrel{OMe}{\frown} OAc \stackrel{AcO}{\frown} OAc \stackrel{OMe}{\frown} OAc \stackrel{AcO}{\frown} OAc \stackrel{OMe}{\frown} $

a) All reactions were conducted at -10 °C in dichloromethane. b) Nucleophiles were employed in 10-20 fold excess as detailed in the Supporting Information. c) The elimination products **14** and **15** are the major side products in all reactions as determined by inspection of the crude reaction mixtures by mass spectrometry and NMR spectroscopy, albeit they were not isolated and quantified in this series of reactions.

Structural Elucidation

While the structures of the direct substitution products **13**, **21**, **29**, **23**, **31** and **32**, the elimination products **14** and **15**, and the reduction product **30** follow directly from the ¹H-NMR spectra and require no further discussion, the elucidation of some of the unexpected products deserves comment. The structure of the disubstitution product **16** follows directly from analysis of the ${}^{3}J_{H,H}$ coupling constants and nOe contacts around the pyranose ring. Thus, the ${}^{3}J_{H4,H5}$ and ${}^{3}J_{H5,H6}$ coupling constants of 4.5 and 2.0 Hz, respectively, for a spectrum recorded in CDCl₃ owing to the co-incidence of H's 5 and 6 in CDCl₃, are indicative of the all *cis*-nature of the substituents at C's 4, 5, and 6, and are supported by the nOe correlation between H's 4 and 6. The structure of the tricyclic product **18** was determined by X-ray crystallography (Fig 1) of a crystal obtained from diethyl ether. In the crystal the pyranose ring adopts a conformation best described as approximating to the ${}^{3}G_{B}$ boat. This ${}^{3}G_{B}$ conformation also predominates in solution as indicated by the observed pattern of ${}^{3}J$ scalar couplings in the H_{3a,b}, H₄, H₅, H₆ spin system (Table 3) as well as by nOe interactions measured between one of the H3 protons and the aromatic proton peri to the ring junction.

Figure 1: X-ray crystallographic structure of product 18 (CCDC 1941624)

It is noteworthy in view of the current interest in the influence of side chain conformation on the reactivity of glycosyl donors,^{11, 38, 39} that the side chain of **18** adopts what is effectively the *gauche,gauche*-conformation $(gg)^{40, 41}$ similar to that found in NeuAc itself.⁴²⁻⁴⁸ In this regard, it is also of interest to note

that the side chain of **16**, with the axial substituent at C5 and ${}^{3}J_{6,7}$ of 5.6 Hz, does not take up the *gg*conformation, which is characterized by ${}^{3}J_{6,7}$ of ~ 2 Hz in the standard ${}^{2}C_{5}$ chair conformation.⁴²⁻⁴⁸ This is presumably due to the strong dipolar and steric (syn-pentane-type) interactions that would exist between the C5-O5 and C7-O7 bonds in such a conformation.⁸

The structures and solution conformations of the bicyclic products **23**, **26**, and **27** are assigned by analogy to that of **18** and the close homology of the coupling constants in the $H_{3a,b}$, H_4 , H_5 , H_6 spin system (Table 3). In each of the tricyclic products **18**, **23**, **26**, and **27** the ³*J* coupling constant between the pseudo-axial bowsprit H3 and H4 is at the upper limit (12.9-13.5 Hz) of the usual range seen for a pair of coupled trans-diaxial spins in a saturated aliphatic systems lacking direct electronegative substituents.⁴⁹

Product	Chemical Shifts (δ, ppm) ^b					Coupling Constants (Hz)						
	НЗра	Н3ре	H4	H5	H6	H7	³ J _{3pa,4}	$^{3}J_{3pe,4}$	$^{3}J_{4,5}$	$^{3}J_{5,6}$	$^{3}J_{6,7}$	$^2J_{3\text{pa,pe}}$
16	2.55	2.47	4.52	3.14	3.13	4.99	8.9	3.2	3.7	-	5.3	14.9
16°	2.77	2.57	4.61	3.01	3.18	5.16	8.8	3.4	4.5	2.0	5.7	14.8
18	1.90	2.86	3.87	4.94	4.21	5.69	13.5	5.0	9.2	9.4	5.1	14.9
23	1.79	2.63	3.47	4.70	4.03	5.59	12.9	5.4	9.1	9.4	4.6	14.9
26	1.92	2.78	3.88	4.99	4.21	5.68	13.4	5.1	8.9	9.3	5.0	14.9
27	2.02	2.72	3.77	4.82	4.12	5.67	12.8	5.5	8.8	9.4	5.0	14.9

a) All spectra were recorded in CDCl₃ unless otherwise stated. b) H3pa and H3pe refer to the pseudo-axial and pseudo-equatorial protons at

C3, respectively. c) Recorded in C_6D_6 .

The usual ¹H and ¹³C spectroscopic methods did not allow unambiguous distinction between two possible regioisomers for the enol ethers 17, 20, and 24 owing to the multiplicity of long range coupling constants spanning the alkene. Ultimately, taking 20 as a representative example, the structure was assigned following treatment with ethylene glycol in dichloromethane in the presence of *p*-toluenesulfonic acid at room temperature when the cyclic ketal **33** was isolated in 42% yield (Scheme 4). The isolated nature of the two methylene spin systems in this ketal clearly points to 33 as the structure and not the alternative 35, and thus to 20 as the structure of the enol ether as opposed to 34. Further confirmation of the structure of 20 was obtained on treatment with ethylene glycol and *p*-toluenesulfonic acid in wet methanol at room temperature when the enone 36 was isolated in 55% yield (Scheme 4). The structures of 17, and 24 follow from the close homologies of their NMR spectra with those of 20. The structures of the azo dyes 19 and 28 follow directly from their mass and NMR spectra, and their intense yellow colors with λ_{max} 380 nm (acetonitrile, $\varepsilon = 8699 \text{ M}^{-1} \text{ cm}^{-1}$) and 365 nm (dichloromethane, $\varepsilon = 2391 \text{ M}^{-1} \text{ cm}^{-1}$), respectively, in the UV/visible spectra recorded.

Discussion

The results are best interpreted in terms of a new branch of the mechanism we advanced previously for the Zbiral reaction. Thus, reaction of the N-nitrosoacetamide 5 with trifluoroethoxide leads to the formation of a diazonium ion 7, which undergoes reversible deprotonation to the diazoalkane 8. Evidence for the formation of the diazonium ion as a discrete intermediate in this process is now provided in the form of the azo dyes 19 and 28, which are the typical products of the reaction of diazonium ions with β naphthols and related phenols. The reversibility of the deprotonation was previously established through the use of deuterioacetic acid as nucleophile, which resulted in the formation of monodeuterio-KDN with selective introduction of a deuterium atom in the 5-position.¹⁵

The pKa of the methyldiazonium ion⁵⁰ (pKa~10) and, by extrapolation, that of the diazonium ion 7, with its electron-withdrawing and acidity-enhancing β -C-O bonds, is such that with carboxylic acids and more acidic species as reaction partner the diazonium ion - diazoalkane equilibrium strongly favors the diazonium ion and, following loss of nitrogen, the heretofore standard substitution and elimination products (Scheme 2). With less acidic reaction partners such as the phenols employed here we postulate that the diazoalkane 8 undergoes β -elimination of the acetoxy group from the 4-position to give the α,β unsaturated diazonium ion 37, a member of the little-studied class of alkenediazonium ions (Scheme 5). This strongly electrophilic species can be considered to populate at least the two half-chair conformers $37-{}^{O}H_{2}$ and $37-{}^{2}H_{O}$, and related boat conformers, with $37-{}^{2}H_{O}$ undergoing kinetic Michael addition from the β -face past the minimally sterically demanding methoxy group to afford the new diazoalkane **38** directly in a chair conformation. Under thermodynamic conditions a process of reversible additions and eliminations leads to the eventual introduction of the nucleophile in the equatorial position, presumably by bottom face attack on $37-{}^{O}H_{2}$ leading directly to the observed chair conformation, but possibly by bottom face attack on $37-{}^{2}H_{0}$ and subsequent conformational equilibration.

Scheme 5. Mechanism of Substitution at C4

With phenol as nucleophile, the thermodynamic mode of addition is observed and is followed by protonation of the diazoalkane from the α -face by a second molecule of phenol giving a contact ion pair (CIP) 41, which collapses with loss of nitrogen and inversion of configuration to give the observed product 16 (Scheme 6). α -Face protonation of 40 to give 41 is consistent with the protonation of diazoalkane 8, returning diazonium ion 7 (Scheme 3), established in our earlier studies by deuterium labelling experiements.¹⁵ In the case of the more acidic nucleophiles classically employed in the Zbiral reaction, invertive collapse of the analogous CIP is retarded by the reduced nucleophilicity of the anion, leading to participation by the ring oxygen and overall substitution with retention of configuration at the 5-position (Scheme 3). Finally, loss of nitrogen from 41 followed by, or in concert with, deprotonation affords the enol ether 17 (Table 1, entry 2). *p*-Methoxyphenol and 3-quinolinol follow a similar path to phenol itself with the enol ethers **20**, 24 and 25 as major isolated products (Table 1, entries 4 and 8). p-Nitrophenol on the other hand is considerably more acidic than phenol such that reprotonation of the diazonium ion 37 is competitive with elimination and the standard substitution product 21 is formed at least in a minor amount (Table 1, entry 5).

Scheme 6. Formation of Disubstitution Product 16.

With the less aromatic ambident nucleophile β -naphthol, and analogously the other electrophilic aromatic substitution prone phenols, the kinetic Michael addition product **42** is trapped by intramolecular proton transfer, possibly from the rearomatized phenol as shown or possibly as a part of the rearomatization process, leading a zwitterion **43** that undergoes ring closure with loss of nitrogen and inversion of configuration leading to the tricyclic product **18** (Scheme 7). 2-Quinolinol, which exists predominantly in the quinolinone form, is both more acidic and only very weakly nucleophilic resulting in predominant formation of the elimination products **14** and **15** (Table 1, entry 7).

Scheme 7. Formation of Tricyclic Product 18.

With the more acidic thiophenols as reaction partners, the acidity of the reaction medium is sufficient that the initial diazonium ion – diazoalkane equilibrium strongly favors the former such that the prototypical simple substitution with retention of configuration (Scheme 3) is the predominant reaction pathway. The observation of minor amounts of the substitution with inversion in this series suggests, however, that direct displacement of nitrogen from the diazonium ion by the sulfur-based nucleophile is in competition with participation by the ring oxygen. The formation of the reduction product **30** in the presence of thiophenol most likely arises either from single electron transfer from the thiophenate to the diazonium ion **7**, followed by loss of molecular nitrogen and hydrogen atom transfer to the ensuing alkyl radical **44** from the thiophenol (Scheme 8), consistent with the established mechanism of reduction of arenediazonium ions by thiophenols.⁵¹ Alternatively, diazonium ion **7** and thiophenate may combine to give the arylthiodiazene **45**, that undergoes homolytic scission to afford radical **44**, followed by trapping with thiophenol (Scheme 8). Either way, the isolation of the reduction product **30** constitutes

further evidence in support of the existence of the diazonium ion 7 as a discrete intermediate in the Zbiral chemistry.

Scheme 8. Mechanism for the formation of the Reduction Product 30.

Finally we return to the substitution of the ester at the 4-position with retention of configuration observed during our earlier studies on the mechanism of the classical Zbiral reaction with carboxylic acids as nucleophiles.¹⁵ Thus it was found through the use of ¹³C-enriched acetic acid as nucleophile, and confirmed with the use of levulinic acid, that in addition to the substitution of the acetamido group with retention of configuration in the β -thioglycoside **46** up to 30% of the ester at the 4-position also underwent substitution with retention of configuration as in ¹³C₂-**47** (Scheme 9).

Scheme 9. Substitution at the 4- and 5-Positions in the Axial Thioglycoside **46** as Revealed by Isotopic Labelling.

This previously unobserved substitution of the ester at the 4-position only occurred with the β thioglycoside **46**, and not with its α -anomer **48** or the simple methyl glycoside **5** prompting us to write a mechanism involving reversible ring closure by the thioether onto C5 at the level of the diazoalkane followed by a reversible series of acyl migrations and cleavages.¹⁵ In the light of the results described in this Article, it is clear that a more likely mechanism involves reversible displacement of the acetoxy group from the 4-position of the diazoalkane **49** by the thioether (Scheme 10) resulting in overall substitution with retention of configuration. Displacement of the acetoxy group from the 4-position by the thioether is facilitated by the presence of the neighboring diazoalkane resulting in what is effectively an allylic displacement.

Scheme 10. Likely Mechanism for Acetoxy Substitution at the 4-Position

Conclusion

Attempted use of phenols as nucleophiles in the Zbiral oxidative deamination of *N*-nitroso-*N*-acetylneuraminic acid has resulted in the discovery of a new branch of this valuable reaction. In effect, with nucleophiles of $pKa \ge 8$ the intermediate diazoalkane is favored over its protonated form, the diazonium ion, and instead suffers elimination of the acetoxy group from the 4-position to give an alkenediazonium ion. This highly electrophilic species undergoes reversible conjugate addition of the phenolic nucleophiles resulting ultimately in the 4,5-disubstituted products. When

the nucleophile is β -naphthol or other highly electron-rich phenols nucleophilic attack takes place on carbon rather than oxygen ultimately affording a series of structurally unusual tricyclic ulosonic acid derivatives. When the more acidic thiophenols, capable of protonating the intermediate diazoalkane, are employed as nucleophiles, the reaction follows the classical Zbiral-like path with the introduction of the nucleophile at the 5-position largely with retention of configuration. Although we have restricted ourselves in this Article to the use of phenols and thiophenols as nucleophiles, we anticipate that this new class of substitution reactions, which complements existing methods for substitution and inversion at the 4-position of *N*-acetylneuraminic acid,⁵²⁻⁵⁶ will afford entry into a broad spectrum of unusual ulosonic acid derivatives with potential for exploitation in medicinal chemistry.

Experimental Section

General. All reactions were performed using oven-dried glassware under an atmosphere of argon. All reagents and solvents were purchased from commercial suppliers and were used without further purification unless otherwise specified. Chromatographic purifications were performed on silica gel (230-400 mesh) columns (20-50 g) of silica gel per gram of crude compound). Reactions were monitored by analytical thin-layer chromatography on pre-coated glass backed plates (w/UV 254) and visualized by UV irradiation (254 nm) or by staining with 25% H₂SO₄ in EtOH or ceric ammonium molybdate (CAM) solution. Specific rotations were measured on an automatic polarimeter with a path length of 100 mm in the solvent specified. Concentrations are given in g/100 mL. High resolution mass spectra (HRMS) were recorded with an electrospray ionization (ESI) source coupled to a time-of-flight (TOF) mass analyzer or with an electron impact (EI) source coupled to a TOF mass analyzer. ¹H, ¹³C, ¹⁹F, spectra were recorded on a 400, 500 or 600 MHz spectrometer. NMR solvents were used without purification. Chemical shifts are given in ppm (δ) and coupling constants (*J*) are given in Hz. Multiplicities are given as singlet (s), broad singlet (br s), doublet (d), triplet (t), doublet of doublets (dd), triplet of doublets (td), multiplet (m), apparent quartet (app q), apparent pentet (app p), etc. Spectral assignments were made by a combination of COSY, HSQC and HMBC spectra.

General Procedure of oxidative deamination. Using the quantities described in the individual experiments, sodium 2,2,2-trifluoroethoxide and 18-crown-6 were dissolved in anhydrous CH_2Cl_2 under Ar and cooled to -10 °C. The solution was added to the nitrosyl sialoside (0.1 M solution in anhydrous CH_2Cl_2) at -10 °C under Ar. The mixture was stirred for 5 min at -10 °C. The nucleophile (10-20 equiv) dissolved in the solvent described under Ar at -10 °C was added to the reaction mixture in one portion. After stirring for 5 min, the reaction was quenched by addition of saturated NaHCO₃ solution and diluted with DCM. The reaction mixture was washed with NaOH (1M) to remove excess phenolic nucleophile. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to afford the crude product which was purified by column chromatography over silica gel.⁵⁷

Methyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-non

2-ulopyranosid)onate (12). Compound **12** (6 g, 95%) was obtained by a literature procedure¹⁵ over two steps as a white solid from *N*-acetylneuraminic acid (20 g, 64.7 mmol).

Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-5-(*anti/syn-N*-nitrosoacetamido)-Dglycero-β-D-galacto-non-2-ulopyranosid)onate (5). A solution of compound 12 (330 mg, 0.7 mmol) in dry dichloromethane (7 mL) was treated with dry pyridine (0.5 mL, 6.5 mmol, 10 equiv) and cooled to -10 °C. After stirring for 15 min, crushed nitrosyl tetrafluoroborate (382 mg, 3.0 mmol, 5 equiv) was added in one portion. The reaction mixture was stirred at -10 °C until TLC

showed complete conversion (4-5 h). The mixture was diluted with cold dichloromethane (3 mL) and washed with cold 1N HCl, saturated NaHCO₃ and brine. The organic layer was dried over anhydrous Na_2SO_4 and concentrated under 10 °C to obtain **5** as a yellowish foam which was carried forward for next reaction without further purification.¹⁵

Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3-deoxy-5-*O*-levulinyl-D-glycero- β -D-galacto-non-2ulopyranosid)onate (13) and a mixture of Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy- β -D-arabino-non-4-en-2-ulopyranosid)onate (14) and Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy- β -D-ribo-non-5-en-2-ulopyranosid)onate (15). The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (122 mg, 1 mmol), 18-crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and levulinic acid (1.16 g, 10 mmol, 20 eq) in CH₂Cl₂ (5 mL) to afford 13 after column chromatography over silica gel eluting with (hexane/ethyl acetate 3:1), as colorless crystals from methanol/CH₂Cl₂ (88 mg, 31%) and an inseparable mixture of 14 and 15 as a colorless oil (1:2.5 ratio, 75 mg, 34%).

Compound **13**; colorless crystals, m.p. = 132-134 °C; $[\alpha]_D^{20} - 5.7^\circ$ (*c* 0.4, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 5.34 – 5.19 (m, 3H, H8, H7 and H4), 4.87 (t, *J* = 9.9 Hz, 1H, H5), 4.65 (dd, *J* = 12.6, 2.4 Hz, 1H, H9), 4.09 (dd, *J* = 12.5, 6.7 Hz, 1H, H9'), 4.00 (dd, *J* = 10.1, 2.2 Hz, 1H, H6), 3.75 (s, 3H, CH₃), 3.21 (s, 3H, CH₃), 2.79 – 2.69 (m, 1H, H3e), 2.61 – 2.35 (m, 4H, CH₂CH₂), 2.11 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 1.97 (s, 3H, CH₃), 1.77 (dd, *J* = 13.0, 11.5 Hz, 1H, H3a). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 205.9, 171.7, 170.6, 170.2, 170.0, 167.2, 98.9, 70.9, 70.1, 68.7, 67.8, 67.6, 62.1, 52.7, 51.4, 37.9, 37.8, 37.0, 29.7, 28.0, 21.0, 20.9, 20.8, 20.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₄NaO₁₅ 585.1795; Found: 585.1792.

14 and **15** (1:2.5 mixture); colorless oil; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₆NaO₁₂ 469.1322; Found: 469.1322.

Compound **15**; ¹H NMR (400 MHz, CDCl₃) δ 5.51 (m, 1H, H8), 5.46 (m, 1H, H7), 5.25 (m, 1H, H4), 5.07 (dq, J = 4.4, 1.1 Hz, 1H, H5), 4.36 (dd, J = 12.1, 3.0 Hz, 1H, H9), 4.30 (dd, J = 12.1, 7.1 Hz, 1H, H9'), 3.75 (s, 3H, CH₃), 3.36 (s, 3H, CH₃), 2.31 (dd, J = 14.1, 3.6 Hz, 1H, H3), 2.16 (dd, J = 14.2, 5.3 Hz, 1H, H3'), 2.11 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 1.96 (s, 3H, CH₃). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.8, 170.1, 170.0, 169.3, 167.7, 149.8, 99.2, 98.0, 70.4, 70.3, 63.0, 61.9, 52.7, 52.2, 34.6, 21.1, 20.9, 20.9.

Compound **14** was identified in the mixture by the following diagnostic signals; ¹H NMR (400 MHz, CDCl₃) δ 5.43 (dd, *J* = 6.1, 2.5 Hz, 1H, H8), 5.33 – 5.29 (m, 2H, H7 and H5), 4.58 (ddd, *J* = 12.6, 2.4, 1.3 Hz, 1H, H9), 4.51 (dq, *J* = 4.7, 2.5 Hz, 1H, H6), 4.19 (ddd, *J* = 12.5, 5.9, 1.3 Hz, 1H, H9'), 3.78 (s, 3H, CH₃), 3.24 (s, 3H, CH₃), 2.68 (ddd, *J* = 17.0, 3.9, 2.4 Hz, 1H, H3. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.7, 170.4, 169.9, 168.5, 168.0, 144.5, 110.0, 98.1, 70.7, 70.1, 69.2, 62.4, 52.7, 51.5, 34.8, 21.0, 20.9, 20.7.

Methyl (methyl 7,8,9-tri-*O*-acetyl-3-deoxy-4,5-di-*O*-phenyl-D-glycero- β -D-gulo-non-2-ulopyranosid)onate (16) and Methyl (methyl 7,8,9-tri-*O*-acetyl-3,5-dideoxy-4-*O*-phenyl- β -D-arabino-non-4-en-2-ulopyranosid)onate (17). The nitrosyl sialoside 5 (200 mg, 0.4 mmol) in CH₂Cl₂ (4 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (90 mg, 0.7 mmol), 18-crown-6 (195 mg, 0.7 mmol) in CH₂Cl₂ (2 mL) and phenol (188 mg, 2 mmol, 5 eq) in CH₂Cl₂ (1 mL) followed by column chromatography over silica gel eluting with (hexane/ethyl acetate 1:1) to afford 16 (71 mg, 33%) and 17 (56 mg, 31%).

Compound 16: colorless oil, $[\alpha]_{D}^{20} - 32.4^{\circ}$ (c 0.25, CHCl₃). ¹H NMR (600 MHz, C₆D₆) δ 7.29 – 7.23 (m, 4H, ArH), 7.09 (dt, J = 7.7, 1.1 Hz, 2H, ArH), 7.04 (t, J = 7.3 Hz, 1H, ArH), 6.96 (t, J = 7.27.3 Hz, 1H, ArH), 6.87 (d, J = 8.5 Hz, 2H, ArH), 5.19 (td, J = 5.8, 3.7 Hz, 1H, H8), 4.99 (t, J = 5.3Hz, 1H, H7), 4.52 (dt, J = 8.9, 3.7 Hz, 1H), 4.20 (dd, J = 12.3, 3.6 Hz, 1H, H9), 4.14 (dd, J = 12.2, 6.3 Hz, 1H, H9'), 3.56 (s, 3H, CH₃), 3.48 (s, 3H, CH₃), 3.17 – 3.12 (m, 2H, H6 and H5), 2.55 (dd, J = 14.9, 8.9 Hz, 1H, H3a), 2.47 (dd, J = 14.9, 3.2 Hz, 1H, H3e), 2.07 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.02 (s, 3H, CH₃). ¹H NMR (600 MHz, C₆D₆) δ 7.28 – 7.26 (m, 2H, ArH), 7.08 (dt, J = 8.6, 7.3 Hz, 4H, ArH), 6.99 - 6.96 (m, 2H, ArH), 6.84 (tt, J = 7.3, 1.2 Hz, 1H, ArH), 6.78 (tt, J = 7.4, 1.2 Hz, 1H, ArH), 5.36 (ddd, J = 6.2, 5.7, 3.6 Hz, 1H, H8), 5.16 (t, J = 5.7 Hz, 1H, H7), 4.61 (ddd, *J* = 8.8, 4.6, 3.4 Hz, 1H, H4), 4.20 (dd, *J* = 12.3, 3.6 Hz, 1H, H9), 4.15 (dd, *J* = 12.2, 6.3 Hz, 1H, H9'), 3.26 (s, 3H, CH₃), 3.24 (s, 3H, CH₃), 3.18 (dd, J = 5.7, 2.1 Hz, 1H, H6), 3.01 (dd, J = 4.5, 2.0 Hz, 1H, H5), 2.77 (dd, J = 14.8, 8.8 Hz, 1H, H3a), 2.57 (dd, J = 14.8, 3.4 Hz, 1H, H3e), 1.65 (s, 3H, CH₃), 1.63 (s, 3H, CH₃), 1.57 (s, 3H, CH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.6, 170.1, 169.7, 168.3, 157.4, 154.4, 129.8, 129.7, 123.3, 122.1, 118.8, 116.0, 101.3, 71.6, 70.6, 70.5, 61.6, 57.4, 54.1, 52.8, 50.4, 37.1, 20.9, 20.8, 20.8. ¹³C{¹H} NMR (151 MHz, C₆D₆) δ 169.8, 169.6, 169.3, 168.1, 158.1, 155.1, 129.9, 129.9, 128.2, 128.1, 127.9, 123.3, 122.1, 119.3, 116.6, 101.8, 72.6, 71.2, 71.0, 61.7, 57.6, 54.4, 52.1, 50.2, 37.4, 20.4, 20.2, 20.1. ESI-HRMS Calcd. for $(C_{29}H_{34}NaO_{12})$:([M+Na]⁺) m/z: 597.1948; found: 597.1943.

Compound 17: colorless oil, $[\alpha]_D^{20} - 32.1^\circ$ (*c* 0.26, CHCl₃).¹H NMR (600 MHz, CDCl₃) δ 7.32 (t, J = 7.9 Hz, 2H, ArH), 7.12 (t, J = 7.4 Hz, 1H, ArH), 6.98 (d, J = 7.7 Hz, 2H, ArH), 5.44 (dd, J = 6.2, 2.3 Hz, 1H, H8), 5.26 (dd, J = 6.4, 2.7 Hz, 1H, H7), 4.69 (t, J = 1.9 Hz, 1H, H5), 4.57 (dd, J = 12.5, 2.4 Hz, 1H, H9), 4.48 (p, J = 2.6 Hz, 1H, H6), 4.21 (dd, J = 12.5, 6.1 Hz, 1H, H9'), 3.83 (s, 3H, CH₃), 3.31 (s, 3H, CH₃), 2.65 (ddd, J = 17.2, 3.7, 2.2 Hz, 1H, H3), 2.54 (dd, J = 17.2, 2.6

Hz, 1H, H3'), 2.08 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.03 (s, 3H, CH₃).¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.8, 170.0, 169.9, 168.4, 154.6, 151.0, 129.8 (2 carbons), 124.4, 120.2 (2 carbons), 99.4, 98.5, 71.3, 70.2, 69.4, 62.5, 52.8, 51.6, 34.5, 21.0, 20.9, 20.9. ESI-HRMS Calcd. for (C₂₃H₂₈NaO₁₁) :([M+Na]⁺) m/z: 503.1529; found: 503.1529.

Methyl (methyl 7,8,9-tri-*O*-acetyl-3,4-dideoxy-4-*C*,5-*O*-(naphthalen-1,2-diyl)-D-glycero-β-Dtalo-non-2-ulopyranosid)onate (18) and Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-5-(2-hydroxynaphthalen-1-diazenyl)-D-glycero-β-D-galacto-non-2-ulopyranosid)onate (19). The nitrosyl sialoside 5 (534 mg, 1 mmol) in CH₂Cl₂ (10 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (244 mg, 2 mmol), 18crown-6 (582 mg, 2 mmol) in CH₂Cl₂ (5 mL) and 2-naphthol (2.88 g, 20 mmol, 20 eq) in Et₂O (10 mL) to afford, after flash chromatography over silica gel eluting with (hexane/ethyl acetate 1:1), 18 as white crystals (282 mg, 57%) from diethyl ether, and 19 as deep yellow crystals (81 mg, 13%) from methanol/CH₂Cl₂.

Compound **18**: white crystals, m.p. = 107-109 °C; $[\alpha]_D^{20} - 116.0^\circ$ (*c* 1.0, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.2 Hz, 1H, ArH), 7.69 (d, *J* = 8.8 Hz, 1H, ArH), 7.53 (dd, *J* = 8.0, 1.2 Hz, 1H, ArH), 7.46 (ddd, *J* = 8.3, 6.7, 1.2 Hz, 1H, ArH), 7.32 (ddd, *J* = 8.1, 6.7, 1.3 Hz, 1H, ArH), 7.10 (d, *J* = 8.8 Hz, 1H, ArH), 5.69 (dd, *J* = 6.0, 5.1 Hz, 1H, H7), 5.47 (td, *J* = 6.0, 2.7 Hz, 1H, H8), 4.94 (t, *J* = 9.2 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.35 (dd, *J* = 12.3, 6.0 Hz, 1H, H9'), 4.21 (dd, *J* = 9.4, 5.1 Hz, 1H, H6), 3.92 (s, 3H, CH₃), 3.87 (ddd, *J* = 13.5, 9.2, 5.0 Hz, 1H, H4), 3.31 (s, 3H, CH₃), 2.86 (dd, *J* = 14.9, 5.0 Hz, 1H, H3pe), 2.18 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 1.90 (dd, *J* = 14.9, 13.5 Hz, 1H, H3pa).¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.8, 170.2, 169.9, 169.3, 157.1, 130.4, 130.0, 129.8, 129.1, 127.2, 123.4, 122.1, 119.8,

112.5, 99.4, 80.0, 70.6, 69.8, 69.6, 61.8, 53.0, 51.7, 37.1, 34.1, 21.0, 20.9. ESI-HRMS Calcd. for (C₂₇H₃₀O₁₁Na) :([M+Na]⁺) m/z: 553.1686; found: 553.1686.

Compound **19**: deep yellow crystals; m.p. = 163-165 °C; $[\alpha]_D^{20} - 21.6^\circ$ (*c* 0.7, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.3 Hz, 1H, ArH), 7.75 (d, *J* = 9.2 Hz, 1H, ArH), 7.65 (d, *J* = 7.9 Hz, 1H, ArH), 7.53 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1H, ArH), 7.38 (ddd, *J* = 8.1, 7.1, 1.3 Hz, 1H, ArH), 6.98 (d, *J* = 9.3 Hz, 1H, ArH), 5.86 (ddd, *J* = 11.2, 10.0, 5.1 Hz, 1H, H4), 5.42 (td, *J* = 6.1, 2.4 Hz, 1H, H8), 5.35 (dd, *J* = 6.5, 1.9 Hz, 1H, H7), 4.60 (dd, *J* = 12.5, 2.5 Hz, 1H, H9), 4.44 (dd, *J* = 10.4, 1.9 Hz, 1H, H6), 4.18 – 4.07 (m, 1H, H9), 4.00 (t, *J* = 10.2 Hz, 1H, H5), 3.83 (s, 3H, CH₃), 3.32 (s, 3H, CH₃), 2.66 (dd, *J* = 12.9, 5.1 Hz, 1H, H3), 2.13 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.94 (s, 3H, CH₃), 1.83 (s, 3H, CH₃), 1.26 – 1.22 (m, 1H, H3³). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.7, 170.1, 169.7, 169.5, 167.4, 161.9, 138.1, 133.3, 129.7, 128.5, 128.4, 128.0, 125.1, 122.5, 121.3, 99.0, 70.4, 70.2, 69.5, 68.9, 67.5, 62.1, 52.8, 51.5, 36.7, 21.0, 20.8, 20.7, 20.7. UV/vis $\lambda_{max} = 380$ nm (acetonitrile, $\varepsilon = 8699$ M⁻¹ cm⁻¹). ESI-HRMS Calcd. for (C₂₉H₃₄ N₂O₁₃Na) :([M+Na]⁺) m/z: 641.1959; found: 641.1964.

Methyl (methyl 7,8,9-tri-*O*-acetyl-3,5-dideoxy-4-*O*-(4-methoxyphenyl)-β-D-arabino-non-4en-2-ulopyranosid)onate (20) The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2trifluoroethoxide (122 mg, 1 mmol), 18-crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and 4methoxyphenol (1.24 g, 10 mmol, 20 eq) in CH₂Cl₂ (5 mL) to afford, after flash column chromatography over silica gel eluting with (toluene/ethyl acetate 3:1), **20** as a colorless oil (92 mg, 36%); $[\alpha]_D^{20} - 10.9^\circ$ (*c* 0.7, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 6.93 – 6.87 (m, 2H, ArH), 6.87 – 6.80 (m, 2H, ArH), 5.42 (td, *J* = 6.2, 2.3 Hz, 1H, H8), 5.23 (dd, *J* = 6.3, 2.7 Hz, 1H, H7), 4.56 (dd, *J* = 12.5, 2.4 Hz, 1H, H9), 4.51 (t, *J* = 1.9 Hz, 1H, H5), 4.45 (dt, *J* = 5.3, 2.6 Hz, 1H, H6), 4.19 (dd, J = 12.5, 6.1 Hz, 1H, H9'), 3.83 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 3.30 (s, 3H, CH₃), 2.64 (ddd, J = 17.1, 3.5, 2.0 Hz, 1H, H3), 2.53 (dd, J = 17.1, 2.5 Hz, 1H, H3'), 2.07 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 2.02 (s, 3H, CH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.8, 170.0, 169.8, 168.5, 156.6, 152.0, 147.6, 121.8, 114.8, 98.4, 96.9, 71.4, 70.2, 69.4, 62.5, 55.7, 52.8, 51.6, 34.6, 21.0, 20.9, 20.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₀NaO₁₂ 533.1635; Found: 533.1636.

Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3-deoxy-5-*O*-(4-nitrophenyl)-D-glycero-β-D-galactonon-2-ulopyranosid)onate (21) and Methyl (methyl 7,8,9-tri-*O*-acetyl-3,5-dideoxy-4-*O*-(4nitrophenyl)-β-D-arabino-non-4-en-2-ulopyranosid)onate (22). The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (122 mg, 1 mmol), 18-Crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and 4-nitrophenol (1.39 g, 10 mmol, 20 eq) in THF (5 mL) to afford 21 (27 mg, 9%), 22 (25 mg, 9%) and an inseparable mixture of 14 and 15 (52 mg, 23%) after flash column chromatography over silica gel eluting with (toluene/ethyl acetate 3:1).

Compound **21**: colorless oil, $[\alpha]_D^{20} - 3.7^\circ$ (*c* 0.8, CHCl₃).¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 9.3 Hz, 2H, ArH), 6.97 (d, *J* = 9.2 Hz, 2H, ArH), 5.42 (dd, *J* = 4.8, 2.2 Hz, 1H, H7), 5.30 (ddd, *J* = 7.2, 4.9, 2.5 Hz, 1H, H8), 5.14 (dd, *J* = 10.1, 9.3 Hz, 1H, H5), 4.88 (ddd, *J* = 11.3, 9.2, 4.9 Hz, 1H, H4), 4.77 (dd, *J* = 12.5, 2.5 Hz, 1H, H9), 4.14 (dd, *J* = 12.5, 7.1 Hz, 1H, H9'), 4.11 (dd, *J* = 10.1, 2.2 Hz, 1H, H6), 3.82 (s, 3H, CH₃), 3.31 (s, 3H, CH₃), 2.66 (dd, *J* = 13.3, 4.9 Hz, 1H, H3e), 2.14 (s, 3H, CH₃), 2.08 (s, 3H, CH₃), 2.03 (s, 3H, CH₃), 1.95 (dd, *J* = 13.3, 11.3 Hz, 1H, H3a), 1.87 (s, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.6, 170.5, 170.2, 169.6, 167.1, 162.6, 142.2, 126.1, 115.6, 99.1, 74.3, 71.3, 70.6, 68.4, 67.6, 62.3, 53.1, 51.6, 37.3, 21.1, 20.9, 20.8, 20.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₃₁NNaO₁₅ 608.1591; Found: 608.1595.

Compound **22**: colorless oil, $[\alpha]_D^{20} - 46.8^\circ$ (*c* 0.6, CHCl₃).¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 9.2 Hz, 2H, ArH), 6.90 (d, *J* = 9.2 Hz, 2H, ArH), 5.56 – 5.51 (m, 2H, H8 and H7), 5.18 (d, *J* = 3.6 Hz, 1H, H5), 5.04 (tdd, *J* = 5.5, 3.8, 1.2 Hz, 1H, H4), 4.41 (dd, *J* = 12.2, 2.7 Hz, 1H, H9), 4.33 (dd, *J* = 12.1, 7.1 Hz, 1H, H9'), 3.79 (s, 3H, CH₃), 3.41 (s, 3H, CH₃), 2.43 (dd, *J* = 13.8, 5.6 Hz, 1H, H3), 2.37 (dd, *J* = 13.8, 5.3 Hz, 1H, H3'), 2.14 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 2.065 (s, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.8, 170.1, 169.4, 167.4, 162.0, 149.9, 142.0, 126.2, 126.1, 118.2, 115.6, 115.5, 99.4, 97.9, 70.5, 70.4, 66.9, 61.9, 53.0, 52.4, 34.5, 21.0, 20.94, 20.92. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₇NNaO₁₃ 548.1380; Found: 548.1389.

Methyl (methyl 7,8,9-tri-O-acetyl-3,4-dideoxy-4-C,5-O-(3,5-dimethoxyphenyl-2,1-diyl)-Dglycero-β-D-talo-non-2-ulopyranosid)onate (23). The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (122 mg, 1 mmol), 18-crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and 3,5-dimethoxyphenol (1.54 g, 10 mmol, 20 eq) in CH₂Cl₂ (5 mL) to afford 23, after flash column chromatography over silica gel eluting with (hexane/ethyl acetate 1:1) as a colorless oil in $(92 \text{ mg}, 34\%); [\alpha]_{D}^{20} - 79.8^{\circ} (c \ 0.93, \text{CH}_2\text{Cl}_2).^{1}\text{H NMR} (600 \text{ MHz}, \text{CDCl}_3) \delta 6.02 (d, J = 2.0 \text{ Hz}, C)$ 1H, ArH), 5.97 (d, J = 2.0 Hz, 1H, ArH), 5.59 (dd, J = 6.4, 4.6 Hz, 1H, H7), 5.39 (td, J = 6.1, 2.6 Hz, 1H, H8), 4.70 (t, J = 9.4 Hz, 1H, H5), 4.41 (dd, J = 12.3, 2.7 Hz, 1H, H9), 4.28 (dd, J = 12.4, 5.8 Hz, 1H, H9'), 4.03 (dd, J = 9.4, 4.6 Hz, 1H, H6), 3.82 (s, 3H, CH₃), 3.73 (s, 3H, CH₃), 3.72 (s, 3H, CH₃), 3.47 (ddd, J = 12.9, 9.1, 5.4 Hz, 1H, H4), 3.25 (s, 3H, CH₃), 2.63 (dd, J = 14.9, 5.4 Hz, 1H, H3pe), 2.14 (s, 3H, CH₃), 2.06 (s, 6H, CH₃), 1.79 (dd, J = 14.9, 12.9 Hz, 1H, H3pa). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.7, 170.1, 169.7, 169.4, 162.1, 161.1, 157.1, 107.5, 99.4, 91.8, 88.7, 79.5, 70.2, 69.7, 69.2, 61.7, 55.6, 55.3, 52.8, 51.5, 35.2, 33.7, 21.0, 20.8. ESI-HRMS Calcd. for $(C_{25}H_{32}NaO_{13})$:([M+Na]⁺) m/z: 563.1741 ; found: 563.1715.

Deamination of nitrosyl sialoside 5 with 2-quinolinol as nucleophile. The nitrosyl sialoside **5** (306 mg, 0.6 mmol) in CH_2Cl_2 (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (140 mg, 1.1 mmol), 18-crown-6 (300 mg, 1.1 mmol) in CH_2Cl_2 (3 mL) and 2-quinolinol (165 mg, 1.1 mmol) in Et_2O (10 mL) to afford, after flash column chromatographic separation over silica gel (hexane/ethyl acetate 1:1), a mixture of compounds **14** and **15** (1:2.5 ratio; 220 mg, 86%).

Methyl (methyl 7,8,9-tri-*O*-acetyl-3,5-dideoxy-4-*O*-(quinolin-3-yl)- β -D-arabino-non-4-en-2ulopyranosid)onate (24) and Methyl (methyl 7,8,9-tri-*O*-acetyl-3,5-dideoxy-4-*O*-(quinolin-3yl)- β -D-ribo-non-5-en-2-ulopyranosid)onate (25). The nitrosyl sialoside 5 (330 mg, 0.6 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (146 mg, 1.2 mmol), 18-crown-6 (317 mg, 1.2 mmol) in CH₂Cl₂ (3 mL) and 3-quinolinol (1.2 g, 8.5 mmol) in Et₂O (10 mL) to afford, after flash column chromatography over silica gel eluting with (hexane/ethyl acetate 1:2), 24 as a colorless oil in (68 mg, 21%) and 25 as a colorless oil in (40 mg, 12%).

Compound **24**; $[\alpha]_D^{20} - 42.1^\circ$ (*c* 0.28, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 2.8 Hz, 1H, ArH), 8.11 (d, *J* = 8.5 Hz, 1H, ArH), 7.77 (d, *J* = 8.2 Hz, 1H, ArH), 7.73 (d, *J* = 2.7 Hz, 1H, ArH), 7.67 (ddd, *J* = 8.4, 6.7, 1.5 Hz, 1H, ArH), 7.56 (t, *J* = 7.5 Hz, 1H, ArH), 5.46 (td, *J* = 6.3, 2.5 Hz, 1H, H8), 5.29 (dd, *J* = 6.5, 2.8 Hz, 1H, H7), 4.89 (t, *J* = 2.0 Hz, 1H, H5), 4.56 (dd, *J* = 12.5, 2.4 Hz, 1H, H9), 4.52 (q, *J* = 2.7 Hz, 1H, H6), 4.21 (dd, *J* = 12.5, 6.0 Hz, 1H, H9³), 3.34 (s, 3H, CH₃), 2.73 (ddd, *J* = 17.0, 3.7, 2.1 Hz, 1H, H3), 2.61 (dd, *J* = 17.1, 2.4 Hz, 1H, H3³), 2.12 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.03 (s, 3H, CH₃). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.8, 170.0, 169.8, 168.1, 150.6, 148.1, 145.6, 129.4, 128.5, 127.5, 127.3, 122.9, 101.3,

98.4, 71.1, 70.0, 69.3, 62.4, 52.8, 51.7, 34.3, 21.0, 20.9, 20.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₉NO₁₁Na 554.1638; Found: 554.1636.

Compound **25**; $[\alpha]_{D}^{20} - 26.2^{\circ}$ (*c* 0.2, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, J = 2.8 Hz, 1H, ArH), 8.03 (d, J = 8.3 Hz, 1H, ArH), 7.72 (d, J = 8.1 Hz, 1H, ArH), 7.57 (t, J = 7.6 Hz, 1H, ArH), 7.51 (t, J = 7.5 Hz, 1H, ArH), 7.40 (d, J = 2.9 Hz, 1H, ArH), 5.58 – 5.53 (m, 2H, H8 and H7), 5.24 (d, J = 3.8 Hz, 1H, H5), 5.06 (tdd, J = 5.3, 3.7, 1.3 Hz, 1H, H4), 4.43 (dd, J = 12.2, 2.8 Hz, 1H, H9), 4.36 (dd, J = 12.1, 7.2 Hz, 1H, H9'), 3.80 (s, 3H, CH₃), 3.42 (s, 3H, CH₃), 2.51 (dd, J = 13.8, 5.4 Hz, 1H, H3), 2.40 (dd, J = 13.8, 5.3 Hz, 1H, H3'), 2.13 (s, 3H, CH₃), 2.06 (s, 6H, CH₃). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.8, 170.1, 169.4, 167.5, 150.2, 149.6, 128.7, 127.5, 126.9, 99.4, 98.3, 70.5, 70.4, 66.8, 61.9, 53.0, 52.4, 34.4, 21.0, 20.9, 20.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆ H₂₉NO₁₁Na 554.1638; Found: 554.1636.

Methyl (methyl 7,8,9-tri-*O*-acetyl-3,4-dideoxy-4-*C*,5-*O*-(quinolin-5,6-diyl)-D-glycero-β-Dtalo-non-2-ulopyranosid)onate (26). The nitrosyl sialoside 5 (200 mg, 0.4 mmol) in CH₂Cl₂ (4 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2trifluoroethoxide (91 mg, 0.7 mmol), 18-crown-6 (195 mg, 0.7 mmol) in CH₂Cl₂ (3 mL) and 6quinolinol (1.1 g, 7.6 mmol) in hexafluoroisopropanol (3 mL), to afford, after flash column chromatography over silica gel eluting with (hexane/ethyl acetate 1:2), **26** as light yellow oil (105 mg, 53%) and an inseparable mixture of **14** and **15** as a colorless oil (25 mg, 11%).

Compound **26**; $[\alpha]_D^{20} - 85.1^\circ$ (*c* 0.37, CH₂Cl₂).¹H NMR (600 MHz, CDCl₃) δ 8.78 (dd, *J* = 4.2 Hz, 1H, ArH), 8.01 (d, *J* = 9.0 Hz, 1H, ArH), 7.91 (d, *J* = 8.3 Hz, 1H, ArH), 7.39 (dd, *J* = 8.4, 4.2 Hz, 1H, ArH), 7.34 (d, *J* = 9.0 Hz, 1H, ArH), 5.68 (dd, *J* = 6.1, 5.0 Hz, 1H, H7), 5.46 (td, *J* = 6.0, 2.6 Hz, 1H, H8), 4.99 (dd, *J* = 9.3, 8.9 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3, 2.7 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3 Hz, 1H, H9), 4.34 (dd, *J* = 6.1 Hz, 1H, H8), 4.99 (dd, *J* = 9.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3 Hz, 1H, H5), 4.48 (dd, *J* = 12.3 Hz, 1H, H5), 4.34 (dd, *J* = 6.1 Hz, 1H, H5), 4.48 (dd, *J* = 12.3 Hz, 1H, H5), 4.34 (dd, *J* = 6.1 Hz, 1H, H5), 4.34 (dd, *J* = 6.1 Hz, 1H, H5), 4.48 (dd, *J* = 12.3 Hz, 1H, H5), 4.48 (dd, *J* = 6.1 Hz, 1H, H5), 4.48 (dd, *J* = 12.3 Hz, 1H, H5), 4.48 (dd, J = 12.3 Hz, 1H), 4.34 (dd, J = 12.3 Hz, 1H

12.3, 6.0 Hz, 1H, H9'), 4.21 (dd, J = 9.3, 5.0 Hz, 1H, H6), 3.91 (s, 3H, CH₃), 3.88 (ddd, J = 13.4, 8.9, 5.1 Hz, 1H, H4), 3.31 (s, 3H, CH₃), 2.78 (dd, J = 14.9, 5.1 Hz, 1H, H3pe), 2.18 (s, 3H, CH₃), 2.10 (s, 3H), 2.09 (s, 3H), 1.92 (dd, J = 14.9, 13.4 Hz, 1H, H3pa). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.8, 170.3, 169.9, 169.2, 157.3, 147.3, 133.2, 131.6, 130.4, 125.5, 121.9, 119.8, 115.9, 99.2, 80.5, 70.5, 69.8, 69.5, 61.7, 53.1, 51.8, 36.9, 34.3, 21.2, 21.1, 21.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆ H₂₉NO₁₁Na 554.1638; Found: 554.1634.

Methyl (methyl 7,8,9-tri-*O*-acetyl-3,4-dideoxy-4-*C*,5-*O*-(indol-4,5-diyl)-D-glycero-β-D-talonon-2-ulopyranosid)onate (27) and Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-5-(5hydroxyindol-4-diazenyl)-D-glycero-β-D-galacto-non-2-ulopyranosid)onate (28). The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (122 mg, 1 mmol), 18crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and 5-hydroxyindole (1.33 g, 10 mmol, 20 eq) in THF (5 mL) to afford, after flash column chromatography over silica gel eluting with (hexane/ethyl acetate 1:1), **27** as a colorless oil (72 mg, 27%), **28** (28 mg, 9%) as deep yellow crystals from methanol/CH₂Cl₂, and an inseparable mixture of **14** and **15** (16 mg, 7%).

Compound **27**; colorless oil, $[\alpha]_D^{20} - 104.8^\circ$ (*c* 0.4, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 8.13 (s, 1H, NH), 7.22 (t, *J* = 2.9 Hz, 1H, ArH), 7.17 (d, *J* = 8.6 Hz, 1H, ArH), 6.74 (d, *J* = 8.6 Hz, 1H, ArH), 6.32 (ddd, *J* = 3.1, 2.0, 1.0 Hz, 1H, ArH), 5.67 (dd, *J* = 6.1, 5.0 Hz, 1H, H7), 5.47 (td, *J* = 6.1, 2.8 Hz, 1H, H8), 4.82 (dd, *J* = 9.4, 8.8 Hz, 1H, H5), 4.46 (dd, *J* = 12.3, 2.8 Hz, 1H, H9), 4.32 (dd, *J* = 12.3, 6.1 Hz, 1H, H9²), 4.12 (dd, *J* = 9.4, 5.0 Hz, 1H, H6), 3.88 (s, 3H), 3.77 (ddd, *J* = 12.8, 8.8, 5.5 Hz, 1H, H4), 3.28 (s, 3H, CH₃), 2.72 (dd, *J* = 14.9, 5.5 Hz, 1H, H3pe), 2.17 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 2.02 (dd, *J* = 14.9, 12.8 Hz, 1H, H3pa). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.9, 170.3, 169.9, 169.6, 153.3, 132.3, 126.0, 124.5, 116.9, 110.9, 106.0,

99.5, 99.4, 78.7, 70.7, 69.9, 69.6, 61.9, 53.0, 51.6, 37.6, 34.2, 21.1, 21.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₉NNaO₁₁ 542.1638; Found: 542.1637.

Compound **28**; m.p = 209-2010 °C; $[\alpha]_{D}^{20} - 51.1^{\circ}$ (*c* 0.45, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 11.44 (s, 1H), 8.31 (s, 1H, ArH), 7.36 (d, *J* = 8.7, 0.9 Hz, 1H, ArH), 6.94 (ddd, *J* = 2.9, 2.0, 0.8 Hz, 1H, ArH), 6.82 (d, *J* = 8.8 Hz, 1H, ArH), 6.00 (ddd, *J* = 11.4, 9.9, 5.1 Hz, 1H, H4), 5.42 (td, *J* = 6.1, 2.6 Hz, 1H, H8), 5.34 (dd, *J* = 6.3, 1.9 Hz, 1H, H7), 4.61 (dd, *J* = 12.5, 2.5 Hz, 1H, H9), 4.44 (dd, *J* = 10.4, 1.9 Hz, 1H, H6), 4.14 (dd, *J* = 12.5, 6.0 Hz, 1H, H9[•]), 4.02 (t, *J* = 10.1 Hz, 1H, H5), 3.84 (s, 3H, CH₃), 3.32 (s, 3H, CH₃), 2.65 (dd, *J* = 12.9, 5.1 Hz, 1H, H3e), 2.17 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.97 (s, 3H, CH₃), 1.87 (dd, *J* = 12.8, 11.6 Hz, 1H, H3a), 1.85 (s, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.9, 170.2, 169.9, 169.5, 167.7, 149.3, 130.6, 128.9, 126.6, 118.1, 113.2, 101.4, 99.1, 74.2, 70.4, 70.2, 69.1, 67.5, 62.2, 52.9, 51.5, 36.5, 21.1, 20.9, 20.9, 20.9. UV-vis λ_{max} = 365 nm (dichloromethane, ε = 2391 M⁻¹cm⁻¹). HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₃N₃NaO₁₃ 630.1911; Found: 630.1904.

Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-5-phenylthio-D-glycero-β-D-galacto-non-2-ulopyranosid)onate (29) and Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-β-D-gluconon-2-ulopyranosid)onate (30). The nitrosyl sialoside 5 (200 mg, 0.4 mmol) in CH₂Cl₂ (4 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2trifluoroethoxide (90 mg, 0.7 mmol), 18-crown-6 (97 mg, 0.4 mmol) in CH₂Cl₂ (2 mL) and thiophenol (0.8 mL, 7.4 mmol) to afford **29** (48 mg, 23%) and **30** (32 mg, 19%) after flash column chromatography over silica gel eluting with (hexane/ethyl acetate 1:1).

Compound **29**: yellow oil, $[\alpha]_D^{20}$ –59.4° (*c* 0.5, CHCl₃).¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.40 (m, 3H, ArH), 7.36 – 7.32 (m, 2H, ArH), 5.98 (dd, *J* = 4.7, 1.8 Hz, 1H, H7), 5.29 (td, *J* = 10.9, 5.0

Hz, 1H, H4), 5.23 (ddd, J = 7.2, 4.7, 2.6 Hz, 1H, H8), 4.71 (dd, J = 12.4, 2.5 Hz, 1H, H9), 4.12 (dd, J = 12.4, 7.1 Hz, 1H, H9'), 3.87 (dd, J = 11.1, 1.9 Hz, 1H, H6), 3.78 (s, 3H), 3.17 (s, 3H), 2.88 (t, J = 10.9 Hz, 1H, H5), 2.53 (dd, J = 12.8, 4.9 Hz, 1H, H3e), 2.08 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.92 (s, 3H), 1.73 (dd, J = 12.8, 11.1 Hz, 1H, H3a). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.6, 170.4, 169.6, 169.5, 167.4, 134.8, 133.8, 132.09, 132.03, 131.3, 122.3, 98.5, 71.7, 71.3, 69.7, 69.0, 62.2, 52.6, 51.3, 48.7, 37.9, 29.6, 20.96, 20.91, 20.7, 20.3. ESI-HRMS Calcd. for (C₂₅H₃₂NaO₁₂S) :([M+Na]⁺) m/z: 579.1512; found: 579.1519.

Compound **30**: colorless oil, $[\alpha]_D^{20} - 21.9^\circ$ (*c* 2.1, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 5.33 (td, J = 6.0, 2.6 Hz, 1H, H8), 5.26 (dd, J = 6.2, 3.2 Hz, 1H, H7), 5.20 (m 1H, H4), 4.56 (dd, J = 12.8, 2.6 Hz, 1H, H9), 4.22 (dd, J = 12.6, 5.9 Hz, 1H, H9), 3.99 (dd, J = 11.9, 3.2 Hz, 1H, H6), 3.78 (s, 3H, CH₃), 3.19 (s, 3H, CH₃), 2.35 (dd, J = 12.8, 4.9 Hz, 1H, H3e), 2.14 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 2.04 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.64 – 1.56 (m, 2H, H5e and H3a), 1.38 (q, J = 12.0 Hz, 1H, H5a). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.7, 170.2, 170.1, 170.1, 168.1, 99.4, 71.7, 70.3, 68.2, 66.5, 62.0, 52.7, 50.9, 37.3, 32.2, 21.2, 21.0, 20.8, 20.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₈NaO₁₂ 471.1478; Found: 471.1479.

Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-5-(2-aminophenylthio)-D-glycero-β-Dgalacto/gulo-non-2-ulopyranosid)onate (31) and Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5dideoxy-β-D-gluco-non-2-ulopyranosid)onate (30). The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (122 mg, 1 mmol), 18-crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and 2-aminothiophenol (1.25 g, 10 mmol, 20 eq) in CH₂Cl₂ (5 mL) to afford, after flash column chromatography over silica gel eluting with (hexane/ethyl acetate 2:1), **31** (167 mg, 58%) as a mixture of two isomers (ratio; axial/equatorial = 1:3) and **30** (64 mg, 28%).

Compound **31**; ESI-HRMS Calcd. for $(C_{25}H_{33}NNaO_{12}S)$: ([M+Na]⁺) m/z: 594.1621; found: 594.1621. Major isomer (D-glycero-D-galacto): colorless oil, ¹H NMR (600 MHz, CDCl₃) δ 7.33 (dd, J = 7.7, 1.5 Hz, 1H, ArH), 7.09 (ddd, J = 8.0, 7.3, 1.5 Hz, 1H, ArH), 6.67 (dd, J = 8.1, 1.3 Hz)1H, ArH), 6.65 (td, J = 7.6, 1.2 Hz, 1H, ArH), 5.97 (dd, J = 5.1, 1.5 Hz, 1H, H7), 5.27 (ddd, J =6.8, 5.1, 2.5 Hz, 1H, H8), 5.22 (td, J = 10.6, 5.0 Hz, 1H, H4), 4.67 (dd, J = 12.5, 2.5 Hz, 1H, H9), 4.14 (dd, J = 12.5, 6.9 Hz, 1H, H9'), 3.96 (dd, J = 11.1, 1.6 Hz, 1H, H6), 3.75 (s, 3H, CH₃), 3.15 $(s, 3H, CH_3), 2.94 (t, J = 10.7 Hz, 1H, H5), 2.51 (dd, J = 12.8, 5.1 Hz, 1H, H3e), 2.07 (s, 3H, CH_3), 2.07 (s, 2H, CH_3), 2.07 (s, 2H, CH_3), 3.01 (s, 2H, CH_3),$ 2.03 (s, 3H, CH₃), 2.02 (s, 3H, CH₃), 1.89 (s, 3H, CH₃), 1.63 (dd, J = 12.8, 10.9 Hz, 1H, H3a). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.7, 170.5, 170.0, 169.8, 167.5, 136.7, 130.6, 118.7, 115.4, 113.7, 98.5, 71.7, 71.7, 70.1, 70.0, 62.4, 52.6, 51.3, 47.0, 37.6, 21.1, 20.9, 20.6. Minor isomer (Dglycero-D-gulo): ¹H NMR (600 MHz, CDCl₃) δ 7.44 (dd, J = 8.3, 1.4 Hz, 1H, ArH), 7.04 (td, J =7.7, 1.5 Hz, 1H, ArH), 5.86 (dd, J = 7.6, 4.1 Hz, 1H, H7), 5.41 (dt, J = 6.0, 4.6 Hz, 1H), 4.37 (dd, J = 12.0, 4.8 Hz, 1H, H9), 4.18 (dd, J = 12.0, 5.9 Hz, 1H, H9'), 4.09 (dd, J = 7.6, 1.7 Hz, 1H, H6), 3.80 (s, 3H, CH₃), 3.21 (s, 3H, CH₃), 2.66 (dd, *J* = 12.9, 12.0 Hz, 1H, H3), 2.10 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 1.46 (s, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.3, 170.0, 167.5, 148.8, 137.0, 129.8, 118.8, 116.5, 115.5, 98.9, 71.2, 70.3, 69.5, 61.4, 52.8, 51.0, 48.0, 32.7, 21.0, 20.9, 20.8, 20.2.

Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-5-(naphthalen-2-thio)-D-glycero- β -D-galacto/gulo-non-2-ulopyranosid)onate (32) and Methyl (methyl 4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-D-gluco-non-2-ulopyranosid)onate (30). The nitrosyl sialoside 5 (267 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was deaminated using the general procedure for oxidative deamination with sodium 2,2,2-trifluoroethoxide (122 mg, 1 mmol), 18-crown-6 (291 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) and 2-naphthalenethiol (1.60 g, 10 mmol, 20 eq) in CH₂Cl₂ (5 mL) to afford, after flash

column chromatography over silica gel eluting with (hexane/ethyl acetate 3:1), **32a** as colorless oil (92 mg, 30%), a mixture of **32a** and its stereoisomer **32b** as a colorless oil (76 mg, 25%) axial/equatorial ratio; 1:4 by ¹H NMR and **30** (30 mg, 13%).

Compound **32a** (D-glycero-D-galacto); colorless oil, (92 mg, 30%), $[\alpha]_D^{20} - 34.7^\circ$ (*c* 2.5, CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 1.8 Hz, 1H, ArH), 7.79 (dd, *J* = 7.8, 1.6 Hz, 2H, ArH), 7.77 (d, *J* = 8.5 Hz, 1H, ArH), 7.52 (dd, *J* = 8.6, 1.9 Hz, 1H, ArH), 7.48 (m, 2H, ArH), 6.08 (dd, *J* = 4.8, 1.9 Hz, 1H, H7), 5.38 (td, *J* = 1 0.9, 5.0 Hz, 1H, H4), 5.25 (ddd, *J* = 7.2, 4.8, 2.6 Hz, 1H, H8), 4.69 (dd, *J* = 12.4, 2.6 Hz, 1H, H9), 4.12 (dd, *J* = 12.4, 7.1 Hz, 1H, H9), 3.94 (dd, *J* = 11.0, 1.9 Hz, 1H, H6), 3.77 (s, 3H, CH₃), 3.12 (s, 3H, CH₃), 3.03 (t, *J* = 10.9 Hz, 1H, H5), 2.54 (dd, *J* = 12.9, 5.1 Hz, 1H, H3e), 2.03 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), 1.96 (s, 3H, CH₃), 1.80 (s, 3H, CH₃), 1.76 (dd, *J* = 12.9, 11.1 Hz, 1H, H3a). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.7, 170.6, 169.8, 169.5, 167.6, 133.6, 132.9, 132.7, 130.3, 129.4, 128.7, 127.7, 127.7, 126.8, 126.7, 98.7, 71.8, 71.7, 70.0, 69.4, 62.5, 52.7, 51.4, 48.8, 38.1, 21.0, 21.0, 20.9, 20.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉ H₃₄O₁₂SNa 629.1669; Found: 629.1669.

The minor D-glycero-D-gulo isomer **32b** was identified from a mixture with the major isomer by the following signals: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 1.8 Hz, 1H, ArH), 7.81-7.75 (m, 3H, ArH), 7.59 (dd, *J* = 8.6, 1.9 Hz, 1H, ArH), 7.48-7.43 (m, 2H, ArH), 5.94 (dd, *J* = 4.8, 1.9 Hz, 1H, H7), 5.52 (ddd, *J* = 7.2, 4.8, 2.6 Hz, 1H, H8), 5.38 (m, 1H, H4), 4.46 (dd, *J* = 12.4, 2.6 Hz, 1H, H9), 4.18-4.10 (m, 2H, H6 & H9), 3.95 (m, 1H, H5), 3.82 (s, 3H, CH₃), 3.24 (s, 3H, CH₃), 2.60 (dd, *J* = 12.9, 11.1 Hz, 1H, H3), 2.16 (dd, *J* = 12.9, 5.1 Hz, 1H, H3), 2.12 (s, 3H, CH₃), 2.09 (s, 3H, CH₃). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.8, 170.4, 170.2, 169.7, 167.4, 133.7, 132.7, 132.0, 131.1, 129.4, 129.3, 128.2, 127.3, 126.6, 126.2, 98.9, 71.8, 70.7, 69.7, 68.9, 61.6, 52.8, 50.9, 49.9, 29.7, 20.8, 20.7, 20.6, 20.1.

Methyl 7,8,9-tri-O-acetyl-3,5-dideoxy-4,4-O-ethylidene)-β-D-arabino-non-2-(methyl **ulopyranosid**)onate (33). Dry ethylene glycol ($20 \,\mu$ L) and a few crystals of dry *p*-toluenesulfonic acid were added to compound 20 (30 mg, 0.06 mmol) dissolved in CH₂Cl₂ (5 mL). The mixture was stirred at rt until the substrate was consumed (25 h). The reaction mixture was diluted with DCM (5 mL), and the organic layer was washed with sat. NaHCO₃, brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. Purification by column chromatography over silica gel eluting with (hexane/ethyl acetate 1:1) then gave compound 33 as a colorless oil (11 mg, 42 %); $[\alpha]_{D}^{20} - 16.4^{\circ}$ (c 0.45, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 5.35 (td, J = 6.0, 2.5 Hz, 1H, H8), 5.29 (dd, J = 5.9, 3.3 Hz, 1H, H7), 4.60 (dd, J = 12.5, 2.5 Hz, 1H, H9), 4.23 (dd, J = 12.5, 6.0 Hz, 1H, H9), 4.19 (ddd, J = 12.2, 3.4, 2.1 Hz, 1H, H6), 4.10 – 3.86 (m, 4H), 3.78 (s, 3H, CH₃), 3.23 (s, 3H, CH_3), 2.19 (dd, J = 14.2, 2.2 Hz, 1H, H5), 2.13 (s, 3H, CH_3), 2.07 (s, 3H, CH_3), 2.0313.1, 12.1 Hz, 1H, H3a).¹³C {¹H} NMR (151 MHz, CDCl₃) δ 170.8, 170.3, 170.2, 168.5, 105.8, 99.3, 71.9, 70.5, 68.0, 65.5, 64.1, 62.0, 52.7, 51.5, 40.5, 35.8, 21.1, 20.9. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₉H₂₈NaO₁₂ 471.1478; Found: 471.1471.

Methyl (7,8,9-tri-*O*-acetyl-2,3,5-trideoxy-β-D-arabino-non-2-en-4-oxo-2-ulopyranosid) onate (36). A solution of compound 20 (25 mg, 0.05 mmol), a few drops of wet methanol and a few crystals of *p*-toluenesulfonic acid in CH₂Cl₂ (5 mL) was stirred at rt until TLC showed complete consumption of the starting material (4 h). The reaction mixture was diluted with CH₂Cl₂ (5 mL), and the organic layer was washed with sat. NaHCO₃, brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification by column chromatography over silica gel eluting with (toluene/ethyl acetate 4:1) gave compound **36** as a colorless oil (10 mg, 55 %); $[\alpha]_D^{20}$ -26.8° (*c* 0.2,CHCl₃).¹H NMR (600 MHz, CDCl₃) δ 6.24 (d, *J* = 1.1 Hz, 1H, H3), 5.41 (ddd, *J* = 7.3, 4.9, 2.5 Hz, 1H, H8), 5.38 (dd, J = 7.1, 2.8 Hz, 1H, H7), 4.71 (ddd, J = 13.5, 3.8, 2.8 Hz, 1H, H6), 4.49 (dd, J = 12.6, 2.5 Hz, 1H, H9), 4.25 (dd, J = 12.6, 4.9 Hz, 1H, H9), 3.88 (s, 3H, CH₃), 2.58 (dd, J = 16.9, 13.6 Hz, 1H, H5), 2.49 (ddd, J = 16.9, 3.8, 1.1 Hz, 1H, H5'), 2.14 (s, 3H, CH₃), 2.08 (s, 3H, CH₃), 2.06 (s, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 191.8, 170.7, 169.8, 161.7, 158.3, 109.5, 77.7, 77.4, 77.2, 76.9, 70.1, 69.5, 61.7, 53.4, 37.8, 21.0, 20.8, 20.6. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₀NaO₁₀ 395.0954; Found: 395.0950.

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b01645.

Copies of the ¹H and ¹³C NMR spectra of all new compounds (PDF)

X-Crystallographic Structure of Compound 18 (CCDC 1941624)

Acknowledgments. We thank Dr. Oskar Popik for preliminary experiments, Cassie Ward for the X-ray structure, the NIH (GM62160) for support of this work, and Umm AlQura University for a Fellowship to MH.

References

1. White, E. H., The Chemistry of the *N*-Alkyl-*N*-nitrosoamides. I. Methods of Preparation. *J. Am. Chem. Soc.* **1955**, *77*, 6008-6010.

2. White, E. H., The Chemistry of the *N*-alkyl-*N*-nitrosoamides. II. A New Method for the Deamination of Aliphatic Amines. *J. Am. Chem. Soc.* **1955**, *77*, 6011-6014.

3. White, E. H., The Chemistry of the *N*-Alkyl-*N*-nitrosoamides. III. Mechanism of the Nitrogen Elimination Reaction. *J. Am. Chem. Soc.* **1955**, *77*, 6014-6022.

4. White, E. H., <i>N</i> -Nitrosoamides. V. <i>N</i> -Nitrosoamides of Secondary Carbinamines; An Example	le of
Intramolecular Inversion of Configuration. J. Am. Chem. Soc. 1961, 83, 1179-1190.	
5. Williams, J. M., Deamination of Carbohydrate Amines and Related Compounds. <i>Adv. Carbo</i>	ohydr.
Chem. Biochem. 1975, 31, 9-79.	
6. Schreiner, E.; Zbiral, E., A Convenient Approach to 3-Deoxy-D-glycero-D-galacto-nonulosor	nic
Acid (KDN), 5-Azido-5-deoxy-KDN and 5-Deoxy-KDN, and their 4-Methylumbelliferyl 2α -Glycosides	
Liebigs Ann. Chem. 1990 , 581-586.	
7. Crich, D.; Navuluri, C., Efficient, Highly Stereoselective Synthesis of α-Keto-deoxy-D-glycero	D-D-
galacto-nonulosonic Acid (KDN) Glycosides by Means of the 4,5-O-Carbonate Protecting Group. An	igew.
Chem. Int. Ed. 2010, 49, 3049-3052.	
8. Dhakal, B.; Buda, S.; Crich, D., Stereoselective Synthesis of 5-Epi- α -Sialosides Related to th	e
Pseudaminic Acid Glycosides. Reassessment of the Stereoselectivity of the 5-Azido-5-deacetamido	osialyl
Thioglycosides and Use of Triflate as Nucleophile in the Zbiral Deamination of Sialic Acids. J. Org. C	hem.
2016 , <i>81</i> , 10617-10630.	
9. Zunk, M.; Williams, J.; Carter, J.; Kiefel, M. J., A New Approach Towards the Synthesis of	
Pseudaminic Acid Analogues. Org. Biomol. Chem. 2014, 12, 2918-2925.	
10. Williams, J. T.; Corcilius, L.; Kiefel, M. J.; Payne, R. J., Total Synthesis of Native 5,7-	
Diacetylpseudaminic Acid from N-Acetylneuraminic Acid. J. Org. Chem. 2016, 81, 2607-2611.	
11. Dhakal, B.; Crich, D., Synthesis and Stereocontrolled Equatorially Selective Glycosylation	
Reactions of a Pseudaminic Acid Donor: Importance of the Side Chain Conformation, and Regiosele	ective
Reduction of Azide Protecting Groups. J. Am. Chem. Soc. 2018, 140, 15008-15015.	
12. Shirai, R.; Nakamura, M.; Hara, S.; Takayanagi, H.; Ogura, H., Thermal Rearrangement of	N-
Acetyl-N-nitrosoneuraminic Acid Derivative: Synthesis of 3-Deoxy-D-Nonulosonic Acid (KDN).	
Tetrahedron Lett. 1988, 29, 4449-4452.	

13. Navuluri, C.; Crich, D., Chemical Diversification of Sialic Acid Glycosides by Stereospecific,
Chemoselective Deamination. *Angew. Chem. Int. Ed.* **2013**, *52*, 11549-11552.

Sarpe, V. A.; Pirrone, M. G.; Haldimann, K.; Hobbie, S. N.; Vasella, A.; Crich, D., Synthesis of
 Saccharocin from Apramycin and Evaluation of its Ribosomal Selectivity. *Med. Chem. Commun.* 2019, *10*, 554-558.

15. Buda, S.; Crich, D., Oxidative Deamination of *N*-Acetyl Neuraminic Acid: Substituent Effects and Mechanism. *J. Am. Chem. Soc.* **2016**, *138*, 1084-1092.

16. Xiong, Z.; Corey, E. J., Simple Enantioselective Total Synthesis of Glabrescol, a Chiral C_2 -Symmetric Pentacyclic Oxasqualenoid. *J. Am. Chem. Soc.* **2000**, *122*, 9328-9329.

17. Stevens, C. L.; Glinski, R. P.; Taylor, K. G.; Blumbergs, P.; Sirokman, F., New Rearrangements of Hexose 4- and 5-*O*-Sulfonates. *J. Am. Chem. Soc.* **1966**, *88*, 2073-2074.

18. Hanessian, S., Ring Contraction and Epimerization During a Displacement Reaction of a Hexose Sulphonate. *Chem. Comm.* **1966**, 796-798.

19. Horton, D.; Loh, W., Preparation of Acetylenic Sugar Derivatives by Way of 2-(Nitroso)acetimdo Sugars. *Carbohydr. Res.* **1974**, *38*, 189-203.

20. Cassinelli, G.; Julita, P.; Arcamone, F., Semisynthetic Aminoglycoside Antibiotics II. Synthesis of Analogues of Paromomycin Modified in the Glucosamine Moiety. *J. Antibiotics* **1978**, *31*, 382-384.

21. Al-Masoudi, N. A. L.; Hughes, N. A., 5-Thiopyranoses. Part 12. Sulphur Participation in Displacement Reactions of Sulphonate Esters of 5-Thio-D-allose, 5-Thio-D-altrose, and 5-Thio-D-glucose Derivatives. *J. Chem. Soc, Perkin Trans.* 1 **1987**, 2061-2067.

22. Gomez Pardo, D.; Cossy, J., Access to Optically Active 3-Substituted Piperidines by Ring Expansion of Prolinols and Derivatives *Chem. Eur. J.* **2014**, *20*, 4516-4525.

23. Bott, K., Alkenediazonium Salts: A New Chapter of Classical Organic Chemistry. *Angew. Chem. Int. Ed.* **1979,** *18*, 259-265.

2
3
4
5
5
6
7
8
0
9
10
11
12
13
14
14
15
16
17
18
10
19
20
21
22
 22
23
24
25
26
27
27
28
29
30
31
22
32
33
34
35
20
30
37
38
39
40
40
41
42
43
ΔΛ
44
45
46
47
48
10
49
50
51
52
52
55
54
55
56
57
50
20
50
55

24.	Saalfrank, R. W.; Weiss, B., 1H-1,2,3-Triazole, 2-Diazoimine und Imidoester aus
Alkend	iazoniumsalze mit Primaren Aminen, Hydrazinen und Hydroxylaminethern. Chem. Ber. 1985, 118,
2626-2	634.
25.	Saalfrank, R. w.; Weiss, B.; Wirth, U.; Peters, K.; von Schnering, H. G., 2,2-Diethoxy-1-
ethend	iazonium-hexachloroantimonat: Ein Vielsitiger Synthesebaustein fur 5- und 6-gliedrige N-
Hetero	cyclen. kristall- und Molekulstrktur von 5'-Phenyl-3'-(2-phenyl-6H-1,3,4-oxadiazin-5-
yl)spirc	[isobenzofuran-1(3H),2'(3'H)-[1,3,4]-oxadiazol]-3-on. Z. Naturforsch. 1989, 44b, 587-597.
26.	Saalfrank, R. W.; Ackermann, E., Zur Darstellung von 4-(4-Nitrophenyl)-5-piperidino-1H-1,2,3-
triazole	en aus 2-Ethoxy-1-(4-nitrophenyl)-2-piperidino-1-ethendiazonium-hexachloroantimonat und
Primar	en Aminen. <i>Chem. Ber.</i> 1981, <i>114,</i> 3456-3459.
27.	Szele, I.; Tencer, M.; Zollinger, H., Reactions of Alkenediazonium Salts. 2,2-
Dietho	xyethenediazonium Hexachloroantiminate: A Diazonium, a Carbenium or an Oxoniium Salt? Helv.
Chim. A	Acta 1983, 66, 1691-1703.
28.	Lorenz, W.; Maas, G., O-Acylation of α -Diazo Ketones. A Novel Route to Alkenediazonium and
1,3-Dic	xolium Salts. J. Org. Chem. 1987, 52, 375-381.
29.	Glaser, R.; Chen, G. S.; Barnes, C. L., Origin of the Stabilization of Vinyldiazonium lons by eta -
Substit	ution ; First Crystal Structure of an Aliphatic Diazonium Ion : eta,eta -Diethoxyethenediazonium
Hexach	loroantimonate. Angew. Chem. Int. Ed. 1992, 31, 740-743.
30.	Mizutani, T.; Jinguji, M.; Yamataka, H., Reaction Pathways and Dynamics Effects for Ionizations
of Viny	l Diazonium Ions. Bull. Chem. Soc. Jpn. 2012, 85, 1112-1119.
31.	Colomer, I.; R., C. A. E.; Haughey, M. B.; Donohoe, T. J., Hexafluoroisopropanol as a Highly
Versati	le Solvent. <i>Nat. Rev. Chem</i> . 2017, <i>1</i> , 0088.

	44
32.	Bégué, JP.; Bonnet-Delpon, D.; Crousse, B., Selective and Clean Reactions in Fluorinated
Alcoho	ols. In Handbook of Fluorous Chemistry, Gladysz, J. A.; Curran, D. P.; Horváth, A., Eds. Wiley-VCH:
Weinh	eim, 2004; pp 341-350.
3.	Hirokawa, T.; Nishino, M.; Kiso, Y., Isotachophoretic Determination of Mobility and pKa by
Means	s of Computer Simulation. J. Chromatography A 1982, 252, 49-65.
34.	Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C., Absolute pKa
Deterr	ninations for Substituted Phenols. J. Am. Chem. Soc. 2002, 124, 6421-6427.
35.	Andersson, M. P.; Olsson, M. H. M.; Stipp, S. L. S., Predicting the pKa and Stability of Organic
Acids	and Bases at an Oil–Water Interface. Langmuir 2014, 30, 6437-6445.
36.	Mason, S. F., The Tautomerization of N-Heteroaromatic Hydroxy compounds. Part III. Ionisation
Consta	ants. <i>J. Chem. Soc.</i> 1958 , 674-685.
87.	Danehy, J. P.; Noel, C. J., The Relative Nucleophilic Character of Several Mercaptans toward
thyle	ne Oxide. <i>J. Am. Chem. Soc.</i> 1960, <i>82</i> , 2511-2515.
88.	Jensen, H. H.; Nordstrøm, L. U.; Bols, M., The Disarming Effect of the 4,6-Acetal Group on
Slycos	ide Reactivity: Torsional or Electronic. J. Am. Chem. Soc. 2004, 126, 9205-9213.
39.	Moumé-Pymbock, M.; Furukawa, T.; Mondal, S.; Crich, D., Probing the Influence of a 4,6-O-
Acetal	on the Reactivity of Galactopyranosyl Donors: Verification of the Disarming Influence of the trans-
gauch	e Conformation of C5-C6 Bonds. J. Am. Chem. Soc. 2013, 135, 14249-14255.
10.	Bock, K.; Duus, J. O., A Conformational Study of Hydroxymethyl Groups in Carbohydrates
	igated by ¹ H NMR Spectroscopy. <i>J. Carbohydr. Chem.</i> 1994, <i>13</i> , 513-543.
nvest	
Invest 41.	Grindley, T. B., Structure and Conformation of Carbohydrates. In Glycoscience: Chemistry and

42.	Kancharla, P. K.; Crich, D., Influence of Side Chain Conformation and Configuration on Glycosyl				
Donor	Reactivity and Selectivity as Illustrated by Sialic Acid Donors Epimeric at the 7-Position. J. Am.				
Chem.	Soc. 2013, 135, 18999-19007.				
43.	Christian, R.; Schulz, G.; Brandstetter, H. H.; Zbiral, E., On the Side-Chain Conformation of N-				
Acetyl	neuraminic Acid and its Epimers at C-7, C-8, and C-7,8. Carbohydr. Res. 1987, 162, 1-11.				
44.	Brown, E. B.; Brey, W. S., Jr.; Weltner, W., Jr., NMR of N-Acetyl Neuraminic Acid. Biochim.				
Biophy	vs. Acta 1975, 399, 124-130.				
45.	Flippen, J. L., Crystal Structure of β -D-N-Acetylneuraminic Acid Dihydrate (Sialic Acid). Acta Cryst				
1973,	<i>B29</i> , 1881-1886.				
46.	Veluraja, K.; Rao, V. S. R., Theoretical Studies on the Conformation of β -D-N-Acetyl Neuraminic				
Acid (Sialic Acid). Biochim. Biophys. Acta 1980, 630, 442-446.					
47.	Rao, V. S. R.; Qasba, P. K.; Balaji, P. V.; Chandrasekaran, R., Conformation of Carbohydrates.				
Harwo	od Academic Publishers: Amsterdam, 1998; p 359.				
48.	Sabesan, S.; Bock, K.; Lemieux, R. U., The Conformational Properties of the Gangliosides GMz				
and GI	M1 Based on ¹ H and ¹³ C Nuclear Magnetic Resonance Studies. <i>Can. J. Chem.</i> 1984, <i>62</i> , 1034-1045.				
49.	Altona, C., Vicinal Coupling Constants and Conformation of Biomolecules. In Encyclopedia of				
NMR,	Harris, R. K.; Wasylishen, R. E., Eds. Wiley: Chichester, 2012; Vol. 9, pp 5364-5378.				
50.	McGarrity, J. F.; Smyth, T., Hydrolysis of Diazomethane-Kinetics and Mechanism. J. Am. Chem.				
Soc. 1 9	980, <i>102,</i> 7303-7308.				
51.	Abeywickrema, A. N.; Beckwith, A. L. J., Mechanistic and Kinetic Studies of the				
Thiode	ediazoniation Reaction. J. Am. Chem. Soc. 1986, 108, 8227-8229.				
52.	Kumar, V.; Kessler, J.; Scott, M. E.; Patwardhan, B. H.; Tanenbaum, S. W.; Flashner, M., 2,3-				
	ro-A-eni-N-acetylneuraminic Acid: A Neuraminidase Inhibitor Carbobydr Res 1981 9/ 123-130				

The Journal of Organic Chemistry

53. Kumar, V.; Tanenbaum, S. W.; Flashner, M., Characterization of Lewis-acid Transformationproducts from 2,3-Unsaturated Relatives of Methyl *N*-Acetylneuraminate During Attempted Glycoside Synthesis. *Carbohydr Res* **1982**, *101*, 155-159.

54. Schreiner, E.; Zbiral, E.; Kleineidam, R. G.; Schauer, R., Synthesis of Some 2,3-Didehydro-2deoxysialic Acids Structurally Varied at C-4 and their Behaviour towards Sialidase from *Vibrio choloerae*. *Liebigs Ann. Chem.* **1991**, 129-134.

55. Bandgar, B. P.; Zbiral, E., Strukturelle Abwandlungen an *N*-Acetylneuraminsaure, 25. Mitt. [I] : Synthese von Methyl-2-α-glycosiden von 4-epi-, 7-epi-, 8-epi- und 7,8-Bis-epi-*N*-acetylneuraminsaure. *Monat für Chemie* **1991**, *122*, 1075-1088.

56. von Itzstein, M.; Jin, B.; Wu, W.-Y.; Chandler, M., A Convenient Method for the Introduction of Nitrogen and Sulfur at C-4 on a Sialic Acid Analogue. *Carbohydr Res* **1993**, *244*, 181-185.

57. Chopra, P.; Thomson, R. J.; Grice, D.; von Itzstein, M., Rapid and Clean Microwave-assisted Synthesis of *N*-Acetylneuraminic Acid Methyl Ester and Its β-Methyl Glycoside. *Tetrahedron Lett.* **2012**, *53*, 6254-6256.