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ABSTRACT: Bubbling O2 into a THF solution of Co
II
(BDPP) 

(1) at −90 °C generates an O2 adduct, Co(BDPP)(O2) (3). The 
resonance Raman and EPR investigations reveal that 3 con-
tains a low spin cobalt(III) ion bound to a superoxo ligand. 
Significantly, at −90 °C, 3 can react with 2,2,6,6-tetramethyl-
1-hydroxypiperidine (TEMPOH) to form a structurally char-
acterized cobalt(III)-hydroperoxo complex, Co(BDPP)(OOH) 
(4) and TEMPO

•
. Our findings show that cobalt(III)-

superoxo species are capable of performing hydrogen atom 
abstraction processes. Such a stepwise O2-activating process 
helps to rationalize cobalt-catalyzed aerobic oxidations and 
sheds light on the possible mechanism of action for Co-
bleomycin. 

Transformation of superoxo to peroxo is a critical step in the 
catalytic cycles of a range of O2-activating iron enzymes. For 
instance, the iron-superoxo intermediates of isopenicillin-N-
synthase (IPNS)

1
 and myo-inositol oxygenase (MIOX)

2
 un-

dertake hydrogen atom abstraction (HAA), leading to for-
mation of hydroperoxo species. In the case of homoproto-
catechuate 2,3-dioxygenase (Fe-HPCD), the superoxo species 
is shown to attack an electron-deficient carbon to yield an 
alkylperoxo intermediate.

3
 Unexpectedly, parallel investiga-

tions on the Co-reconstituted HPCD (Co-HPCD) demon-
strated that its reactivity is even superior to that of Fe-HPCD 
under O2-saturating conditions,

4
 implying that cobalt, a 

nonphysiological metal cofactor, may play a similar role as 
iron in O2 reduction. Although a series of heme and non-
heme cobalt-superoxo complexes have been synthesized and 
spectroscopically and structurally characterized since 
1970s,

5,6
 their reactivity towards organic substrates is barely 

discussed. Recently, aerobic oxidation of p-hydroquinone 
catalyzed by a salophen-based cobalt complex was reported,

7
 

for which the DFT calculations suggested that the cobalt-
superoxo species can exhibit HAA reactivity and convert to 

the corresponding hydroperoxo complex, akin to the iron 
congeners. Note that Fe-/Co-OOH species, presumably gen-
erated by O2 activation via the superoxo intermediate, have 
long been believed to be responsible for DNA cleavage in the 
mechanism of cancer treatment by bleomycin, a broad-
spectrum antitumor agent.

8-10
 Based on our previous investi-

gation of a nonheme iron-superoxo complex produced from 
its iron(II) precursor, Fe(BDPP)

11
 (H2BDPP = 2,6-bis((2-(S)-

diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine), we 
herein present a structurally characterized nonheme co-
balt(III) hydroperoxo complex derived from its superoxo 
intermediate via HAA (Scheme 1, 3→4). 

Scheme 1 

 

A purple cobalt(II) complex, Co(BDPP) (1), was synthe-
sized from the reaction of CoCl2 with the deprotonated 
BDPP

2−
 ligand in THF-CH3CN mixed solvent and structurally 

characterized by X-ray crystallography (Figure 1A). Similar to 
Fe(BDPP), 1 features a distorted square pyramidal geometry 
(τ5 = 0.58, cf. τ5 = 0.48 for Fe(BDPP)) in an N3O2 coordination 
environment, providing a substrate binding site on the metal 

Page 1 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

center. The selected bond lengths of 1 are listed in Table 1. In 
contrast to highly air-sensitive Fe(BDPP), 1 is quite stable 
under air. Cyclic voltammetry of 1 in CH2Cl2 shows one re-
versible redox wave at −476 mV (E1/2 vs Fc

+
/Fc); chemical 

oxidation of 1 by FcBF4 in acetone affords a six-coordinate 
cobalt(III) complex, [Co(BDPP)(H2O)](BF4) (2, Figure 1B), 
with a shrunk first coordination sphere (Table 1). The fitting 
of SQUID data (Figures S10, S11) show that 1 contains a high-
spin Co

II
 center (S = 3/2) with a giso ~ 2.48 and a large axial 

zero-field splitting (ZFS) parameter (|D| = 15.4 cm
−1

). The 
EPR spectrum of a frozen CH2Cl2 solution of 1 exhibits a 
pseudo-axial pattern with effective g values at 4.287 (geff,⊥) 

and 1.994 (geff,∥, A∥ = 310 MHz, Figure 2A). The simulation 

gives the intrinsic g⊥ at 2.253 and g∥ at 1.991 with D = −13 ± 3 

cm
−1

 and the rhombicity parameter |E/D| = 0.04 ± 0.005 
(Figure 2A), consistent with the SQUID measurements. Con-
sidering the large D value, the transitions between the two 
Kramers’ doublets (ms = ±3/2, ±1/2) are impossible with the 
X-band frequency. The g values observed arise from the ms = 
±1/2 transition and shifted by large g anisotropy. The analo-
gous spin Hamiltonian parameters were found for the recent-
ly characterized cobalt(II) complexes as well.

6,7,12,13
 

 

Figure 1. ORTEP of (A) 1 and (B) 2 with ellipsoids set at 50% 
probability. Anion and hydrogen atoms except water mole-
cule are omitted for clarity. 

Table 1. Selected Bond Lengths of 1, 2 and 4 

 1 2 4 

Co–N1 (Å ) 2.229(3) 1.991(4) 2.000(2) 

Co–N2 (Å ) 2.052(5) 1.837(4) 1.875(2) 

Co–N3 (Å ) 2.229(3) 1.990(3) 1.999(2) 

Co–O1 (Å ) 1.913(3) 1.881(3) 1.8819(19) 

Co–O2 (Å ) 1.913(3) 1.862(3) 1.9203(19) 

Co–O3 (Å )  1.966(4) 1.9005(19) 

O3–O4 (Å )   1.497(3) 

 

Monitored by UV-Vis spectroscopy, no reaction of 1 with 
O2 in THF is detected at room temperature (Figure S7). On 
the other hand, an O2 adduct, Co(BDPP)(O2) (3), forms be-
low −70 °C as indicated by the color of the reaction solution 
varying from pale purple to marigold with the new absorp-
tion bands at 485 and 580 nm (Figure S3). Furthermore, at an 
even lower temperature, −90 °C, vigorously bubbling N2 
through the marigold solution does not cause discernible 
changes in the electronic absorption spectrum. The UV–Vis 
absorption, however, converts back to that of 1 upon rapidly 
raising the temperature of the solution. As elaborated by an 
earlier systematic study on a series of cobalt complexes, the 
O2 addition is an equilibrium with ΔS around −50 ± 10 
cal/mol·K and ΔH about −11 ± 4 kcal/mol.

5a
 Therefore, at am-

bient temperature the –TΔS factor substantially outweighs 

the stabilizing enthalpy ΔH contribution; thus, the O2 coor-
dination is thermodynamically unfavorable. In comparison 
with 1, the O2 binding to Fe(BDPP) is reversible at −80 °C.

10
 

Different O2 affinity at ambient temperature is also observed 
for Co- and Fe-HPCD.

4
 

 

Figure 2. X-band EPR spectra (red) of (A) 1 at 4 K and (B)  3 
at 77 K in CH2Cl2. Simulations (gray) were performed by 
EasySpin. 

The resonance Raman (rRaman) and EPR measurements 
evidence that 3 is a cobalt(III)-superoxo complex. The 
rRaman spectra of 3 (λex at 457 nm, Figure S15) show an O–O 

stretching vibration at 1135 cm
−1

, which shifts to 1070 cm
−1

 (∆ 
= −65 cm

-1
) upon 

18
O substitution. Both values fall within the 

typical range of O–O stretching frequencies found for mono-
nuclear end-on superoxo complexes (Table 2). The EPR spec-
trum of 3 generated in CH2Cl2 at −90 °C (Figure 2B) exhibits a 
rhombic signal with g values at 2.098, 2.011, and 1.980, sug-
gesting an S = 1/2 ground state for 3. An octet arising from 
the Co superhyperfine interaction is clearly resolved in the 
first g component; for the other two, such superhyperfine 
interactions cannot be readily identified. The computer sim-
ulation gives A = 54, 35, 30 MHz for the three principal axis of 
the g tensor. Compared to 1, the significantly attenuated A 
value implies that the unpaired electron mainly localizes in 
the O2

•−
 ligand instead of the Co center, demonstrating that 3 

consists of a low spin cobalt(III) ion. In fact, analogous EPR 
spectra with a similar magnitude of Co superhyperfine inter-
actions have been observed for porphyrin cobalt(III)-
superoxo complexes,

5a,14
 the Co-reconstituted oxyhemoglo-

bin,
5b

 and CoHPCD,
4
 all featuring the same electronic struc-

tures as 3. The electron spin echo envelope modulation 
(ESEEM) measurements at 30 K (Figure S12) detect another 
weak hyperfine interaction, originating from the nitrogen 
atoms of the BDPP

2−
 ligand. The nuclear quadrupole interac-

tion (NQI) parameters, Aiso, Aaniso, e
2
qQ/h, η are determined 

to be 1.9, 0.13, 2.55 and 0.3 MHz, respectively, indicating 

 

Figure 3. UV–vis spectra derived from conversion of 3 (blue) 
to 4 (red). Complex 4 was prepared from the reaction of 3 
with TEMPOH (2 equiv) added in situ at −90 °C. 
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an electron-nucleus interspin distance of 3.5 Å  with Euler 
angles (0

o
, 17

o
, 0

o
) between the NQI and g tensors. 

Treatment of 3 with 2,2,6,6-tetramethyl-1-
hydroxypiperidine (TEMPOH, BDEO–H = 69.7 kcal/mol)

15
 at 

−90 °C yields a navy blue product, Co(BDPP)(OOH) (4), as 
demonstrated by the growth of the three new UV–vis absorp-
tion bands at 375, 585 and 660 nm (Figure 3). Complex 4 is 
stable at −80 °C for weeks and even at 10 °C for twelve hours, 
making successful crystallization of 4 possible. The crystal 
structure of 4 reveals that the cobalt center is coordinated by 
an OOH group in addition to the BDPP

2-
 ligand in a pseudo-

octahedral coordination environment (Figure 4). All the 
bond lengths in the first coordination sphere of 4 are similar 
to those of 2, and the determined O–O bond distance of the 
OOH ligand is typical for a metal-bound hydroperoxide re-
ported in literature (Table S4),

16
 indicating that 4 is a co-

balt(III)-hydroperoxo complex (Table 1). The Co–OOH moie-
ty exhibits a significantly bent Co–O–O angle of 113.93(14)°. 
Notably, the Co–O2 bond is elongated by ~0.038 Å , as com-
pared to Co–O1 bond, which can be traced back to the pres-
ence of an intramolecular hydrogen bond between the hy-

droperoxo proton and O2. In comparison with the O−O 
stretching frequency of 3, that of 4 shifts to 795 cm

−1
 (λex at 

457 nm, ∆ = −47 cm
-1
 with 

18
O2, Table 2, Figures S16, S17). 

The EPR spectra of the reaction solution only show an iso-
tropic feature with the g value at 2.006, which is attributed to 
TEMPO

•
, thereby suggesting a low spin ground state for 4 as 

expected for a six-coordinate cobalt(III) complexes. The 
1
H 

NMR spectra of 4 revealed the chemical shift of the hydrop-
eroxo proton at 9.88 ppm, and the signal diminished when 
D2O was added (Figure S1). All these observations further 
confirm the above electronic-structure description for 4. 
More importantly, the conversion from 3 to 4 is nearly quan-
titative in a yield of 90% quantified by the double integration 
of the radical EPR signal. The yield of TEMPO

•
 decreases as 

the reaction temperature increases, consistent with the tem-
perature-dependent O2-binding behavior (vide supra). Taken 
together, we have presented compelling experimental evi-
dences for stepwise formation of a cobalt(III)-hydroperoxo 
complex from free O2 through the superoxo intermediate. 
The similar HAA reactivity has been found for 
Fe(BDPP)(O2)

11
 and Cr(14-TMC)(O2).

17
 Furthermore, 4 also 

Table 2. Raman Data for Superoxo and Hydroperoxo 
Species 

complexa ν(16O–16O), cm−1 ν(18O–18O), cm−1 reference 

3 1135 1070 this work 

Fe(BDPP)(O2
•) 1125 1062 11 

[Fe(TAML)(η2-O2
•)]2− 1260 1183 19 

Fe(TpMe2)(LPh)(O2
•) 1168b 1090 6 

Co(TpMe2)(LPh)(O2
•) 1150 1090 6 

Co(salen)(py)(O2
•) 1144 1082 20 

4 795 748 this work 

[Fe(14-TMC)(OOH)]2+ 868 820 21 

Fe(TpMe2)(LPh)(OOH)a 778 738 6 

Co(bleomycin)(OOH) 828 784 8a 

a
L

Ph
 = bis(2-N-methylimizadolyl)methylphenylborate; salen = 

N,N′-ethylenebis(salicylideneiminato). 
b
Center of Fermi dou-

blet. 

 

Figure 4. X-ray structure of Co(BDPP)(OOH) (4). ORTEP 
drawing of 4 is at 50% probability and hydrogen atoms ex-
cept hydroperoxo hydrogen are omitted for clarity. 

can be prepared by the reaction of 2 with excess H2O2 and 
NEt3 (Scheme 1, 2→4, Figure S8), similar to previous re-

ports.
18

 

Density functional theory (DFT) calculations were con-
ducted to compute the geometry and electronic structures of 
1, 3, and 4. The calculations at the BP86/TZVP level predict 
the O-O stretching frequencies at 1141 cm

-1
 for 3 and 820 cm

-1
 

for 4; both values are in a good agreement with those deter-
mined by rRaman spectroscopy. As shown in Figure 5, the 
cobalt(III) ion of 3 resides at the center of the distorted octa-
hedral coordination environment similar to that observed in 
the crystal structure of 4. In addition, the computed average 
distance (~3.2 Å ) between the center of the superoxo ligand 
and the coordinated pyrrolidyl nitrogens in 3 (Figure 5) 
matches that estimated from ESEEM (~3.5 Å ). The optimized 
structure of 4 reproduces the intramolecular hydrogen bond 
observed in the X-ray structure, and the hypothetical com-
plex without this interaction (4’, Figure S18) is destabilized 
by ~6 kcal/mol relative to 4. 

 

Figure 5. The represented d-manifold splitting patterns and 
O2

•−
/HOO

−
 π* orbitals of DFT-optimized 1, 3, and 4 where 

the orbital energies are obtained from their corresponding -
spin orbitals, respectively. The notions i and o of O2

•−
/HOO

−
 

π* orbitals are referred to “in-plane” and “out-of-plane”, re-
spectively. The planes for the notations are defined as Co-O-
O for 3 and O-O-H for 4. 

Regarding the d-manifold splitting patterns and the bond 
formation between Co(BDPP) and O2

•−
/OOH

−
, the corre-
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sponding orbital energies of 1, 3, and 4 are depicted in Figure 
5. Complex 1 possesses a high-spin quartet ground state (S = 
3/2) with an electron configuration of {dxz

2
, dxy

2
, dyz

1
, dz2

1
, dx2-

y2
1
}. Upon O2 coordination to 1, the O2-π*i orbital overlaps 

with the Co-dz2 orbital, and hence a pair of bonding (π*i/dz2) 
and antibonding (dz2/π*i) orbitals (i referred to “in-plane” of 
Co-O-O for 3) forms. This bonding interaction dramatically 
increases the energy gap among the frontier orbitals and 
facilitates one-electron transfer from Co

II
 to O2, yielding a 

Co
III

–O2
•−

 adduct with the spin predominantly localized on 
the O2

•−
 ligand (~0.96, mostly left in the π*o orbital, o re-

ferred to “out-of-plane” of Co-O-O for 3), consistent with the 
EPR data. In the transformation of 3 to 4, an additional elec-
tron being transferred from the hydrogen atom fills the hole 
in the π*o orbital, thus affording a diamagnetic cobalt(III)-
hydroperoxo product.  

In summary, we have presented an example that a co-
balt(III)-superoxo species is capable of performing a HAA 
process, by which the structurally characterized nonheme 
cobalt(III)-hydroperoxo complex is obtained. Interestingly, 
O2 binding to the five-coordinate cobalt(II) precursor 1 oc-
curs only below −70 °C, yielding an O2 adduct 3. The rRaman 
and EPR investigations verify that 3 contains a low-spin co-
balt(III) center coordinated by a superoxo ligand. Notably, 3 
is rather reactive even at −90 °C and can abstract a hydrogen 
atom from TEMPOH to form the metastable cobalt(III)-
hydroperoxo complex 4. This observation raises an intriguing 
question whether the C-H cleaving power of the putative Fe-
/Co-superoxo intermediate in bleomycin is high enough to 
break the target C-H bond in ribose, the DNA backbone. A 
detailed reactivity study of 3 and Fe(BDPP)(O2

•
) towards a 

series of substrate with differential C-H bond strengths, aim-
ing to pinpoint pivotal features that govern the HAA effi-
ciency of metal-superoxo species, is in process.  
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