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An efficient approach to the key intermediate of 
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Abstract: An efficient synthetic approach to the synthe-
sis of the 5-pyrimidinecarbaldehyde 2, which is the key 
intermediate of rosuvastatin, involves the aerobic oxi-
dation of the 5-pyrimidinemethanol 1 in the presence of 
Co(NO3)2, dimethylglyoxime (DmgH2), and 2,2,6,6-tetra-
methylpiperidine-1-oxyl (TEMPO) under mild reaction 
conditions. The method does not require the use of 
hazardous or expensive chemicals and is suitable for 
scale-up.
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Introduction
Statins [1, 2] such as atorvastatin [3, 4] and rosuvas-
tatin (Figure 1) [5, 6] are very effective inhibitors [7] of 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase (HMGR) and are the most powerful lipid-low-
ering agents in use for people with or at risk of cardio-
vascular disease [8]. Rosuvastatin [9] has been called a 
super statin because it appears to reduce low-density 
lipoprotein (LDL) cholesterol to a greater degree than 
competitors in its class without additional adverse 
effects. Rosuvastatin is approved for the treatment of 
elevated LDL cholesterol (dyslipidemia) [10], total cho-
lesterol (hypercholesterolemia), and/or triglycerides 
(hypertriglyceridemia).

A well-known key intermediate for the synthesis 
of rosuvastatin is 4-(4-fluorophenyl)-6-isopropyl-2-(N-
methyl-methanesulfonamido)-5-pyrimidinecarbaldehyde 
(2 in Scheme 1). Many methodologies [11–15] for the syn-
thesis of compound 2 have been developed over the past 

decade (Scheme 1). However, most of them have short-
comings, such as harsh conditions, use of expensive 
catalysts, long reaction time, unsatisfactory yields, and 
tedious work-up. We now report a greatly improved syn-
thesis of 2.

Results and discussion
Oxidation of alcohols to the corresponding aldehydes or 
ketones is of importance in fundamental research and 
industrial manufacturing. Developing new and efficient 
catalytic technologies for the selective aerobic oxidation 
of alcohols has attracted much attention because of the 
obvious advantages of dioxygen, such as abundance, low 
cost, and non-toxicity of the byproduct (H2O) [16–19]. Our 
current research interest is focused on the development 
of the catalytic oxidation system for pharmaceuticals and 
their intermediates. In this report, we describe an efficient 
approach, which is based on the work of Jing et al. [20], to 
the synthesis of 2 by the aerobic oxidation of 1 (Scheme 1).  
The methodology of Jing was greatly expanded by us by 
using readily available and inexpensive reagents. To the 
best of our knowledge, this is the first example of the 
preparation of 2 by using the three-component catalytic 
system, namely cobalt nitrate/dimethylglyoxime/2,2,6,6-
tetramethylpiperidine-1-oxyl, abbreviated as [Co(NO3)2/
DmgH2/TEMPO]. This methodology is amendable to scal-
ing-up (Scheme 1).

The starting alcohol 1 was derived in high yield from 
4-fluorobenzaldehyde as previously described [12]. The 
aerobic oxidation of 1 with 1.0 mol% of Co(NO3)2, 1.0 mol% 
of TEMPO, and 4.0 mol% of DmgH2 proceeded smoothly in 
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Figure 1 Chemical structure of rosuvastatin.
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dichloromethane under 0.4 MPa pressure of O2 at 70°C for 
3 h. The desired product 2 was obtained in 96% yield. The 
method is suitable for scale-up.

Experimental
General commercially available chemicals were all reagent grade. 
Melting points (mp) were determined on a Buchi 535 capillary melt-
ing apparatus. The 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra 
were recorded on a Mercury Plus Varian 400 spectrometer. ESI mass 
spectra were acquired on a Thermo Scientific LCQ spectrometer. IR 
spectra were determined on a Nicolet NEXUS-470 FT-IR spectrometer 
in KBr pellets.

Synthesis of 4-(4-fluorophenyl)-6-isopropyl-
2-(N-methyl-methanesulfonamido) -5-pyrimi-
dinemethanol (1)
This compound was obtained as a white solid by using the known 
procedure described previously [12]; yield 93%; purity 99.5% (HPLC); 
white solid; mp 131.9–132.8°C {ref. [14], mp 131.5°C (DSC onset) and 
133.6°C (DSC peak)}; 1H NMR (DMSO-d6): δ 1.26 (d, 6H, J  =  5.2 Hz), 3.45 
(s, 3H), 3.65 (m, 4H), 4.4 (s, 2H), 7.37 (m, 2H), 7.86 (m, 2H); 13C NMR 
(DMSO-d6): δ 177.7, 165.5, 164.4, 162.5, 157.8, 134.6, 132.1, 132.0, 122.5, 
115.8, 115.6, 56.3, 42.1, 33.7, 31.2, 22.5; MS (ESI): m/z 354.1 ([M+H]+, 
100), 355.1 ([M+2]+, 18), 356.6 ([M+3]+, 7), 376.0 ([M+Na]+, 10%); IR: 
ν 3537, 2935, 1597, 1546, 1510, 1365, 1325, 1228, 1143, 1120, 1001, 952, 
854, 812 cm-1.

Synthesis of 4-(4-fluorophenyl)-6-isopropyl-
2-(N-methyl-methanesulfonamido) -5-pyrimi-
dinecarbaldehyde (2)
A 100 mL autoclave reactor, equipped with an efficient mechanical 
stirrer, was charged with 35.34 g (0.10 mol) of 1, 0.156 g of TEMPO (1.0 
mol%), 0.183 g of Co(NO3)2 (1.0 mol%), 0.464 g of DmgH2 (4.0 mol%), 
and 50 mL of dichloromethane. The pressure of O2 in the sealed reactor 
was kept under 0.4 MPa for 3 h. During this period of time the atmos-
phere inside the reactor was refilled with fresh oxygen three times and 
the mixture was stirred and heated to 70°C. Then the mixture was cooled 
to room temperature and treated with dichloromethane (100 mL). Then 
the suspension was filtered and the clear filtrate was washed with water 
(150 mL) and a saturated aqueous solution of sodium chloride (100 
mL). Concentration under reduced pressure followed by trituration of 
the residue with cyclohexane gave the desired compound 2 (yield 33.7 
g, 96%) as a white solid; purity 99% (HPLC); mp 177.5–178.9°C {ref. [14], 
mp 178.2°C (DSC onset) and 179.1°C (DSC peak)}; 1H NMR (CDCl3): δ 1.33 
(d, 6H, J  =  5.2 Hz), 3.62 (s, 3H), 3.61 (s, 3H), 4.02 (m, 1H), 7.21 (m, 2H), 7.64 
(m, 2H), 9.98 (s, 1H); 13C NMR (CDCl3): δ 190.5, 179.1, 169.8, 165.5, 163.5, 
158.8, 132.7, 132.6, 119.6, 116.1, 115.90, 42.5, 33.1, 32.1, 21.7; MS (ESI): m/z 
352.2 ([M+H]+, 100), 353.2 ([M+2]+, 18), 354.1 ([M+3]+, 5%); IR: ν 2976, 1685, 
1600, 1533, 1508, 1444, 1315, 1230, 1157, 1126, 956, 902, 854, 808, 779 cm-1.
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γ -active-MnO2 or TPAP
yield: 80.5%, [ref.15]

yield: 96%

or NaOCl, TEMPO
KBr, NaHCO3

yield: 86%, [ref.11]

yield: 31%, [ref.14]

2. MsCl, Et3N
yield: 30%, [ref.13]

1. H2, CO, Pd(OAc)2, TMEDA
50 bar, 100°C, 24 h, yield: 70%

1. NaHCO3, DMSO, rt, 68 h

2. Ac2O, DMSO, 70°C, 7 h

yield: 94%, [ref.14]

Scheme 1 Synthesis of 4-(4-fluorophenyl)-6-isopropyl-2-(N-methyl-methanesulfonamido) -5-pyrimidinecarbaldehyde (2).
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