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GRAPHICAL ABSTRACT

Abstract A simple, convenient, and efficient oxidative cross-coupling reaction of oxindoles
with ketones toward a variety of 3-(2-oxoalkyl)-3-hydroxyoxindoles in moderate to
excellent yields has been developed. This transformation proceeds via a tandem oxidative
cross-coupling by using 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) in air as an
environmentally benign oxidant. This methodology provides an alternative approach for
the direct generation of all-carbon quaternary centers at the C3 position of oxindoles.

Keywords Cross-coupling; 3-hydroxyindole; methyl ketone; TEMPO

INTRODUCTION

The direct oxidative cross-coupling reaction of two individual C�H bonds has
been recognized as an ultimately ideal goal for the formation of carbon�carbon
bonds.[1] Over the past few years the transition-metal-catalyzed oxidative cross-coup-
ling reaction through cleavage of C�H bonds represent a more environmentally and
economically attractive strategy and led to the emergence of new protocols.[2] Impor-
tantly, this strategy is not only advantageous with respect to the overall minimization
of by-product formation but also allows for streamlining organic syntheses.[3]
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However, the field has still many formidable issues, which continue to challenge the
chemistry community. In particular, the direct oxidative C(sp3)-H=C(sp3)-H bond
cross-coupling reactions represent the biggest challenge.

Many biologically active compounds and natural products possess an oxindole
framework with a hydroxy-bearing tetrasubstituted stereogenic center at C3 (Fig. 1).
Such motifs represent the substructures of many natural products, which have gar-
nered interest because of their wide spectrum of biological activities, including anti-
oxidant, anticancer, and neuroprotective properties.[4,5] Accordingly, much effort has
been devoted in the past years to the preparation of these compounds.[6] These stra-
tegies mainly relied on the direct hydroxylation of 3-alkyl-substituted oxindoles,[7]

nucleophilic additions to isatins,[8,9] and intramolecular arylation reactions.[10] Thus,
the development of the direct construction of 3-substituted 3-hydroxy-2-oxindoles
is still in high demand. However, the direct construction of 3-(2-oxoalkyl)-3-
hydroxyoxindoles from oxindoles still remained elusive. Here, we report that
2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO)[11] could effectively catalyzed aerobic
oxidation of oxindoles for synthesis of 3-(2-oxoalkyl)-3-hydroxyoxindoles under
mild reaction conditions.

RESULTS AND DISCUSSION

Initially, we used TEMPO (10mol%) as the oxidant, K3PO4 as the base, and
different copper catalysts for the model reaction of indolin-2-one 4a and acetone
5a at room temperature. As shown in Table 1, all copper catalysts could promote
the coupling reaction and Cu2O was the best catalyst, providing the product 6a in
52% yield (Table 1, entry 5). Further investigations revealed that there was an obvi-
ous increase in yield when catalyst loading was increased to 25mol% (Table 1, entry
8). Among the bases tested, K3PO4 was still found to be the most effective for this
transformation. Other bases, such as NaHCO3, Na2CO3, LiOH, NaOH, and
K2CO3, exhibited lower efficiency than K3PO4 (Table 1, entries 10–14). After screen-
ing TEMPO loading (Table 1, entries 15–18), the greatest yield of 6a was achieved
when the reaction was carried out with Cu2O (0.25 equiv), TEMPO (0.2 equiv),
and K3PO4 (0.1 equiv) in acetone (0.5mL) at room temperature (Table 1, entry 17).

With the optimized reaction conditions in hand, the scope and generality of the
method were examined by varying the structures of the indolin-2-ones 4 and ketones
5. As shown in Table 2, various valuable 3-(2-oxoalkyl)-3-hydroxyoxindoles 6 can be
conveniently and efficiently obtained in moderate to good yields with high regioselec-
tivity by this novel TEMPO-catalyzed oxidative cross-coupling reaction, indicating
that this method is general and practically useful. In general, methyl ketones were
suitable for this method, and the best yield in this work (89%) was obtained when

Figure 1. Naturally occurring and biologically bioactive 3-substituted 3-hydroxy-2-oxindoles.
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acetone 5a reacted with 5-fluoroindolin-2-one 4b. The yields decreased when ketones
with large steric bulk, such as 2-pentanone 5b, 2-hexanone 5c, and 2-heptanone 5d,
were used as the donors. Various aryl-substituted methyl ketones with electron-
donating groups reacted under the present protocol to give the desired products
6e–6k in good yields. The steric properties of the aryl ring did not appear to signifi-
cantly affect the yield, as ortho-functionalized aryl substrates 1-(2-methoxyphenyl)
ethanone 5i and 1-(naphthalen-1-yl)ethanone 5j performed equally well in the
cross-coupling. Unexpectedly, cycloheptanone 5 l reacted with 4a smoothly and pro-
duced the bis(3-hydroxyindolin-2-one) 6 l in 72% yield.

Interestingly, when evaluating the effect of different substituents at C5 position
of oxindoles on reactivity, we observed that oxindoles with electron-withdrawing
groups, such as F and Cl, reacted smoothly with ketones, affording the correspond-
ing products in better yields as compared with unsubstituted oxindole 4a.

In order to better understand the reaction mechanism, some control experi-
ments were carried out. First, we tested the reaction in the absence of the ketone
as coupling partner (Scheme 1). The oxidative product 7 was obtained in 86% yield,
indicating that 7 may serve as an intermediate in the catalytic cycle. Second, 15%
yield of 6a was obtained in the absence of TEMPO, indicating that TEMPO is cru-
cial for the oxidative cross-coupling. Third, the oxidative cross-coupling reaction of

Table 1. Optimization of the reaction conditionsa

Entry Catalyst (mmol) TEMPO (mmol) base (mmol) Yield (%)b

1 CuSC4�5H2O(0.02) 0.02 K3PO4 (0.02) 30
2 CuCI2 (0.02) 0.02 K3PO4 (0.02) 13
3 Cu(OAc)2 (0.02) 0.02 K3PO4 (0.02) 20
4 Cul (0.02) 0.02 K3PO4 (0.02) 35
5 Cu2O (0.02) 0.02 K3PO4 (0.02) 52
6 Cu2O (0.03) 0.02 K3PO4 (0.02) 60
7 Cu2O (0.04) 0.02 K3PO4 (0.02) 66
8 Cu2O (0.05) 0.02 K3PO4 (0.02) 69
9 Cu2O (0.06) 0.02 K3PO4 (0.02) 69

10 Cu2O (0.05) 0.02 NaHCO3 (0.02) 32
11 Cu2O (0.05) 0.02 Na2CO3 (0.02) 38
12 Cu2O (0.05) 0.02 LiOH (0.02) 45
13 Cu2O (0.05) 0.02 NaOH (0.02) 40
14 Cu2O (0.05) 0.02 K2CO3 (0.02) 56
15 Cu2O (0.05) 0.01 K3PO4 (0.02) 46
16 Cu2O (0.05) 0.03 K3PO4 (0.02) 75
17 Cu2O (0.05) 0.04 K3PO4 (0.02) 85
18 Cu2O (0.05) 0.05 K3PO4 (0.02) 83

aReaction conditions: oxindole (0.2mmol) and acetone (0.5mL) at rt for 4 h.
bIsolated yield.
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4a with acetone was attempted under an argon atmosphere (in the absence of mol-
ecular oxygen). The result showed that the reaction was carried out inefficiently,
and the desired product 6a was obtained with a poor yield of 12%. The result
demonstrated that dioxygen is necessary for an efficient oxidative cross-coupling
reaction. Fourthly, the reaction of 4a with acetone in the absence of Cu2O resulted
in the formation of 6a in a lower yield (49%) and a longer reaction time (24 h). Fifth,
we also carried out this reaction in the absence of K3PO3 but no expected product
was observed.

Based on the previous studies[12] and these results, a hypothesized mechanism
of this oxidative cross-coupling reaction is shown in Scheme 2. Initially, tautomer 8

Table 2. Reactions of different indolin-2-ones with ketonesa

aReaction conditions: 4 (0.2mmol), 5 (0.5mL), Cu2O (0.05mmol), TEMPO (0.04mmol), and K3PO4

(0.02mmol) at room temperature. Isolated yield based on 4.
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of indole 4 was oxidized in the presence of TEMPO, Cu2O, and O2 into intermediate
9. Then, a rapid dehydration in 9 gave intermediate 10, which tautomerizes to 7.
Finally, the nucleophilic addition of ketones to 7 afforded the corresponding
products.

CONCLUSIONS

In summary, we have developed an efficient oxidative cross-coupling reaction
of oxindoles with ketones using Cu2O as catalyst and TEMPO in air as oxidant with
excellent regioselectivity under mild conditions. This reaction provides a novel
method for the generation of all-carbon quaternary centers at the C3 position of oxi-
ndoles. Moreover, it has several advantages: (1) an inexpensive and environmentally
friendly TEMPO has been used in air as oxidant, (2) the operationally simple and
broad substrate make it potentially useful, (3) it is highly regioselective (1,30-linkage),
and (4) this oxidative cross-coupling reaction proceeds without exclusion of moisture
or air from the reaction mixture and allows the isolation of the desired 3-(2-
oxoalkyl)-3-hydroxyoxindoles in moderate to excellent yields.

EXPERIMENTAL

Oxindole (0.2mmol) was added to a solution of TEMPO (0.04mmol), Cu2O
(0.05mmol), and K3PO4 (0.02mmol) in ketone (0.5mL) under an air atmosphere
and the mixture was stirred at room temperature for 4–48 h. The reaction mixture

Scheme 1. Control experiments.

Scheme 2. Plausible reaction path.
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was concentrated under reduced pressure. The residue was purified by flash
chromatography on silica gel (eluent–EtOAc=PE¼ 1:4) to yield the corresponding
product 6.
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