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New bis(oxazolinyl)phenyl–ruthenium(II) complexes, which were

synthesized by C–H bond activation with RuCl3�3H2O in zinc

powder and 1,5-cyclooctadine followed by ligand exchange

reaction with sodium acetylacetonate or acetylacetone, exhibited

enantioselective hydrogenation of ketones in up to 90% ee.

Chiral nitrogen-based pincer-type ligands such as NNN,

NCN, NNC, NPN, NNP etc. have successfully been applied

to ruthenium catalysed enantioselective hydrogenation and

transfer hydrogenation reactions of ketones.1,2 As we reported

that rhodium and platinum catalysts with bis(oxazolinyl)phe-

nyl (= Phebox) ligand of NCN type pincers have been applied

for highly enantioselective reactions,3 for example, allylation

of aldehydes,4 Michael addition,5 conjugate reduction,6 re-

ductive aldol reactions,7 and direct aldol reaction,8 we were

encouraged to synthesise a ruthenium complex of Phebox for

enantioselective hydrogenation of carbonyl compounds. It is

of note that the bis(oxazolinyl) moiety of Phebox, which

provides a C2-symmetric and meridional environment around

the metal center, would create a suitable catalyst to distinguish

prochiral faces of substrates. To our best knowledge, only one

example of an in situ ruthenium catalyst bearing a bis(oxazo-

linyl)benzene moiety was demonstrated for enantioselective

cylcopropanation as disclosed by Iwasa and co-workers.9 We

report here the first synthesis and structural characterization

of a Phebox–ruthenium(II) complex [abbreviated as (Phebox)-

Ru] and its application for enantioselective hydrogenation and

transfer hydrogenation.

We started by choosing the 4,6-dimethyl derivative of chiral

1,3-bis(oxazolinyl)benzene 1 as a precursor for complex for-

mation with ruthenium atom via C–H bond activation at the

2-position.10 The dimethyl substitution at 4- and 6-positions

could block undesirable metallation by C–H bond activation

at those positions. Simple heating of a mixture of RuCl3�3H2O

and 1a (R = i-Pr) in refluxing EtOH with Et3N resulted in the

formation of complicated solid mixtures to give no isolable

ruthenium complexes. Reactions of 1a with common ruthe-

nium(II) complexes, such as [RuCl2(COD)]2 (COD = 1,5-

cyclooctadiene) and [RuCl2(C6H6)]2, also failed. However,

zinc powder in the presence of COD with RuCl3�3H2O and

1a successfully afforded a ruthenium complex in 65% yield,

which has a dimeric constitution of [(Phebox-ip)Ru(CO)Cl]2-

(ZnCl2) (Scheme 1).11 The dimeric complex was in turn treated

with sodium acetylacetonate [Na(acac)] at room temperature

for 12 h to furnish (Phebox-ip)Ru(CO)(acac) 2a in 90% yield.

In place of Na(acac), acetylacetone can also be used. Alter-

natively, direct addition of acetylacetone at room temperature

to a reaction mixture of RuCl3�3H2O and 1a in EtOH and

further stirring for 20 h produced the complex 2a in 47% total

yield in two steps. Similarly, phenyl-substituted complex 2b

could be synthesized in 45% yield from 1b by the sequential

method with acetylacetone.z
The molecular structure of 2a was confirmed by X-ray

diffraction (Fig. 1). The Ru center is described to have a

distorted octahedral geometry with meridionally coordinated

Phebox-ip ligand and bidentate acetylacetonato ligand. The

CO ligand is perpendicular to the Phebox plane.

Next, asymmetric hydrogenation of several simple ketones

was attempted with chiral (Phebox)Ru complexes 2a and 2b.

An initial reaction was carried out using para-methoxyphenyl

methyl ketone 3a in isopropyl alcohol (IPA) with 1 mol% of 2

and 20 mol% of NaOMe at 40 1C for 24 h under 30 atm of

hydrogen pressure.z The corresponding alcohol 4a, (S)-1-

(para-methoxyphenyl)-1-ethanol, was successfully obtained

Scheme 1 Synthesis of (Phebox)Ru complexes.
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in 98% yield and 65% ee with 2a and in 87% yield and 56% ee

with 2b, respectively (Scheme 2). Other base sources such as

NaOEt, NaOt-Bu, KOt-Bu, and LiOMe provided similar

results, 98–99% yields and 51–63% ees, whereas use of

K2CO3 and Cs2CO3 resulted in low yields (3–11%) and low

selectivity (22–37% ees). The hydrogenation did not proceed

in the absence of the bases. Under the same reaction condition,

several ketones, o-MeOC6H4COMe 3b, 2-NaphCOMe 3c,

PhCOi-Pr 3d, and PhCOn-C5H11 3e, were examined to give

the corresponding secondary alcohols, 4b–4e in 81–90% ees.

The enantioselectivity thus changed depending on the combi-

nation between the substituents of ketones and substituents of

the ligands.

In the absence of hydrogen, the transfer hydrogenation of

the ketone 3c with catalyst 2b (1 mol%) at 80 1C was found to

proceed giving the alcohol (S)-4c in 95% yield with 81% ee

(Scheme 3). However, use of catalyst 2a drastically decreased

the ee to 15%.

The hydrogenation and the transfer hydrogenation with

(Phebox)Ru catalysts afforded alcohols with the same

S-absolute configuration. We propose a hypothetical reaction

course for the hydrogenations as follows: the monohydride

species (Phebox)Ru(H)(CO) may be formed by elimination of

acac ligand from 2, followed by activation of molecular

hydrogen by a base. Alternatively, b-H elimination of a

Ru–OCH(CH3)2 intermediate, which is generated by exchange

of the acac ligand with NaOiPr, may provide the hydride

intermediate in the case of transfer hydrogenation. Judging

from the S-absolute configuration of the product alcohols, the

transition state I that apical hydride attacks Re-face of ketone

could be proposed (Fig. 2).

In summary, the first synthesis of ruthenium complexes with

the bis(oxazolinyl)phenyl moiety has been described via C–H

activation using commercially available ruthenium chloride in

the presence of zinc powder. It was also found that the

(Phebox)Ru complex catalyses the enantioselective hydroge-

nation of ketones in isopropyl alcohol with NaOMe to afford

Fig. 1 ORTEP diagram of 2a with 50% probability level. Hydrogen

atoms are omitted for clarity. Selected bond lengths (Å) and angle (1):

Ru1–C1 1.976(3), Ru1–C26 1.813(5), Ru1–N1 2.095(3), Ru1–N2

2.126(3), Ru1–O3 2.125(3), Ru1–O4 2.201(3); N1–Ru1–N2 156.52(11).

Scheme 2 Enantioselective hydrogenation of ketones.

Scheme 3 Asymmetric transfer hydrogenation of ketone.

Fig. 2 Hypothetical stereochemical course.
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the corresponding S-alcohols with enantioselectivity up to

90% ee. We are now studying on the scope and limitations

of the hydrogenations and further applications of the

(Phebox)Ru complex as a potential catalyst for a variety of

enantioselective reactions.
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Scientific Research from the Ministry of Education, Culture,

Sports, Science and Technology of Japan (460:18065011), the

Japan Society for the Promotion of Science (18350049),

G-COE in Chemistry (Nagoya University).
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with H2, the H2 pressure was adjusted to 30 atm. The mixture was
stirred at 40 1C for 24 h, and then the solvent was removed under
reduced pressure. The residue was purified by column chromatogra-
phy on silica gel (hexane–ethyl acetate, 10 : 1) to yield white solids of
the alcohol. The enantioselectivity was determined using HPLC with a
suitable chiral column; see ESI.w
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