

Bioorganic & Medicinal Chemistry 11 (2003) 2911-2922

BIOORGANIC & MEDICINAL CHEMISTRY

Synthesis and Bioevaluation of Glycosyl Ureas as α -Glucosidase Inhibitors and Their Effect on Mycobacterium[†]

Neetu Tewari,^a V. K. Tiwari,^a R. C. Mishra,^a R. P. Tripathi,^{a,*} A. K. Srivastava,^b R. Ahmad,^b R. Srivastava^c and B. S. Srivastava^c

^aDivision of Medicinal Chemistry, Central Drug Research Institute, Lucknow-226001, India ^bDivision of Biochemistry, Central Drug Research Institute, Lucknow-226001, India ^cDivision of Microbiology, Central Drug Research Institute, Lucknow-226001, India

Received 12 March 2003; accepted 24 March 2003

Abstract—Glycosyl amino esters (2–13) on reaction with different isocyanates resulted in quantitative conversion to glycosyl ureas (14–32). Few of the selected ureas (15–20, 22–28, 30 and 32) on cyclative amidation with DBU/TBAB/4 Å MS gave respective dihydropyrimidinones in fair to good yields (33–47). The compounds were screened for α -glucosidase inhibitory activity and two (19 and 23) of them showed strong inhibition against rat intestinal α -glucosidase. The compounds were also screened against *Mycobacterium aurum*, however, only one (19) of them exhibited marginal antitubercular activity. ©2000 Elsevier Science Ltd. All rights reserved.

© 2003 Elsevier Science Ltd. All rights reserved.

Introduction

Type-2 noninsulin dependent diabetes mellitus (NIDDM),^{1,2} a multifactorial disease accounts for 90– 95% of all diabetes and affects about 150 million people globally. Among the non-infectious diseases (NID) it is a major killer disease and therefore been declared as priority disease by WHO. Although several drugs³ for NIDDM with the known targets exist today, yet they are associated with many drawbacks such as liver toxicity,⁴ adverse gastrointestinal symptoms⁵ and raising the symptoms and risk factors of heart disease. Therapeutic approaches of herbal medicines also exist⁶ but lack of well organized and rigorous clinical trial evidence to advocate their scientific merit warrants the introduction of new synthetic drugs against diabetes. In general, glycosidases are well known targets in the design and development of antidiabetic,^{7,8} antiviral,^{7,9} antibacterial^{7,10} and anticancer¹¹ agents. In NIDDM, delaying glucose absorption after meals by inhibition of α -glucosidase is beneficial in therapy.^{12,13} A pseudo-sachharide (acarbose) and an azasugar (miglitol) are being clinically used^{14–16} for this purpose in the management of diabetes but these are associated with severe side effects including adverse gastrointestinal effects and abdominal discomfort. Spirosugars and glycosylamino acids both in acyclic and cyclic forms are known for their antidiabetic potential¹⁷ affecting glycogen phosphorylase, a well known target in controlling the blood glucose level (Fig. 1).

Certain phenyl ureas exhibit antidiabetic¹⁸ effect; however, they are associated with many drawbacks and it is envisaged that a hybrid of ureidyl pharmacophores and

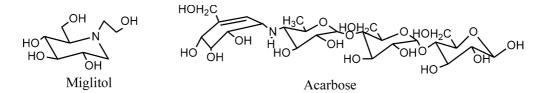
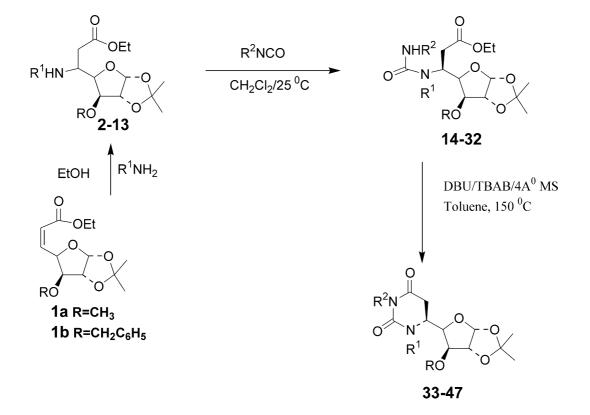


Figure. 1. α-Glucosidase inhibitors used as drugs.

0968-0896/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0968-0896(03)00214-1

^{*}Corresponding author. Tel.: +91-522-221-2412-418x4382; e-mail: rpt_56@yahoo.com [†]CDRI Communication No. 6244.


sugars, which are known for drug targeting¹⁹ and better pharmacokinetics²⁰ may offer new leads against diabetes. Keeping in mind the above and in continuation of our work²¹ on the development of chemotherapeutic agents from sugars, we have synthesized glycosyl ureas, both in flexible and rigid conformations, and evaluated for α -glucosidase inhibitory activity. Since we are also involved in a new drug development programme against tuberculosis, it was interesting for these compounds to be screened against *Mycobacterium aurum* because of the fact that glycosidase inhibitors are known for antitubercular activity.

Results and Discussion

Chemistry

The synthesis of compounds reported in the present study is given in Scheme 1. The starting glycosyl amino esters 2–13 are prepared by conjugate addition of different primary amines to the sugar derived olefinic esters 1a and 1b, by the method already reported by us.^{21b–d} Compounds 2–13 on simple addition to different isocyanates including phenyl, benzyl, 3-acetyl phenyl, 4-fluorophenyl, 4-chlorophenyl isocyanates gave respective glycosyl ureides (14–32) in quantitative yields. Further compounds (15–20, 22, 24–28, 30 and 32) on cyclative amidation with DBU/4 Å MS/Tetrabutyl ammonium bromide (TBAB) in refluxing toluene gave the corresponding glycosyl dihydropyrimidinones (33–47) in fair to good yields.

The structures of ureidvl derivatives are based on their spectroscopic data and analysis. Absorption around 1660 cm⁻¹ in these compounds indicated the presence of CONH group. For SAR we were intended to synthesize the rigid analogues of those ureidyl derivatives, which have shown any inhibition against α -glucosidase. The structures of all the compounds are based on spectroscopic data and analysis. The stereochemistry at C-5 in ureidyl derivatives is always that of starting amino ester,²² since the addition of isocyanates to the amines and the cyclative amidation does not involve C-5 chiral centre but the amino group attached to it, thus the configuration in the resulting compounds will not be changed at C-5 in glycosyl ureas and at C-6 in corresponding cyclic compounds. The configuration in glycosyl aminoesters have already established^{21a-c,23} at C-5 as 'S' and 'R' in the major and minor isomers, respectively, and it was observed that in 'S' isomer J_{4-5} (9.5 Hz) is always higher than J_{4-5} (7.2 Hz) of 'R' isomer. Since amino esters (3, 5–8, 10–13) with 'S' configuration have been used in isocvanates addition, hence, the configuration at C-5 in glycosyl ureas (14, 16-22, 24-32) and that of C-6 in corresponding cyclic analogues (33-47) would be 'S' only. Further, trans relationship between H-4' and H-6 protons in cyclic compounds was also evidenced by the ¹H NMR of the nucleosides (ca. compound 34) the $J_{4',6}$ is 9.5 Hz in 'S' isomer and 7.2 Hz in 'R' isomer (not included in the Experimental). The amino esters (3 and 9) are a mixture of diastereoisomers and hence the resulting ureides (15 and 23) are a diastereoisomeric mixture. However, corresponding cyclised products (33 and 40) are isolated as pure isomers by column chromatography.

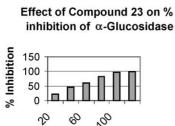
Biology

Out of several targets for NIDDM α -glucosidase inhibitors are gaining much importance as they are important both in breakdown of polysachharides into monosachharides and in the absorption of glucose in the enterocytes of the small intestine. Two of the wellknown drugs acarbose and miglitol have undergone into extensive clinical trial. However, these and other known inhibitors of this enzyme have some demerits. Further furanose sugar derivatives are known to inhibit liver gluconeogenesis²⁴ and glycogenolysis and thereby show antidiabetic activity. Spirosugars having glycosyl amino acid and ureidyl components have shown inhibition of glycogen phosphorylase and many other glycosidases, it was contemplated that the designed compounds with ureidyl and amino acid components hybridized with sugars would offer a new class of antidiabetic agents. As evident from Table 1 compounds 16, 17, 19, 23, 24 and **30** show strong inhibition of α -glucosidase either at 250 or 100 uM concentrations. The standard drug acarbose inhibited this enzyme to the extent of 68% at 50 μ M.

A close examination of structure activity relationship indicates that acyclic glycosyl ureas (16, 17, 19, 23, 24 and **30**) with flexible conformation are stronger inhibitor of α -glucosidase than cyclic compounds (**34**, **35**, **37**, **40**, **41** and **46**) with rigid conformation. Three compounds **19**, **23** and **30** showed good enzyme inhibitory effect in dose dependent manner. IC₅₀ values for compounds **23** and **30** were 140 and 40 µmol, respectively (Fig. 2).

 N^1 unsubstituted compound 23 is equipotent to compounds with butyl or dodecyl substituents (17 and 19). However, N^3 phenyl with chloro or fluoro substituents results in better enzyme inhibition than unsubstituted or acetyl phenyls. N^1 -cyclopropyl and N^1 -*n*-butyl also showed inhibitory effect depending upon the substituents in the aromatic ring at N^3 and 3-O-substituent in sugar ring. Hence, no generalization can be made on the dependence of enzyme inhibitory activity at N^1 , N^3 and 3-O-substituents of the sugar moiety and it is their combined effect, which results in good enzyme inhibition.

Out of curiosity that glycosidase inhibitors possess antibacterial activity, these compounds were screened against *M. arum*. However, only one (**19**) of them with dodecyl as N^1 and 4-chlorophenyl as N^3 substituent


Table 1. α-Glucosidase inhibitory activity of flexible and rigid analogues of Glycosyl Ureas

Compd	R	R ₁	R ₂	% Inhibition of α-glucosidase ^a
14	CH ₃	Н	4-Cl (phenyl)	47.0
15	CH_3	Cyclopropy	4-Cl (phenyl)	4.3
16	CH_3	Cyclopropyl	Benzyl	81.7
17	CH_3	<i>n</i> -Butyl	4-F(Phenyl)	85.6
18	CH_3	Heptyl	Benzyl	13.7
19	CH ₃	Dodecyl	4-Cl (phenyl)	93.5
20	CH ₃	Hexadecyl	Phenyl	34.8
21	CH ₃	Hexadecyl	4-Cl (phenyl)	31.5
22	CH_3	Oleyl	Benzyl	16.4
23	CH ₂ Ph	H	4-Cl (phenyl)	97.2
24	CH ₂ Ph	Cyclopropyl	3-Acetyl(phenyl)	74.7
25	CH ₂ Ph	Cyclopropyl	4-Cl (phenyl)	15.3
26	CH ₂ Ph	Cyclopropyl	Benzyl	40.5
27	CH ₂ Ph	<i>n</i> -Butyl	4-F (phenyl)	49.3
28	CH ₂ Ph	Dodecyl	3-Acetyl(phenyl)	11.9
29	CH ₂ Ph	Dodecyl	4-F (phenyl	20.9
30	CH ₂ Ph	Dodecyl	4-Cl (phenyl	94.3
31	CH ₂ Ph	Dodecyl	Benzyl	10.8
32	CH_2Ph	Oleyl	Benzyl	12.3
33	CH_3	Cyclopropyl	4-Cl (phenyl)	11.7
34	CH ₃	Cyclopropyl	Benzyl	35.2
35	CH ₃	<i>n</i> -Butyl	4-F (phenyl)	13.5
36	CH ₃	Heptyl	Benzyl	0.72
37	CH ₃	Dodecyl	4-Cl (phenyl)	5.7
38	CH ₃	Hexadecyl	Phenyl	5.0
39	CH ₃	Oleyl	Benzyl	20.2
40	CH ₂ Ph	н	4-Cl(phenyl)	2.5
41	CH ₂ Ph	Cyclopropyl	3-Acetyl(phenyl)	47.0
42	CH ₂ Ph	Cyclopropyl	4-Cl(phenyl)	Nil
43	CH_2Ph	Cyclopropyl	Benzyl	61.8
44	CH_2Ph	<i>n</i> -Butyl	4-F (phenyl)	17.3
45	CH_2Ph	Dodecyl	3-Acetyl(phenyl)	28.5
46	CH ₂ Ph	Dodecyl	4-Cl(phenyl)	41.4
47	CH ₂ Ph	Oleyl	Benzyl	48.5
Acarbose	-	-	-	68 ^b

^aAt 100 μM.

^bAt 50 μM.

exhibited mild antituber cular activity with MIC of 25 $\mu g/mL$ only.

Conc. (µM)

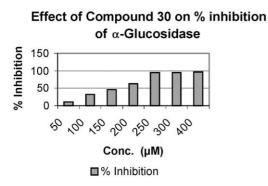


Figure 2.

In conclusion, we have synthesized glycosyl ureidyl uronates and C-nucleosides manner in an efficient manner. The compounds have been screened against rat intestinal α -glucosidase, showing good inhibition comparable to standard drug acarbose (Table 1).

Experimental

Chemistry

All glasswares were dried in an open flame before use in connection with an inert atmosphere. Solvents were evaporated under reduced pressure and evaporation was carried out at temperature <50 °C. Thin layer chromatography was performed using silica gel 60 F_{254} plates with detecting agents iodine vapours, spraying with 5% sulphuric acid in ethanol followed by heating at 100 °C, or by spraying with Dragendorf reagent. Silica gel (60-120 mesh) was used for column chromatography. Tetramethylsilane (0.0 ppm) was used as an internal standard in ¹H NMR and CDCl₃ (77.0 ppm) was used in ¹³C NMR. The abbreviations used to indicate the peak multiplicity were; s, singlet; bs, broad singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; m, multiplet; Hz, Hertz. FAB MS was recorded on Jeol (Japan)/SX-102. Infrared spectrum was taken with KBr on Perkin-Elmer RX-1. Melting points were determined on a Buchi 535 digital melting point apparatus and were uncorrected. Elemental analysis was performed on a Perkin-Elmer 2400 C, H, N analyzer and values were within $\pm 0.4\%$ of the calculated values. The optical rotations were measured in a 1.0 dm tube with Jasco

dip-140 polarimeter in chloroform, methanol or ethyl acetate. Anhydrous sodium sulphate (Na_2SO_4) was used as drying agent for the organic phases containing the compounds. Unless otherwise stated, all materials were obtained from commercial suppliers Sigma Aldrich Company, Lancaster, SRL and Spectrochem Pvt. Ltd. and were used without further purification.

General procedure for the synthesis of compounds 14–46 and their physical data

Ethyl-](1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1, 2-O-isopropylidene-3-O-methyl-5-{N³-(4-chlorophenyl)-1-ureidyl}-1,4-heptofuranos-5-yl]-uronoate (14). To a magnetically stirring solution of glycosyl amino ester 2 (1.0 g, 3.46 mmol) in anhydrous dichloromethane (10 mL), 4-chloro phenyl isocyanate (0.42 mL, 3.46 mmol) was added at 30 °C and stirring continued for 4 h. The solvent was evaporated under reduced pressure and the residue, thus obtained, was chromatographed over SiO₂ column using hexane/ethyl acetate (4:1) as eluent to give colourless foam. Yield 95%; $[\alpha]_{D}^{25}$ 26.66 (*c* 0.11, CHCl₃); MS FAB m/z = 443 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3359 (NH), 2937 (CH), 1726 (C=O), 1661 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.18 (m, 4H, Ar–H), 5.91 (d, J = 3.8 Hz, 1H, H-1), 5.60 (m, 1H, NH), 4.59 (d, J = 3.8Hz, 1H, H-2), 4.40 (m, 2H, H-4 and H-5), 4.13 (q, 2H, OCH₂CH₃), 3.70 (d, J=2.2 Hz, 1H, H-3), 3.38 (s, 3H, OCH₃), 2.69 (m, 2H, H-6), 1.78 (s, 1H, NH), 1.47 and 1.31 [each s, each 3H, $C(CH_3)_2$], 1.25 (t, J = 7.2 Hz, 3H, OCH₂CH₃). ¹³C NMR (CDCl₃): δ 172.2 (OC=O); 155.7 (NC=O); 138.2 (Ar-C); 129.1, 127.12, 127.9, 121.3 (Ar-CH); 112.2 [C(CH₃)₂]; 105.1(C-1); 84.50 (C-2); 81.7 (C-4); 80.7 (C-3); 61.2 (OCH₂CH₃); 58.1(OCH₃), 47.3 (C-5); 37.3 (C-6); 27.1, 26.6, $[>C(CH_3)_2]$. Anal. calcd for C₂₀H₂₇N₂O₇Cl: C, 54.29; H, 6.11; N, 6.33; Found: C, 54.30; H, 5.88; N, 6.38.

Ethyl-[(1R, 2R, 3S, 4R, 5R/S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-{N¹- cyclopropyl-N³(4-chlorophenvl)-1-ureidvl}-1,4-heptofuranos-5-vl-l-uronoate (15). This was obtained by the reaction of compound 3 (1.50) g, 4.55 mmol) and 4-chlorophenyl isocyanate (0.55 mL, 4.55 mmol) as described above and isolated as colourless foam, Yield 92%. $[\alpha]_D^{25}$ -31.56 (c 0.47, CHCl₃); MS FAB $m/z = 483 \text{ (M + H)}^+$; IR (neat): $v_{\text{max}} \text{ cm}^{-1} 3434$ (NH), 2936 (CH), 1729 (C=O), 1673 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.37 (m, 4H, Ar–H); 5.88 (d, J = 3.78 Hz, 1H, H-1); 4.86 (dd, J = 9.1 Hz and 3.0 Hz, 1H, H-4), 4.59 (d, J=3.8 Hz, 1H, H-2); 4.13 (m, 3H, H-5, OCH₂CH₃); 3.68 and 3.60 (each d, J = 3.0 Hz, each 1H, diastereomeric H-3); 3.38 and 3.34 (each s, 3H, diastereomeric OCH₃); 2.82 (m, 1H, diastereomeric H- 6_A); 2.52 (m. 1H, cyclopropyl CH), 2.25 (dd, J = 15.6 Hz and 5.8 Hz, 1H, H-6_B), 1.50, 1.47 and 1.30 [each s, 3H, $C(CH_3)_2$], 1.22 (t, J = 7.2 Hz, 3H, OCH_2CH_3), 0.92 (m, 4H, cyclopropyl CH₂S).¹³C NMR (CDCl₃): (some of the peaks were duplicated due to diastereomeric nature of the product) & 173.1, 172.1 (OC=O); 156.9, 156.1 (NC=O); 138.1 (Ar-C); 129.1, 128.0, 127.9, 121.1 (Ar-CH); 112.2 [> C (CH₃)₂]; 105.1, 105.0 (C-1); 84.0, 83.9 (C-2); 81.7, 81.4 (C-4); 80.5, 79.5 (C-3); 61.0, 60.8 (OCH₂CH₃); 57.7, 57.4 (OCH₃); 36.2, 35.2 (C-6); 27.2,26.8 [>C(CH₃)₂]; 14.5 (OCH₂CH₃), 9.46, 9.13 (cyclopropyl CH₂). Anal. calcd for $C_{23}H_{31}N_2O_7Cl$: C, 57.26; H, 6.43; N, 5.81; Found: C, 57.27; H, 6.43; N, 5.13.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-(N¹-cyclopropyl-N³-benzyl- 1-ureidyl)-1,4-heptofuranos-5-yl-]-uronoate (16). This was obtained by the reaction of compound 3 (1.0 g, 3.03 mmol) and benzyl isocyanate (0.37 mL, 3.03 mmol) as described above and isolated as colourless foam. Yield 96%; $[\alpha]_{D}^{25}$ -86.52 (*c* 0.39, CHCl₃); MS FAB *m*/*z* = 462 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3455 (NH), 2936 (CH), 1730 (C=O), 1653 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.37 (m, 4H, Ar-H); 5.88 (d, J=3.78 Hz, 1H, H-1); 4.94 (m, 2H, H-4), 4.59 (d, J=3.8 Hz, 1H, H-2); 4.42 (m, 2H, NCH₂Ph), 4.13 (m, 3H, H-5, OCH_2CH_3 ; 3.58 (d, J = 3.0 Hz, 1H, H-3); 3.38 (s, 3H, OCH_3); 2.72 (m. 2H, cyclopropyl CH and H-6_A), 2.38 (dd, J = 15.2 Hz and 4.2 Hz, 1H, H-6_B), 1.74 (bs, 1H, NH), 1.47 and 1.30 [each s, 3H, C(CH₃)₂], 1.22 (t, J=7.2 Hz, 3H, OCH₂CH₃), 0.92 (m, 4H, cyclopropyl CH₂s). ¹³C NMR (CDCl₃): δ 172.3(OC=O); 159.1 (NC=O); 140.4 (Ar-C); 128.8, 127.6, 127.2 (Ar-CH); 112.1 [> $C(CH_3)_2$]; 105.0 (C-1); 84.1(C-2); 81.8 (C-4); 79.8 (C-3); 60.6 (OCH₂CH₃); 57.2 (OCH₃); 44.5 (NCH₂), 35.8 (C-6); 31.6 (cyclopropyl CH), 27.3, 26.9 $[>C(CH_3)_2];$ 14.5 (OCH₂CH₃), 10.1, 9.0 (cyclopropyl CH_{2S}).

Ethyl-[(1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-{N¹- butyl-N³-(4-fluorophenyl-1-ureidyl)-1,4-heptofuranos-5-yl-]-uronoate (17). This was obtained by the reaction of compound 4 (0.96 g, 2.77 mmol) and 4-fluorophenyl isocyanate (0.03 mL, 2.77 mmol) as described above and isolated as colourless foam. Yield 92%; $[\alpha]_D^{25}$ -26.2 (*c* 0.08, CH₃OH); MS FAB *m*/*z* = 484 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3346 (NH), 2935 (CH), 1723 (C=O), 1661 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.28 and 6.98 (two d, J = 10.2 Hz and 8.7 Hz, 4H, Ar–H); 5.90 (d, J = 3.8 Hz, 1H, H-1); 4.62 (d, J=3.8 Hz, 1H, H-2); 4.42 (m, 2H, NH and H-4); 4.17 (m, 3H, H-5, OCH₂CH₃); 3.61 (d, J=3.0 Hz, 1H, H-3); 3.39 (s, 3H, OCH₃); 3.24 (dd, J=6.6 Hz and 9.0 Hz, 1H, NCH₂); 2.8–1.5 (m, 4H, H-6 and NCH₂CH₂); 1.48 and 1.32 [each s, 3H, t, C(CH₃)₂], 1.26 (m, 4H, NCH₂CH₂CH₂, OCH₂CH₃), 0.92 [t, J = 6.5 Hz, 3H, (CH₂)₃CH₃].¹³C NMR (CDCl₃): δ 172.1 (OC=O); 158.1 (NC=O); 138.1 (Ar-C); 129.2, 128.3, 128.9, 120.6 (Ar–CH); 112.1 [> $C(CH_3)_2$]; 105.2 (C-1); 82.5 (C-2); 82.0 (C-4); 81.9 (C-3); 61.1 (OCH₂CH₃); 58.0 (OCH₃), 38.8 (NCH₂); 32.4 (C-6); 27.2, 26.6 $[>C(CH_3)_2];$ 22.0 (CH₂CH₂CH₃); 14.5 (OCH₂CH₃, CH_2CH_3).

Ethyl-[(1*R*, 2*R*, 3*S*, 4*R*, 5*S*)-5,6-dideoxy-1,2-*O*-isopropylidene-3-*O*-methyl-5-(N¹-heptyl-N³-benzyl-1-ureidyl)-1,4heptofuranos-5-yl]-uronoate (18). This was obtained by the reaction of compound 5 (0.77 g, 1.98 mmol) and benzyl isocyanate (0.24 mL, 1.98 mmol) as described above and isolated as colourless foam. Yield 91%. $[\alpha]_D^{25}$ -25 (*c* 0.15, CH₃OH); MS FAB m/z = 521 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3371 (NH), 2930 (CH), 1730 (C=O), 1639 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.29 (m, 5H, Ar-H), 5.85 (d, J=3.8 Hz, 1H, H-1), 4.58 (d, J=3.8 Hz, 1H, H-2), 4.38 (m, 4H, H-4, H-5 and NCH₂Ph), 4.10 (m, 2H, OCH₂CH₃), 3.59 (d, J = 3.0 Hz, 1H, H-3), 3.35 (s, 3H, OCH₃), 3.17 (m, 2H, NCH₂), 2.82 $(m, 1H, H-6_A)$, 2.44 (dd, J = 4.0 Hz and 15.5 Hz, 1H, H-6_B), 1.61 (bs, 2H, NCH₂), 1.47 and 1.31 [each s, each 3H, C(CH₃)₂], 1.25–1.18 (m, 13H, OCH₂CH₃ and CH₂ s), 0.85 (t, J = 6.8 Hz, 3H, $CH_2CH_2CH_3$). ¹³C NMR (CDCl₃): δ 171.7 (OC=O); 158.7 (NC=O); 140.3 (Ar-C); 128.8, 127.7, 127.2 (Ar–CH); 112.0 $[>C(CH_3)_2];$ 105.0 (C-1); 84.1(C-2); 81.5 (C-4); 79.8 (C-3); 72.1, 71.7 (NCH₂Ph), 61.1 (OCH₂CH₃); 57.6 (OCH₃), 44.9, 44.5 (NCH₂); 36.0 (C-6); 32.2 (CH₂S), 27.6, 26.7 [C(CH₃)₂]; 22.9 (CH₂CH₂CH₃); 14.5 (OCH₂ CH₃). Anal. calcd for C₂₈H₄₄N₂O₇: C, 64.6; H, 8.46; N, 5.38; Found: C, 64.64; H, 8.50; N, 5.42.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-{N¹-dodecyl-N³-4-chlorophenyl)-1ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (19). This was obtained by the reaction of compound 6 (1.23 g, 0. 50 mmol) and 4-chloro phenyl isocyanate (0.06 mL, 0.50 mmol) as described above and isolated as colourless oil. Yield 90%. $[\alpha]_D^{25} - 13$ (c 0.10, CH₃OH); MS FAB m/z= 612 (M + H)⁺; IR (neat): v_{max} cm⁻¹ 3294 (NH), 2926 (CH), 1723 (C=O), 1632 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.28 and 7.19 (each d, J=8.9 Hz and 9.0 Hz, 4H, Ar-H), 5.89 (d, J=3.8 Hz, 1H, H-1), 4.61 (d, J=3.8 Hz, 1H, H-2), 4.40 (m, 2H, H-4 and H-5), 4.18 $(q, 2H, OCH_2CH_3), 3.60 (d, J=3.0 Hz, 1H, H-3), 3.39$ (s, 3H, OCH₃), 3.20 (m, 2H, NCH₂), 2.80 and 2.39 (each m, each 1H, H-6), 1.63 (m, 2H, NCH₂CH₂), 1.48 and 1.32 [each s, each 3H, C(CH₃)₂], 1.28 (m, 21 protons, OCH_2CH_3 and CH_2s), 0.87 (t, J=6.6 Hz, 3H, (CH₂)₁₁CH₃). ¹³C NMR (CDCl₃): δ 173.4 (OC=O); 156.6 (NC=O); 138.9 (Ar-C); 129.1, 127.2, 120.1 (Ar-CH); 112.1 [> C(CH₃)₂]; 105.2 (C-1); 84.1 (C-2); 81.6 (C-4); 79.5 (C-3), 61.5 (OCH₂CH₃), 58.1 (OCH₃), 36.3 (C-6); 32.2, 30.1, 29.7, 27.8 (CH₂/s), 27.1, 26.5 $[C(CH_3)_2]; 22.9 (CH_2CH_2CH_3); 14.5 (OCH_2 CH_3)$ CH₂CH₃). Anal. calcd for C₃₂H₄₉N₂O₇Cl: C, 62.8; H, 7.36; N, 4.58; Found: C, 62.82; H, 7.39; N, 4.62.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-(N¹-hexadecyl-N³-phenyl)-1-ureidyl)-1,4-heptofuranos-5-yl-]-uronoate (20). Obtained by the reaction of compound 7 (1.10 g, 2.14 mmol) and phenyl isocyanate (0.23 mL, 2.14 mmol) as described above and isolated as colourless oil. Yield 84%. $[\alpha]_D^{25}$ -26.4 (c 0.125, CH₃OH); MS FAB m/z = 633 (M + H)⁺ IR (neat): v_{max} cm⁻¹ 3352 (NH), 2926 (CH), 1724 (C=O), 1660 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.30 (m, 5H, Ar–H), 5.90 (d, J = 3.8 Hz, 1H, H-1), 4.62 (d, J=3.8 Hz, 1H, H-2), 4.45 (m, 1H, H-4), 4.19 (q, 2H, H-2) OCH_2CH_3), 3.61 (d, J=3.0 Hz, 1H, H-3), 3.39 (s, 3H, OCH₃), 3.23 (m, 2H, NCH₂), 2.81 (m, 1H, H-6_A), 2.44 (dd, J = 5.8 Hz and 17.4 Hz, 1H, H-6_B), 1.57 (m, 2H, NCH_2CH_2 , 1.48 and 1.32 [each s, each 3H, $C(CH_3)_2$], 1.24 (m, 29H, CH₂'s and OCH₂CH₃], 0.87 [t, J=6.6 Hz, 3H, CH₃]. ¹³C NMR (CDCl₃) δ 171.9 (OC=O); 158 (NC=O); 129.3, 129.0 122.7, 120.0, 119.6 (Ar-CH); 112.17 [> $C(CH_3)_2$]; 105.06 (C-1); 84.14 (C-2); 81.46 (C-4); 79.88 (C-3); 61.48 (NCH₂Ph and OCH₂CH₃); 57.72 (C-5); 35.71 (C-6), 32.31 (NCH₂CH₂), 30.08, 30.04, 29.85, 29.74, 29.58, 27.78 (CH₂'s); 27.22 and 26.68 [>C(*C*H₃)₂]; 23.0 (*C*H₂CH₃); 14.57 (OCH₂CH₃); 14.49 (CH₂CH₃).

Ethyl-[(1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-{N1-hexadecyl-N3-(4-chlorophenyl)-1-ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (21). This was obtained by the reaction of compound 7 (1.0 g, 1.94mmol) and 4-chloro phenyl isocyanate (0.23 mL, 1.94 mmol) as described above and isolated as colourless foam. Yield 89%. $[\alpha]_D^{25}$ –26.4 (*c* 0.125, CHCl₃); MS FAB m/z = 667 (M + H)⁺; IR (neat): v_{max} cm⁻¹ 3339 (NH), 2927 (CH), 1718 (C=O), 1669 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 8.29 (s, 1H, NH), 7.36 and 7.26 (each d, J = 8.8 Hz, each 2H, Ar–H), 5.86 (d, J = 3.7Hz, 1H, H-1), 4.55 (d, J=3.7 Hz, 1H, H-2), 4.21 (m, 3H, H-4 and OCH₂CH₃), 3.67 (d, J = 3.0 Hz, 1H, H-3), 3.35 (m, 1H, H-5), 3.30 (s, 3H, OCH₃), 2.90–2.72 (m, 4H, H-6 and NCH₂), 1.59 (m, 1H, NH), 1.50 and 1.32 [each s, each 3H, $C(CH_3)_2$], 1.24 (m, 31H, CH_{2S} and OCH₂CH₃], 0.87 [t, J = 6.6 Hz, 3H, (CH₂)₁₄CH₃]. ¹³C NMR (CDCl₃): δ 173.6 (OC=O); 156.7 (NC=O); 139.1 129.0, 127.0, 120.2 (Ar–C), (Ar–CH); 112.2 $[>C(CH_3)_2]; 105.3 (C-1); 84.0 (C-2); 81.5 (C-4); 79.9 (C-4); 7$ 3); 61.6 (OCH₂CH₃), 58.0 (OCH₃); 53.4 (C-5), 36.2 (C-6), 32.3 (NCH₂), 30.0, 29.8, 29.7, 27.6 (CH_{2'S}), 27.1, 26.4 [> $C(CH_3)_2$]; 23.0 (CH_2CH_3), 14.5 (OCH_2CH_3). Anal. calcd for C36H59N2O7Cl: C, 64.86; H, 8.86; N, 4.20; Found: C, 64.25; H, 8.95; N, 4.88.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-5,6-dideoxy-1,2-O-isopropylidene-3-O-methyl-5-(N¹-oleyl-N³-benzyl)-1-ureidyl)-1,4heptofuranos-5-yl-]-uronoate (22). This was obtained by the reaction of compound 8 (0.18 g, 0.33 mmol) and benzyl isocyanate (0.44 mL, 0.33 mmol) as described above and isolated as colourless oil. Yield 91%. $[\alpha]_D^{25}$ $-25.6 (c \ 0.18, \ CH_3OH); \ MS \ FAB \ m/z = 674 \ (M + H)^{-1}$ IR (neat): v_{max} cm⁻¹ 3404 (NH), 2930 (CH), 1723 (C=O), 1633 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.29 (m, 5H, Ar–H), 5.86 (d, J=3.7 Hz, 1H, H-1), 5.35 (m, 2H, CH=CH), 4.59 (d, J=3.8 Hz, 1H, H-2), 4.40 (m, 3H, H-4 and NCH₂Ph), 4.15 (m, 3H, H-5 and OCH_2CH_3), 3.59 (d, J=2.7 Hz, 1H, H-3), 3.37 (s, 3H, OCH₃), 3.16 (m, 2H, NCH₂), 2.94 (m, 1H, H-6_A), 2.45 $(dd, J=4.03 Hz and 15.2HZ, 1H, H-6_B)$, 1.99 (m, 4H, $CH_2CH=CHCH_2$), 1.60 (bs, 2H, NCH₂CH₂), 1.47 and 1.31 [each s, each 3H, C(CH₃)₂], 1.22 (m, 25H, CH_{2'}S and OCH₂CH₃), 0.87 (t, J=6.48 Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃) δ 170.4 (OC=O); 157.2 (NC=O); 139.0 (Ar-C), 130.3, 128.7, 127.7, 127.2 (Ar-C); 110.7 $[>C(CH_3)_2]; 105.0 (C-1); 84.1 (C-2); 81.5 (C-4); 79.9 (C-4); 7$ 3); 61.0 (NCH₂Ph), 57.6 (OCH₃); 44.9 (NCH₂), 36.0 (C-6), 32.9, 32.3, 30.1, 30.0, 29.9, 29.8, 29.7, 29.6, 27.6 $(CH_{2'}S)$, 27.2, 26.7 (>C $(CH_{3})_{2}$]; 23.0 ($CH_{2}CH_{3}$), 14.5, 14.4 (OCH₂CH₃, CH₂CH₃).

Ethyl-[(1*R*, 2*R*, 3*S*, 4*R*, 5*R*/*S*)-3-*O*-benzyl-5,6-dideoxy-1,2-*O*-isopropylidene-5-{ N^3 -(4-chloro phenyl)-1-ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (23). This was obtained by the reaction of compound 9 (1.0 g, 2.73 mmol) and 4-chloro phenyl isocyanate (0.33 mL, 2.73 mmol) as

described above and isolated as colourless foam. Yield 90%. $[\alpha]_D^{25}$ -25.45 (c 0.14, CHCl₃); MS FAB m/z = 519 $(M + H)^+$; IR (neat): v_{max} cm⁻¹ 3361 (NH), 2935 (CH), 1725 (C=O), 1661 (NC=O); 1 H NMR (CDCl₃, 200 MHz) δ 7.32–7.10 (m, 9H, Ar–H), 5.92 (d, J=3.8 Hz, 1H, H-1), 5.55 (m, 1H, NH), 4.63 and 4.46 (each d, J = 12.0 Hz, each 1H, OCH₂Ph), 4.62 (d, J = 3.8 Hz, 1H, H-2), 4.30 (m, 1H, H-4), 4.12 (m, 3H, H-5 and OCH₂CH₃), 3.91 (d, J=3.0 Hz, 1H, H-3), 2.72 (m, 1H, H-6_A), 2.56 (d, J=5.48 Hz, 1H, H-6_B), 2.0 (s, 1H, NH), 1.46 and 1.30 [each s, each 3H, $C(CH_3)_2$], 1.25 (t, J=7.2Hz, 3H, OCH₂CH₃). ¹³C NMR (CDCl₃): (peaks were duplicated due to diastereoisomeric nature of product) δ 173.0, 172.1, 171.6 (OC=O); 155.5 (NC=O); 138.2, 138.1, 137.3, 137.1 (Ar-C); 129.2, 129.0, 128.9, 128.5, 128.4, 128.1, 127.8, 121.3, 121.2 (Ar-CH); 112.3, 112.2 [C(CH₃)₂]; 105.3, 105.1 (C-1); 82.4, 82.3 (C-2); 82.1, 819 (C-4); 80.8, 80.6 (C-3); 72.5, 72.2 (OCH₂Ph), 61.2, 61.1 $(OCH_2CH_3);$ 47.2 (C-5); 37.3 (C-6); 27.1, 26.6, $[>C(CH_3)_2]$, 14.5 (OCH₂CH₃). Anal. calcd for C₂₆H₃₁N₂O₇Cl: C, 60.23; H, 5.98; N, 5.40; Found: C, 58.89; H, 5.53; N, 5.40.

Ethyl-[(1R,2R,3S,4R, 5S)-3-O-benzyl-5,6-dideoxy-1,2-Oisopropylidene-5-{N¹-cyclopropyl-N³-(3-acetyl phenyl)-1ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (24). This was obtained by the reaction of compound 10 (0.50 g, 1.23 mmol) and 3-acetylphenyl isocyanate (0.16 mL, 1.23 mmol) as described above and isolated as colourless oil. Yield 90%; $[\alpha]_D^{25}$ -35.29 (c 0.1, CHCl₃); MS FAB m/z= 567 (M + H)⁺; IR (neat): v_{max} cm⁻¹ 3432 (NH), 1730 (C=O), 1676 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.86 (s, 1H, Ar–H), 7.77 and 7.58 (each d, J=8.0 Hz, each 1H, Ar-H), 7.56 (s, 1H, Ar-H), 7.34 (s, 5H, Ar-H); 5.91 (d, J = 3.7 Hz, 1H, H-1); 4.88 (m, 1H, H-4), 4.72 and 4.44 (each d, J = 11.8 Hz, each 1H, OCH₂Ph), 4.66 (d, J = 3.7 Hz, 1H, H-2); 4.20 (m, 1H, H-5), 4.06 (q, 2H,) OCH_2CH_3 ; 3.81 (d, J = 3.0 Hz, 1H, H-3); 3.42 (m, 1H, cyclopropyl CH), 2.88 (m, 1H, H-6A), 2.58 (s,3H, COCH₃), 2.05 (dd, J = 2.8 Hz and 15.3 Hz,1H, H-6_B), 1.69 (s, 1H, NH), 1.48 and 1.31 [each s, 3H, $C(CH_3)_2$], 1.21 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.11 (m, 4H, cyclopropyl CH₂s).¹³C NMR (CDCl₃): δ 198.5 (CH₃C=O); 172.0 (OC=O), 156.3 (NC=O); 140.0, 138.0, 137.3 (Ar-C); 129.4, 128.9, 128.5, 128.4, 124.7, 123.0, 119.4 (Ar-CH); 112.2 [>C(CH₃)₂]; 105.1 (C-1); 82.4 (C-2); 81.3 (C-4); 79.4 (C-3); 71.9 (OCH₂Ph), 60.8 (OCH₂CH₃); 34.5 (C-6); 27.2, 26.8 [> $C(CH_3)_2$]; 14.5 (OCH₂CH₃), 9.96, 9.43 (cyclopropyl CH₂). Anal. calcd for C₃₁H₃₈N₂O₈: C, 65.72; H, 6.71; N, 4.95; Found: C, 64.62; H, 6.94; N, 5.74.

Ethyl-[(1*R*, 2*R*, 3*S*, 4*R*, 5*S*)-3-*O*-benzyl-5,6-dideoxy-1,2-*O*-isopropylidene-5-{N¹-cyclopropyl-N³-(4-chloro phenyl)-1-ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (25). This was obtained by the reaction of compound 10 (0.80 g, 1.97 mmol) and 4-chloro phenyl isocyanate (0.24 mL, 1.97 mmol) as described above and isolated as colourless oil. Yield 85%; $[\alpha]_D^{25}$ -35.64 (*c* 0.41, CHCl₃); MS FAB *m*/*z* = 459 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3436 (NH), 2935 (CH), 1730 (C=O), 1672 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.42–7.19 (m, 9H, Ar–H); 5.90 (d, *J* = 3.78 Hz, 1H, H-1); 4.91 (m, 1H, H-4), 4.76 and 4.43 (each d, J=11.8 Hz, each 1H, OCH₂Ph), 4.65 (d, J=3.8 Hz, 1H, H-2); 4.20 (m, 1H, H-5), 4.08 (q, 2H, OCH₂CH₃); 3.80 (d, J=3.0 Hz,1H, H-3); 3.40 (m. 1H, H-6_A), 2.80 (m, 1H, cyclopropyl CH), 1.08 (dd, J=3.2 Hz and 15.6 Hz, 1H, H-6_B), 1.57 (each s, 1H, NH),1.46 and 1.30 [each s, 3H, C(CH₃)₂], 1.20 (t, J=7.2 Hz, 3H,OCH₂CH₃), 0.87 (m, 4H, cyclopropyl CH₂·s). ¹³C NMR (CDCl₃): δ 172.0 (OC=O); 156.2 (NC=O); 138.1, 137.3 (Ar–C); 129.1, 128.9, 128.5, 128.4, 127.9, 121.2 (Ar–CH); 112.3, 109.9 [>C(CH₃)₂]; 105.1 (C-1); 82.4 (C-2); 81.4 (C-4); 79.4 (C-3); 71.9 (OCH₂Ph), 60.8 (OCH₂CH₃); 57.8 (C-5), 34.5 (C-6); 27.3, 26.9 [>C(CH₃)₂]; 14.5 (OCH₂CH₃), 9.96, 9.43 (cyclopropyl CH₂). Anal. calcd for C₃₁H₃₈N₂O₈: C, 62.36; H, 6.27; N, 5.02; Found: C, 62.95; H, 6.26; N, 4.98.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-3-O-benzyl-5,6-dideoxy-1,2-*O*-isopropylidene-5-(N¹-cyclopropyl-N³-benzyl)-(1-ureidyl)-1,4-heptofuranos-5-yl-]-uronoate (26). This was obtained by the reaction of compound 10 (0.50 g, 1.23 mmol) and benzyl isocyanate (0.15 mL, 1.23 mmol) as described above and isolated as colourless oil. Yield 92%; $[\alpha]_D^{25}$ -42.86 (c 0.17, CHCl₃); MS FAB m/z = 539 (M + H) IR (neat): v_{max} cm⁻¹ 3459 (NH), 2935 (CH), 1729 (C=O), 1653 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.34–7.21 (m, 10H, Ar–H); 5.91 (d, J=3.7 Hz, 1H, H-1); 4.93 (dd, J = 9.6 Hz and 2.6 Hz, 1H, H-4), 4.68 and 4.47 (each d, J = 11.9 Hz, each 1H, OCH₂Ph), 4.64 (d, J = 3.8 Hz, 1H, H-2); 4 44 (m, 2H, NCH₂Ph), 4.13 (q, 2H, OCH₂CH₃); 4.04 (m, 1H, H-5), 3.79 (d, J=3.0 Hz, 1H, H-3); 3.34 (m, 1H, diastereomeric H-6_A), 2.68 (m. 1H, cyclopropyl CH), 2.08 (dd, J = 3.4 Hz and 15.0 Hz, 1H, H- $6_{\rm B}$), 1.60 (s, 1H, NH), 1.47 and 1.30 [each s, 3H, $C(CH_3)_2$, 1.25 (t, J=7.2 Hz, 3H,OCH₂CH₃), 0.88 (m, 4H, cyclopropyl CH₂s). ¹³C NMR (CDCl₃): δ 173.0, 172.2 (OC=O); 159.3 (NC=O); 140.4 (Ar-C); 137.8, 137.5 (Ar-C), 128.9, 128.8, 128.7, 128.4, 128.3, 127.7, 127.6, 127.2 (Ar–CH); 112.2 [> $C(CH_3)_2$]; 105.0 (C-1); 82.7 (C-2); 81.5 (C-4); 79.7 (C-3); 71.9 (OCH₂Ph), 57.8 (OCH₂CH₃); 44.8 (NCH₂Ph), 36.6, 35.1 (C-6); 27.3, 26.9 [>C(CH₃)₂]; 14.6 (OCH₂CH₃), 10.0, 9.3 (cyclopropyl CH₂). Anal. calcd for C₃₀H₃₈N₂O₈: C, 66.91; H, 7.06; N, 5.20; Found: C, 66.96; H, 6.98; N, 5.14.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-3-O-benzyl-5,6-dideoxy-1,2-O-isopropylidene-5-{N¹-butyl-N³-(4-fluorophenyl)-1-ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (27). This was obtained by the reaction of compound 11 (2.26 g, 5.36 mmol) and 4-fluoro phenyl isocyanate (1.61 mL, 5.36 mmol) as described above and isolated as colourless foam. Yield 85%; $[\alpha]_D^{25}$ -15.3 (c 0.13, CH₃OH); MS FAB m/z = 559 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3301 (NH), 2929 (CH), 1713 (C=O), 1668 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 8.20 (s, 1H, NH), 7.19 (m, 7H, Ar-H); 6.85 (d, J=8.7 Hz, 2H, Ar-H), 5.90 (d, J = 3.5 Hz, 1H, H-1); 4.56 (m, 4H, H-2, H-4, OCH₂Ph), 4.18 (m, 3H, H-5, OC H_2 CH₃); 3.95 (d, J = 3.5 Hz, 1H, H-3); 3.48 (m, 2H, NCH₂), 2.97 (m, 3H, NCH₂CH₂ and H-6_A); 2.73 (m, 1H, H-6_B), 1.62 (s, 1H, NH), 1.49 and 1.32 [each s, 3H, $C(CH_3)_2$], 1.22 (m, 5H, NCH₂CH₂CH₂, OCH₂CH₃), 0.89 [t, J=7.1 Hz, 3H, $(CH_2)_3CH_3$].¹³C NMR (CDCl₃): δ 171.5 (OC=O); 160.8, 156.6, 156.0 (NC=O); 135.9 (Ar-C); 128.6, 128.3, 128.2, 121.3, 121. 115.3, 114.9 (Ar–CH); 111.8 [> $C(CH_3)_2$]; 105.1 (C-1); 81.7 (C-2); 80.7 (C-4); 79.2 (C-3); 71.4 (OCH₂Ph); 61.0 (OCH₂CH₃); 34.6 (NCH₂); 31.2 (C-6); 27.1, 26.6 [> $C(CH_3)_2$]; 20.5 (CH₂CH₃), 14.1,13.8 (OCH₂CH₃, CH₂CH₃). Anal. calcd for C₃₀H₃₉N₂O₇F: C, 64.5; H, 6.98; N, 5.0; Found: C, 64.48; H, 7.0; N, 4.96.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-3-O-benzyl-5,6-dideoxy-1,2-O-isopropylidene-5-{N¹-dodecyl-N³-(3-acetylphenyl)-1ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (28). This was obtained by the reaction of compound 12 (1.0 g, 1.87) mmol) and 3-acetylphenyl isocyanate (0.25 mL, 1.87 mmol) as described above and isolated as colourless oil. Yield 90%; $[\alpha]_D^{25}$ -13 (c 0.12, CHCl₃); MS FAB m/z=695 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3355 (NH), 2927 (CH), 1726 (C=O), 1671 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.87 (s, 1H, Ar–H_A), 7.55 (m, 3H, Ar–H_B, – H_{C} and $-H_{D}$), 7.35 (m, 5H, Ar-H), 5.94 (d, J=3.6Hz, 1H, H-1); 4.74 and 4.41 (each d, J = 11.9 Hz, each 1H, OCH₂Ph), 4.68 (d, J = 3.6 Hz, 1H, H-2), 4.58 (m, 1H, H-4), 4.35 (m, 1H, H-5), 4.15 (q, 2H, OCH₂CH₃), 3.79 (d, J=3.0 Hz, 1H, H-3); 3.23 (m, 2H, NCH₂), 2.58 (s, 3H, COCH₃); 2.08–1.89 (m, 2H, H-6), 1.62 (m, 2H, NCH₂CH₂), 1.48 and 1.32 [each s, 3H, $C(CH_3)_2$], 1.24 (m, 21H, CH_{2S} and OCH_2CH_3), 0.87 [t, J = 6.8 Hz, 3H, CH₂CH₃]. ¹³C NMR (CDCl₃): δ 198.7 (COCH₃), 171.8 (OC=O); 156.8, (NC=O); 140.8, 138.0, 136.9 Ar-C); 129.2, 129.0, 128.7 (Ar–CH); 112.2 [>C(CH₃)₂]; 105.1 (C-1); 82.1 (C-2); 80.9 (C-4); 79.5 (C-3); 71.8 (OCH₂Ph); 61.5 (OCH₂CH₃); 34.8 (C-6); 32.9 (NCH₂); 30.0, 29.8, 29.7, 29.4, 27.7 (CH₂s), 27.2 (COCH₃), 27.1, 26.6 [>C(CH₃)₂]; 23.0 $(CH_2CH_3), 14.5,$ 14.4 (OCH_2CH_3, CH_2CH_3) . Anal. calcd for $C_{40}H_{58}N_2O_8$: C, 69.16; H, 8.35; N, 4.03; Found: C, 69.19; H, 8.37; N, 4.07.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-3-O-benzyl-5,6-dideoxy-1,2-O-isopropylidene-5-{N¹-dodecyl-N³-(4-fluorophenyl)-1ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (29). This was obtained by the reaction of compound 12 (0.60 g, 1.12)mmol) and 4-fluoro phenyl isocyanate (0.12 mL, 1.12 mmol) as described above and isolated as colourless foam. Yield 95%; $[\alpha]_D^{25}$ -20.9 (c 0.13, CH₃OH); MS FAB $m/z = 671 (M + H)^+$; IR (neat): $v_{max} \text{ cm}^{-1} 3387$ (NH), 2925 (CH), 1732 (C=O), 1647 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.28 (m, 5H, Ar–H); 6.94 (m, 4H, Ar–H), 5.93 (d, J=3.5 Hz, 1H, H-1); 4.73 and 4.40 (each d, J = 11.9 Hz, each 1H, OCH₂Ph), 4.66 (d, J=3.5 Hz, 1H, H-2), 4.57 (m, 1H, H-4), 4.31 (m, 1H, H-5), 4.14 (q, 2H, OCH₂CH₃), 3.79 (d, J=2.5 Hz, 1H, H-3); 3.15 (m, 2H, NCH₂), 2.63 (m, 1H, H-6_A); 2.04 (dd, J=2.1 Hz, 16.4 Hz, 1H, H-6_B), 1.57 (m, 2H, NCH₂CH₂), 1.47 and 1.32 [each s, 3H, C(CH₃)₂], 1.25 (m, 21H, CH_{2S} and OCH_2CH_3), 0.85 [t, J = 6.8 Hz, 3H, CH_2CH_3]. ¹³C NMR (CDCl₃): δ 171.9 (OC=O); 156.6, (NC=O); 139.0, 136.9 (Ar-C); 129.0, 128.9, 128.7, 128.6, 127.2, 121.0 (Ar–CH); 112.2 [> $C(CH_3)_2$]; 105.1 (C-1); 82.1 (C-2); 81.1(C-4); 79.5 (C-3); 71.8 (OCH₂Ph); 61.5 (OCH₂CH₃); 34.9 (NCH₂); 32.3 (C-6); 30.0, 29.8, 29.7, 29.5, 27.7 (CH₂s), 27.1, 26.6 $[>C(CH_3)_2]; 23.0 (CH_2CH_3), 14.5, 14.4 (OCH_2CH_3),$ CH_2CH_3).

Ethyl-[(1R, 2R, 3S, 4R, 5S)-3-O-benzyl-5,6-dideoxy-1,2-*O*-isopropylidene-5-{N¹-dodecyl-N³-(4-chlorophenyl)-1ureidyl}-1,4-heptofuranos-5-yl-]-uronoate (30). This was obtained by the reaction of compound 12 (1.20 g, 2.25 mmol) and 4-chloro phenyl isocyanate (0.27 mL, 2.25 mmol) as described above and isolated as colourless oil. Yield 90%; $[\alpha]_D^{25}$ -44 (c 0.11, CHCl₃); MS FAB m/z = 688 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3378 (NH), 2929 (CH), 1718 (C=O), 1631 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.25 (m, 9H, Ar-H); 5.92 (d, J=3.7 Hz, 1H, H-1); 4.73 and 4.41 (each d, J=11.9Hz, each 1H, OCH₂Ph), 4.66 (d, J = 3.7 Hz, 1H, H-2), 4,52 (m, 1H, H-4), 4.25 (m, 1H, H-5), 4.13(q, 2H, OCH₂CH₃), 3.79 (d, J=2. 5 Hz, 1H, H-3); 3.17 (m, 2H, NCH₂), 2.64 (m, 1H, H-6_A); 2.05 (dd, J=2.1 Hz, 16.0 Hz, 1H, H-6_B), 1.69 (m, 2H, NCH₂CH₂), 1.47 and 1.32 [each s, 3H, C(CH₃)₂], 1.23–1.16 (m, 21H, CH_{2S} and OCH₂CH₃), 0.87 [t, J = 6.0 Hz, 3H,CH₂CH₃]. ¹³C NMR (CDCl₃): δ 171.9 (OC=O); 156.6, (NC=O); 139.0, 136.9 (Ar-C); 129.0, 128.9, 128.7, 128.6, 127.2, 121.0 (Ar–CH); 112.2 [> $C(CH_3)_2$]; 105.1 (C-1); 82.1 (C-2); 81.1 (C-4); 79.5 (C-3); 71.8 (OCH₂Ph); 61.5 (OCH₂CH₃); 34.9 (NCH₂); 32.3 (C-6); 30.0, 29.8, 29.7, 29.5, 27.7 (CH₂s), 27.1, 26.6 [>C(CH₃)₂]; 23.0 (CH₂CH₃), 14.5, 14.4 (OCH₂CH₃ CH₂CH₃). Anal. calcd for C₃₈H₅₅N₂O₇Cl: C, 66.47; H, 8.01; N, 4.08; Found: C, 66.5; H, 8.03; N, 4.10.

Ethyl-[(1R, 2R, 3S, 4R, 5S)-3-O-benzyl-5, 6-dideoxy-1,2-O-isopropylidene-5-(N1-dodecyl-N3-benzyl-1-ureidyl)-1,4-heptofuranos-5-yl-]-uronoate (31). This was obtained by the reaction of compound 12 (0.80 g, 1.50 mmol) and benzyl isocyanate (0.18 mL, 1.50 mmol) as described above and isolated as colourless oil. Yield 88%; $[\alpha]_D^{25}$ -20.0 (c 0.5, CH₃OH); MS FAB m/z = 667 (M+H)⁺ IR (neat): v_{max} cm⁻¹ 3387(NH), 2925 (CH), 1732 (C=O), 1647 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.25 (m, 9H, Ar–H); 5.88 (d, J = 3.7 Hz, 1H, H-1); 5.03 (bs, 1H, NH), 4.69 and 4.42 (each d, J = 11.8 Hz, each 1H, OCH₂Ph), 4.63 (d, J = 3.7 Hz, 1H, H-2), 4.42 (m, 4H, H-4, H-5, NCH₂ Ph); 4.06 (q, 2H, OCH₂CH₃), 3.78 $(d, J = 3.7 \text{ Hz}, 1\text{H}, \text{H}-3); 3.14 \text{ (m}, 2\text{H}, \text{NCH}_2), 2.80 \text{ (m}, 3.14 \text{ (m}, 2\text{H}, \text{NCH}_2))$ 1H, H- 6_A); 2.07 (dd, J = 2.0 Hz and 17.4 Hz, 1H, H- 6_B), 1.84 (m, 2H, NCH₂CH₂), 1.47 and 1.31 [each s, 3H, $C(CH_3)_2$], 1.25–1.16 (m, 21H,CH_{2S} and OCH_2CH_3), 0.87 [t, J = 6.0 Hz, 3H, CH₂CH₃].¹³C NMR (CDCl₃): δ 171.6 (OC=O); 156.8, (NC=O); 140.5, 137.2 (Ar-C); 128.9, 1287, 128.5, 128.4, 127.6, 127.1 (Ar-CH); 112.0 $[>C(CH_3)_2]; 105.0 (C-1); 82.2 (C-2); 81.4 (C-4); 79.7 (C-2); 79.7 (C-2); 7$ 3); 71.8 (OCH₂Ph); 61.0 (OCH₂CH₃); 44.9 (NCH₂Ph), 35.3 (NCH₂); 32.3 (C-6); 30.0, 29.8, 29.7, 29.6, 27.7 $(CH_{2}s)$, 27.2, 26.8 [>C $(CH_{3})_{2}$]; 23.0 $(CH_{2}CH_{3})$, 14.55, 14.50 (OCH₂CH₃, CH₂CH₃). Anal. calcd for C₃₉H₅₈N₂O₇: C, 70.20; H, 8.70; N, 4.20; Found: C, 70.24; H, 8.73; N, 4.22.

Ethyl-[(1*R*, 2*R*, 3*S*, 4*R*, 5*S*)-3-*O*-benzyl-5,6-dideoxy-1,2-*O*-isopropylidene-5-(N¹-oleyl-N³-benzyl-1-ureidyl)-1,4heptofuranos-5-yl-]-uronoate (32). This was obtained by the reaction of 13 (0.42 g, 0.68 mmol) and benzyl isocyanate (0.08 mL, 0.68 mmol) as described above and isolated as colourless oil. Yield 91%; $[\alpha]_{D}^{25}$ -4.0 (*c* 0.15, CH₃OH); MS FAB *m*/*z* = 749 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3390 (NH), 2926 (CH), 1732 (C=O), 1647 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.3 (m, 10H, Ar-H_A), 5..88 (d, J=3.8 Hz, 1H, H-1); 5.34 (m, 2H, CH=CH), 5.1 (bs, 1H, NH), 4.69 and 4.42 (each d, J = 11.8 Hz, each 1H, OCH₂Ph), 4.65 (d, J = 3.8 Hz, 1H, H-2), 4.38 (m, 4H, NCH₂Ph, H-4 and H-5), 4.04 (q, 2H, OCH_2CH_3), 3.78 (d, J = 2.0 Hz, 1H, H-3); 3.14 (m, 2H, NCH₂), 2.76 (m, 1H, H-6_A), 2.10 (m, 5H, H-6_B, and allylic CH₂); 1.60 (m, 2H, NCH₂CH₂), 1.47 and 1.31 [each s, 3H, C(CH₃)₂], 1.25 (m, 21H, CH_{2S} and OCH₂CH₃)), 0.87 [t, J = 5.9 Hz, 3H,CH₂CH₃].¹³C NMR (CDCl₃): δ 171.6 (OC=O); 158.8 (NC=O); 140.5, 137.2 (Ar-C); 130.7, 130.3, 130.2, 128.9, 128.7, 128.5, 128.4, 127.6, 127.1 (Ar–CH); 112.1 [> $C(CH_3)_2$]; 105.0 (C-1); 82.2 (C-2); 81.4 (C-4); 79.7 (C-3); 71.8 (OCH₂Ph); 61.0 (OCH₂CH₃); 44.9 (NCH₂Ph), 35.3 (NCH₂), 30.1 (C-6); 30.0, 29.9, 29.8, 29.6, 27.7, 27.6 (CH₂s), 27.2, 26.8 $[>C(CH_3)_2];$ 23.0 $(CH_2CH_3),$ 14.5, 144 (OCH_2CH_3, CH_2CH_3) . Anal. calcd for $C_{35}H_{68}N_2O_7$: C, 72.10; H, 9.0; N, 3.7; Found: C, 72.13; H, 9.04; N, 3.74.

(1'R,2'R,3'S,4'R,6S)-N¹-cyclopropyl-N³-(4-chlorophenyl)-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-methyl-1',2',3',4'tetrahydrofuranos-4'-yl)-pyrimidin-2, 4-dione (33). A solution of above compound 15 (1.0 g, 2.07 mmol), 4 A MS (0.020 g), TBAB (0.010 g) and DBU (0.31 mL, 2.07 mmol) in anhydrous toluene (15 mL) was refluxed for 2.5 h. Solvent evaporated and the residue obtained was chromatographed over SiO₂ column using a gradient of hexane-ethylacetate (3:1), to give the compound as colourless oil. Yield 88%. $[\alpha]_D^{25}$ -86.6 (c 0.45, CHCl₃), MS FAB $m/z = 437 \text{ (M+H)}^+$; IR (neat): $v_{\text{max}} \text{ cm}^{-1} 3380$ (NH), 3010, 2935 (CH), 1670 (NC=O); ¹H NMR $(CDCl_3, 200 \text{ MHz}) \delta$ 7.40 and 7.05 (each d, each J = 8.8Hz, each 2H, Ar–H), 5.94 (d, J = 3.8 Hz, 1H, H-1'), 4.62 (d, J=3.8 Hz, 1H, H-2'), 4.40 (dd, J=9.6 Hz and 3.0 Hz, 1H, H-4'), 3.96 (m, 1H, H-6), 3.72 (d, J = 3.0 Hz, 1H, H-3'), 3.42 (s, 3H, OCH₃), 3.01 (m, 1H, CH-cyclopropyl ring), 2.92 (d, J=8.5 Hz, 1H, H-5_A), 2.63 (d, J = 17.8 Hz, 1H, H-5_B), 1.47 and 1.33 [each s, each 3H, C(CH₃)₂]; 0.93–0.79 (m, 4H, CH₂₋ cyclopropyl ring). ¹³C NMR (CDCl₃): δ 168.7 and 153.7 (C=O), 134.6, 134.2, 130.4 and 129.6 (Ar-C), 112.3 [C (CH₃)₂)], 105.6 (C-1'), 84.3 (C-2'), 81.0 (C-4'), 80.7 (C-3'), 57.8 (OCH₃), 53.2 (C-6), 35.4 (C-5), 32.1 (CH-cyclopropyl ring), 27.2 and 26.53 [C(CH₃)₂)], 10.1 and 7.0 (CH₂-cyclopropyl ring). Anal. calcd for C₂₃H₃₁N₂O₇Cl: C, 57.27; H, 6.43; N, 5.81; Found: C, 57.27; H, 6.63; N, 5.72.

(1'*R*,2'*R*,3'*S*,4'*R*,6*S*)-N¹-cyclopropyl-N³-benzyl-5,6-dihydro-(1',2'-*O*-isopropyledene-3'-*O*-methyl-1',2',3',4'-tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (34). This was obtained by refluxing a solution of 16 (1.2 g, 2.60 mmol), 4 Å MS (0.02 g), TBAB (0.012 g) and DBU (0.40 mL, 2.60 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 75%. $[\alpha]_D^{25}$ -78.15 (*c* 0.39, CHCl₃), MS FAB *m*/*z* =417(M+H)⁺; IR (neat): v_{max} cm⁻¹ 3375 (NH), 3019, 2935 (CH), 1671 (*NC*=*O*); ¹H NMR (CDCl₃, 200 MHz) δ 7.40–7.25 (m, 5H, Ar–H), 5.87 (d, *J*=3.8 Hz, 1H, H-1'), 4.53 (d, *J*=3.8 Hz, 1H, H-2'), 4.09 (dd, *J*=9.6 Hz and 3.0 Hz, 1H, H-4'), 3.82 (m, 1H, H-6), 3.62 (d, *J*= 3.0 Hz, 1H, H-3'), 3.36 (s, 3H, OCH₃), 2.97 (m, 1H, CH-cyclopropyl ring), 2.74 (d, *J*=8.4 Hz, 1H, H-5_A), 2.49 (d, *J*=17.8 Hz, 1H, H-5_B), 1.25 and 1.21 [each s, each 3H, C(CH₃)₂)]; 0.93–0.50 (m, 4H, CH₂-cyclopropyl ring). ¹³C NMR (CDCl₃): δ 168.6 and 154.0 (C=O), 138.2, 129.2, 128.8, 127.7 (Ar–C), 112.2 [*C*(CH₃)₂)], 105.5 (C-1'), 84.3 (C-2'), 81.0 (C-4'), 80.8 (C-3'), 57.7 (OCH₃), 53.1 (C-6), 43.9 (NCH₂), 34.8 (C-5), 31.9 (CH-cyclopropyl ring). 27.1 and 26.5 [C(CH₃)₂)], 10.3 and 6.9 (CH₂-cyclopropyl ring). Anal. calcd for C₂₁H₂₅N₂O₆Cl: C, 57.80; H, 5.73; N, 6.42; Found: C, 56.96; H, 5.68; N, 6.35.

(1'R, 2'R, 3'S, 4'R, 6S)-N¹-butyl-N³-(4-fluorophenyl)-5, 6-dihydro-(1',2'-O-isopropyledene-3'-O-methyl-1',2',3',4'-tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (35). This was obtained by refluxing a solution of 17 (1.0 g, 2.07 mmol), 4 A MS (0.020 g), TBAB (0.008 g) and DBU (0.32 mL, 2.07 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 85%. $[\alpha]_D^{25}$ -13.0 (c 0.09, CH₃OH); MS FAB m/z = 437 $(M+H)^{+}$; IR (neat): v_{max} cm⁻¹ 3400 (NH), 2938 (CH), 1721 (C=O), 1677 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.10 (m, 4H, Ar–H); 5.93 (d, J=3.8 Hz, 1H, H-1'); 4.61 (d, J=3.8 Hz, 1H, H-2'), 4.36 (dd, J=3.1 Hz and 9.4 Hz, 1H, H-4'), 3.97 (m, 1H, NCH_A), 3.85 (m, 1H, H-6), 3.71 (d, J=3.2 Hz, 1H, H-3'), 3.42 (s, 3H, OCH₃), 3.22 (m, 1H, NCH_B), 2.8 (m, 1H, H-5_A), 2.68 (m, 1H, H-5_B), 1.64 (m, 4H, CH₂CH₂), 1.32 and 1.28 [each s, 3H, $C(CH_3)_2$], 0.93 (t, 3H, CH_2CH_3).¹³C NMR (CDCl₃): δ 172.0 (CO), 166.1 (NC=O); 131.6, 130.8 (Ar-C); 116.5, 116.0, 115.5 (Ar-CH); 112.2, 111.8 [> $C(CH_3)_2$]; 105.4, 105.0 (C-1'); 84.0 (C-2'); 82.5 (C-4'); 81.5 (C-3'); 60.7, 59.3 (NCH₂), 54.8 (OCH₃),49.2, 49.1, 47.5,38.3, 37.6, 36.7. 35.1 (CH_2CH_2) , 32.6, 30.5 (C-6); 29.3, 27.1 [>C $(CH_3)_2$]; 14.5, 14.2 (CH₂CH₃).

 $(1'R, 2'R, 3'S, 4'R, 6S) - N^1$ -heptyl-N³-benzyl-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-methyl-1',2',3',4'-tetrahydrofuranos-4'-vl)-pyrimidin-2,4-dione (36). This was obtained by refluxing a solution of 18 (0.50 g, 0.96 mmol), 4 Å MS (0.020 g), TBAB (0.012 g) and DBU (0.14 mL, 0.96 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 85%. $[\alpha]_D^{25}$ -27.6 (c 0.13,CH₃OH); MS FAB m/z = 437 $(M+H)^+$; IR (neat): v_{max} cm⁻¹ 3436 (NH), 2930 (CH), 1711 (C=O), 1667 (NC=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.28 (m, 5H, Ar–H); 5.84 (d, J=3.8 Hz, 1H, H-1'); 4.97 (s, 2H, NCH₂Ph), 4.53 (d, J=3.8 Hz, 1H, H-2'), 4.00 (dd, J=3.2 Hz and 7.8 Hz, 1H, H-4'), 3.93 (m, 1H, NCH_A), 3.72 (m, 1H, H-6), 3.64 (d, J = 3.2 Hz, 1H, H-3'), 3.37 (s, 3H, OCH₃), 3.09 (m, 1H, NCH_B), 2.84 (dd, J = 6.7 Hz and 16.8 Hz,1H, H-5_A), 2.50 (d, J = 16.8Hz, 1H, H-5_B), 1.55 (m, 4H, NCH₂CH₂CH₂), 1.25 [m, 12H, C(CH₃)₂ and CH₂'s], 0.87 (t, J = 5.0 Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃): δ 168.6 (C=O), 152.6 (NC=O); 138.2, 128.8, 127.6 (Ar-C); 112.3 $[>C(CH_3)_2];$ 105.4 (C-1'); 84.1 (C-2'); 81.1 (C-4'); 80.9 (C-3'); 57.8 (OCH₃), 51.1 (C-6), 49.4 (NCH₂Ph), 43.9 (NCH₂CH₂), 34.6 (C-5), 32.1, 29.4, 28.6, 27.2 (CH_2S) , 27.0, 26.5 [>C $(CH_3)_2$], 22.9 (CH_2CH_3) , 14.4(CH₂CH₃)].

(1'R,2'R,3'S,4'R,6S)-N¹-dodecyl-N³-(4-chlorophenyl)-5,6dihydro-(1',2'-O-isopropyledene-3'-O-methyl-1',2',3',4'tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (37). This was obtained by refluxing a solution of 19 (0.40 g, 0.65 g)mmol), 4 A MS (0.020 g), TBAB (0.009 g) and DBU (0.10 mL, 0.65 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 80%. $[\alpha]_D^{25}$ -15 (c 0.08, CH₃OH), MS FAB m/z = 565 $(M + H)^{+}$; IR (neat): v_{max} cm⁻¹ 3389 (NH), 2927 (CH), 1722 (C=O);1682 (NC=ON). ¹H NMR (CDCl₃, 200 MHz) δ 7.36 (m, 5H, Ar-H), 5.92 (d, J=3.8 Hz, 1H, H-1'), 4.62 (d, J = 3.8 Hz, 1H, H-2'); 4.40 (dd, J = 9.5 Hz and 3.2 Hz, 1H, H-4'); 3.9 (m, 2H, NCH_A, H-6), 3.72 (d, J=3.0 Hz, H-3'); 3.42 (OCH₃), 3.20 (m, 1H, NCH_B), 3.13 (dd, J=16.6 Hz and 6.6 Hz, 1H, H-5_A), 2.35 (d, J = 16.6 Hz, 1H, H-5_B), 1.63 (m, 4H, NCH₂CH₂CH₂), 1.47 and 1.32 [each s, each 3H, $C(CH_3)_2$]; 1.25 (\overline{s} , 16H, CH_2S),0.92 (t, J=6.4 Hz, 3H, CH_2CH_3). ¹³C NMR (CDCl₃): δ 168.6 (C=O), 152.1 (NC=ON), 134.3, 130.4, 129.6 (Ar–C), 112.3 [$C(CH_3)_2$], 105.4 (C-1'), 84.1 (C-2'), 81.7 (C-4'), 80.9 (C-3'), 57.8 (OCH₃), 51.3 (C-6), 51.3 (C-6), 49.6 (NCH₂), 35.1 (C-5), 32.3, 30.0, 29.7, 28.5, (CH₂/S), 27.1, 26.5 [C(CH₃)₂], 23.0 (CH₂CH₃), 14.4 (CH₃). Anal. calcd for C₃₀H₄₅N₂O₆Cl: C, 67.3; H, 7.6; N, 4.3; Found: C, 67.74; H, 7.10; N, 4.36.

(1'R,2'R,3'S,4'R,6S)-N¹-hexadecyl-N³-phenyl-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-methyl-1',2',3',4'-tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (38). This was obtained by refluxing a solution of 20 (0.85 g, 1.34 mmol), 4 Å MS (0.022 g), TBAB (0.008 g) and DBU (0.20 mL, 1.34 mmol) in dry toluene (15 mL) as described above and isolated as colourless oil. Yield 82%. $[\alpha]_{D}^{25}$ -29.7 (c 0.17, CHCl₃), MS FAB m/z = 587 $(M+H)^+$; IR (neat): $v_{max} \text{ cm}^{-1}$ 3433 (NH), 2926, 2854 (CH), 1723, 1683 (C=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.39–7.15 (m, 5H, Ar–H), 5.92 (d, J=3.8 Hz, 1H, H-1'), 4.60 (d, J=3.8 Hz, 1H, H-2'); 4.41 (dd, J=9.4 Hz and 3.0 Hz, 1H, H-4'); 3.97 (m, 1H, NCH_A), 3.85 (m, 1H, H-6), 3.7 (d, J=3.0 Hz, 1H, H-3'); 3.42 (s, 3H, OCH₃), 3.18 (m, 1H, NCH_B); 3.06 (dd, J = 16.7 and 6.5 Hz, 1H, H- 5_A), 2.64 (d, J = 17.0 Hz, 1H, H- 5_B);1.60 (m, 2H, NCH₂CH₂), 1.48 and 1.32 [each s, each 3H, $C(CH_3)_2$]; 1.25 (m, 26H, CH_2 'S), 0.87 (t, J=6.7 Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃): δ 168.7, 152.8 (C=O), 135.9, 129.5, 129.0, 128.6 (Ar-C), 112.3 [C(CH₃)₂)], 105.5 (C-1'), 84.2 (C-2'), 81.1 (C-4'), 80.9 (C-3'), 57.8 (OCH₃), 51.5 (C-6), 49.5 (NCH₂), 35.2 (C-5), 32.3, 30.1, 29.9, 29.7, 28.5, 27.9, 23.1 (CH₂'S), 27.2 and 26.3 [C(CH₃)₂)], 14.5 (CH₃). Anal. calcd for C₃₄H₅₄N₂O₆: C, 69.6; H, 9.2; N, 4.7; Found: C, 69.58; H, 9.24; N, 4.73.

(1'*R*,2'*R*,3'*S*,4'*R*,6*S*) - N¹ - oleyl - N³ - benzyl - 5,6 - dihydro-(1',2' - *O*-isopropyledene - 3' - *O*-methyl - 1',2',3',4' - tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (39). This was obtained by refluxing a solution of 22 (0.95 g, 1.41 mmol), 4 Å MS (0.020 g), TBAB (0.012 g) and DBU (0.21 mL, 1.41 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 88%; $[\alpha]_D^{25}$ -28.8 (*c* 0.12, CHCl₃), MS FAB *m*/*z* = 627 (M + H)⁺; IR (neat): v_{max} cm⁻¹ 3372 (NH), 2928 (CH), 1710 (C=O);1669 (*NC*=*O*N). ¹H NMR (CDCl₃, 200 MHz) δ 7.34 (m, 5H, Ar–H), 5.84 (d, *J* = 3.7 Hz, 1H, H-1'), 5.36 (m, 2H, CH=CH), 4.97 (s, 2H, NCH₂Ph), 4.53 (d, J=3.7 Hz, 1H, H-2'), 4.03 (m, 2H, H-4', NCH_A), 3.80 (m, 1H, H-6); 3.64 (d, J=3.1 Hz, H-3'); 3.37 (s, 3H, OCH₃), 3.1 (m, 1H, NCH_B), 2.90 (dd, J = 6.0 Hz and 17.0 Hz, 1H, H-5_A), 2.55 (d, J = 17.0 Hz, 1H, H-5_B), 2.02 (m, 4H, allylic CH_{2S}), 1.65 (m, 4H, $CH_{2'}s$), 1.41 [m, 26, $C(CH_3)_2$ and CH_{2S}], 0.88 (t, J=7.0Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃): δ 168.6 (C=O), 152.6 (NC=ON), 138.2, 130.3, 128.9, 128.8, 127.6 (Ar-C), 112.3 [C(CH₃)₂)], 105.4 (C-1'), 84, 1 (C-2'), 81.1 (C-4'), 80.9 (C-3'), 71.9 (OCH₂Ph), 59.5 (NCH₂Ph), 57.7 (OCH₃), 51.9 (C-6), 49.4 (NCH₂), 34.6 (C-5), 32.9, 30.8, 30.0, 29.8, 29.7, 29.6, 28.6, 27.6, 27.2 (CH₂S), 27.1, 26.5 [C(CH₃)₂)], 23.0 (CH₂CH₃), 14.0 (CH₂CH₃). Anal. calcd for C37H58N2O6: C, 70.9; H, 9.2; N, 4.4; Found: C, 70.5; H, 9.23; N, 4.43.

(1'R,2'R,3'S,4'R,6S)-N³-benzyl-5,6-dihydro-(1',2'-O)-isopropyledene-3'-O-benzyl-1',2',3',4'-tetrahydrofuranos-4'-yl)pyrimidin-2,4-dione (40). This was obtained by refluxing a solution of 23 (0.80 g, 1.69 mmol), 4 Å MS (0.012 g), TBAB (0.008 g) and DBU (0.26 mL, 1.69 mmol) in anhydrous toluene (15 mL) as described above. On column chromatography of the reaction mixture only the main isomer could be isolated as white solid. Yield 80%. $[\alpha]_D^{25}$ -29.7 (c 0.08, CHCl₃); MS FAB m/z = 473 $(M + H)^+$; IR (neat): v_{max} cm⁻¹ 3371 (NH), 2926 (CH), 1712 (C=O); 1660 (NC=ON); ¹H NMR (CDCl₃, 300 MHz) & 7.45-7.22 (m, 7H, Ar-H), 7.14 (d, J=8.4 Hz, 2H, Ar-H), 6.06 (bs, 1H, NH), 6.01 (d, J=3.6 Hz, 1H, H-1'), 4.79 and 4.50 (each d, J = 11.7 Hz, each 1H, OCH₂Ph), 4.72 (d, J = 3.6 Hz, 1H, H-2'), 4.15 (m, 1H, H-4'), 4.03 (d, J = 3.0 Hz, 1H, H-3'), 3.98 (m, 1H, H-6), 2.73 (m, 2H, H-5), 1.53 and 1.38 [each s, each 3H, $C(CH_3)_2$], ¹³C NMR (CDCl₃): δ 168.8 and 156.1 (C=O); 138.0, 137.5, 130.7, 129.7, 128.5, 121.1 (Ar-C), 111.6 [C(CH₃)₂]; 105.6 (C-1'); 82.4 (C-2'), 81.6 (C-4'), 80.6 (C-3'), 72.4 (OCH₂Ph), 46.7 (C-6); 34.6 (C-5); 27.2, 26.6, $[>C(CH_3)_2].$

(1'R,2'R,3'S,4'R,6S)-N¹-cyclopropyl-N³-(3'-acetylphenyl)-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-benzyl-1',2',3',4'tetrahydrofuranos-4'-yl)-pyrimidin 2,4-dione (41). This was obtained by refluxing a solution of 24 (0.60 g, 1.06 mmol), 4 Å MS (0.022 g), TBAB (0.012 g) and DBU (0.16 mL, 1.06 mmol) in anhydrous toluene (10 mL) as described above and isolated as colourless oil. Yield 85%. $[\alpha]_D^{25}$ -16.0 (c 0.44, CHCl₃), MS FAB m/z = 521 $(M+H)^+$; IR (neat): v_{max} cm⁻¹ 3370 (NH), 3012, 2928 (CH), 1710, 1668 (CO); ¹H NMR (CDCl₃, 200 MHz) δ 7.95 (d, J=7.8 Hz, 1H, Ar-H), 7.67 (s, 1H, Ar-H), 7.52–7.29 (m, 7H, Ar–H), 5.98 (d, J=3.8 Hz, 1H, H-1'), 4.73 and 4.49 (each d, J = 11.6 Hz, each 1H, OCH₂Ph), 4.67 (d, J = 3.8 Hz, 1H, H-2'), 4.03 (dd, J = 9.6 Hz and 3.1 Hz, 1H, H-4', 4.03 (m, 1H, H-6), 3.95 (d, J = 3.1 Hz,1H, H-3'), 2.82 (m, 1H, CH-cyclopropyl ring), 2.76 (dd, J = 8.4 Hz and 17.1 Hz, 1H, H-5_A), 2.55 (s, 3H, CH₃), 2.35 (d, J = 17.1 Hz, 1H, H-5_B), 1.33 and 1.22 [each s, each 3H, C(CH₃)₂); 0.97–0.78 (m, 4H, CH₂-cyclopropyl ring). ¹³C NMR (CDCl₃): δ 197.1, 168.6 and 153.8 (C=O), 138.5, 136.9, 136.2, 133.8, 129.7, 129.3, 128.9, $128.5 (Ar-C), 112.4 [C(CH_3)_2)], 105.6 (C-1'), 81.9 (C-2'),$ 81.8 (C-4'), 80.8 (C-3'), 72.3 (OCH₂Ph), 53.1 (C-6), 35.2 (C-5), 32.2 (CH-cyclopropyl ring), 27.2, 26.9 and 26.6 [OCCH₃ and C(CH₃)₂)], 10.0 and 7.1 (CH₂-cyclopropyl ring). Anal. calcd for $C_{29}H_{32}N_2O_7$: C, 68.55; H, 6.91; N, 4.26; Found: C, 67.95; H, 6.51; N, 4.10.

(1'R, 2'R, 3'S, 4'R, 6S)-N¹-cyclopropyl-N³-(4-chlorophenyl)-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-benzyl-1',2',3',4'tetrahydrofuranos-4'-yl)-pyrimidin- 2, 4-dione (42). This was obtained by refluxing a solution of 25 (0.75 g, 1.34 mmol), 4 Å MS (0.025 g), TBAB (0.006 g) and DBU (0.20 mL, 1.34 mmol) in anhydrous toluene (10 mL) as described above and isolated as colourless oil. Yield 82%. $[\alpha]_D^{25}$ –32.48 (c 0.42, CHCl₃), MS FAB m/z = 513 $(M + H)^{\mp}$; IR (neat): $v_{max} \text{ cm}^{-1}$ 3397 (NH), 3016, 2932 (CH), 1696 (C=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.39–7.29 (m, 7H, Ar–H), 7.03 (d, J=8.5 Hz, 2H, Ar–H), 5.97 (d, J = 3.8 Hz, 1H, H-1'), 4.73 and 4.44 (each d, J = 11.7 Hz, each 1H, OCH₂Ph), 4.67 (d, J = 3.8 Hz, 1H, H-2', 4.40 (dd, J=9.6 Hz and 3.1 Hz, 1H, H-4'), 4.0 (m, 1H, H-6), 3.92 (d, J=3.1 Hz, 1H, H-3'), 3.02 (m, 1H, CH-cyclopropyl ring), 2.80 (dd, J = 17.1 Hz and 6.4 Hz, 1H, H-5_A), 2.34 (d, J = 17.1 Hz, 1H, H-5_B), 1.46 and 1.32 [each s, each 3H, $C(CH_3)_2$]; 0.94–0.77 (m, 4H, CH₂-cyclopropyl ring). ¹³C NMR (CDCl₃): δ 168.5 and 153.7 (C=O), 136.9, 134.5, 130.4, 129.6, 129.2, 128.9, 128.5 (Ar-C), 112.3 [C(CH₃)₂)], 105.6 (C-1'), 81.9 (C-2'), 81.8 (C-4'), 80.8 (C-3'), 72.3 (OCH₂Ph), 53.0 (C-6), 35.2 (C-5), 32.2 (CH-cyclopropyl ring), 27.2 and 26.6 [C(CH₃)₂)], 10.3 and 7.0 (CH₂-cyclopropyl ring). Anal. calcd for C₂₇H₂₉N₂O₆Cl: C, 63.28; H, 5.66; N, 5.47; Found: C, 64.02; H, 5.69; N, 5.24.

(1'R,2'R,3'S,4'R,6S)-N¹-cyclopropyl-N³-benzyl-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-benzyl-1',2',3',4'-tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (43). This was obtained by refluxing a solution of 26 (0.85 g, 1.57 mmol), 4 Å MS (0.024 g), TBAB (0.012 g) and DBU (0.24 mL, 1.57 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield $[\alpha]_{D}^{25}$ -36.50 (c 0.18, CHCl₃), MS FAB m/z=493 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3375 (NH), 3015, 2932 (CH), 1668 (*NC*=*O*); ¹H NMR (CDCl₃, 200 MHz) δ 7.38–7.18 (m, 10H, Ar–H), 5.88 (d, J=3.8 Hz, 1H, H-1'), 4.93 (s, 2H, NCH₂Ph), 4.68 and 4.41 (each d, J = 11.6 Hz, each 1H, OC H_2 Ph), 4.56 (d, J = 3.8 Hz, 1H, H-2'), 4.03 (dd, J=9.6 Hz and 3.1 Hz, 1H, H-4'), 3.87 (m, 1H, H-6), 3.84 (d, J=3.1 Hz, 1H, H-3'), 2.98 (m, 1H, CH-cyclopropyl ring), 2.61 (d, J=8.4 Hz, 1H, H- 5_A), 2.24 (d, J = 17.1 Hz, 1H, H- 5_B), 1.25 and 1.20 [each s, each 3H, C(CH₃)₂)]; 0.98-0.75 (m, 4H, CH₂-cyclopropyl ring). ¹³C NMR (CDCl₃): δ 168.5 and 154.0 (C=O), 138.1, 137.0, 129.1, 128.8, 128.4, 127.6 (Ar-C), 112.3 [C(CH₃)₂], 105.5 (C-1'), 82.1 (C-2'), 81.8 (C-4'), 80.9 (C-3'), 72.3 (OCH₂Ph), 52.9 (C-6), 43.9 (NCH₂), 34.7 (C-5), 32.1 (CH-cyclopropyl ring), 27.1 and 26.6 $[C(CH_3)_2)]$, 10.3 and 7.0 (CH₂-cyclopropyl ring). Anal. calcd for C₂₈H₃₂N₂O₆: C, 68.29; H, 6.50; N, 5.69; Found: C, 67.69; H, 6.39; N, 5.37.

(1'R,2'R,3'S,4'R,6S)-N¹-butyl-N³-(4-fluorophenyl)-5,6-dihydro-(1',2'-O-isopropyledene-3'-O-benzyl-1',2',3',4'-tetrahydrofuranos-4'-yl)-pyrimidin-2, 4-dione (44). This was obtained by refluxing a solution of 27 (1.0 g, 1.79

2921

mmol), 4 Å MS (0.020 g), TBAB (0.014 g) and DBU (0.27 mL, 1.79 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield $[\alpha]_D^{25}$ -18 (c 0.12 CHCl₃), MS FAB m/z = 513 (M + H)⁺; IR (neat): v_{max} cm⁻¹ 3501 (NH), 2935 (CH), 1738 (C=O); ¹H NMR (CDCl₃, 200 MHz) δ 7.35 (m, 5H, Ar– H), 7.06 (m, 4H, Ar–H), 5.95 (d, J=3.7 Hz, 1H, H-1'), 4.73 and 4.45 (each d, J = 11.6 Hz, each 1H, OCH₂Ph), 4.65 (d, J = 3.7 Hz, 1H, H-2'); 4.38 (dd, J = 9.7 Hz and 3.1 Hz, 1H, H-4'); 3.95 (d, J = 3.2 Hz, H-3'); 3.86 (m, 2H, NCH₂), 2.90 (dd, J=16.8 Hz and 6.5 Hz, 1H, H- 5_A), 2.38 (d, J=16.8 Hz, 1H, H- 5_B), 1.66 (m, 4H, NCH₂CH₂CH₂), 1.47 and 1.32 [each s, each 3H, $C(CH_3)_2$]; 0.87 (t, J=6.4 Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃): δ 168.7 (C=O), 152 (NC=ON), 136.9, 131.6 (Ar=C), 130.8, 130.6, 129.2, 128.9, 128.5, 116.6, 116.1 (Ar-CH), 112.4 [C(CH₃)₂)], 105.5 (C-1'), 81.8 (C-2'), 81.7 (C-4'), 81.1 (C-3'), 72.3 (OCH₂Ph), 51.3 (C-6), 49.4 (NCH₂), 34.9 (C-5), 30.6 (NCH₂CH₂), 27.1, 26.5 $[C(CH_3)_2], 20.4 (CH_2CH_3), 14.2 (CH_3).$

(1'R,2'R,3'S,4'R,6S)-N¹-dodecyl-N³-(3-acetylphenyl)-5,6dihydro-(1',2'-O-isopropyledene-3'-O-benzyl-1',2',3',4'tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (45). This was obtained by refluxing a solution of 28 (0.80 g, 1.15 mmol), 4 Å MS (0.022 g), TBAB (0.014 g) and DBU (0.17 mL, 1.15 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield $[\alpha]_D^{25}$ -15 (c 0.08, CH₃OH), MS FAB m/z = 648 $(M-H)^+$; IR (neat): v_{max} cm⁻¹ 3372 (NH), 1710 (C=O); 1669 (NC=ON). ¹H NMR (CDCl₃, 200 MHz) δ 7.68–7.26 (m, 5H, Ar–H), 5.96 (d, J = 3.7 Hz, 1H, H-1'), 4.74 and 4.45 (each d, J = 11.6 Hz, each 1H, OCH₂Ph); 4.66 (d, J = 3.7 Hz, 1H, H-2'), 4.40 (m, 1H, H-4'), 3.97 (d, J=3.1 Hz, H-3'); 3.88 (m, 1H, H-6); 3.31-3.20 (m, 5H, COCH₃ and NCH₂), 2.88 (dd, J = 16.8 Hz and 3.2 Hz, 1H, H-5_A), 2.58 (m, 2H, NCH₂CH₂), 2.35(d, J = 16.6 Hz, 1H, H-5_B), 1.64 (m, 4H, CH₂S), 1.48 and 1.33 [each s, each 3H, $C(CH_3)_2$], 1.25 (s, 14H, $CH_{2'S}$), 0.87 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃): δ 199.2, 197.1 (COCH₃), 168.6 (C=O), 152.5 (NC=ON), 138.4, 136.8, 136.3, 133.8, 130.3, 129.6, 129.1, 128.9, 128.7, 127.5 (Ar–C), 112.4 $[C(CH_3)_2)]$, 105.5 (C-1'), 81.8 (C-2'), 81.7 (C-4'), 81.0 (C-3'), 72.3 (OCH₂Ph), 54.3 (OCH₃), 51.3 (C-6), 49.7 (NCH₂), 34.9 (C-5), 32.3, 30.0, 29.9, 29.7, 28.5 (CH₂'S), 27.2, 26.9, 26.5 [COCH₃ and $C(CH_3)_2$], 23.0 (CH₂CH₃), 14.5 (CH₂CH₃). Anal. calcd for C₃₈H₅₂N₂O₇: C, 70.3; H, 8.02; N, 4.32; Found: C, 70.34; H, 8.05; N, 4.36.

(1'*R*,2'*R*,3'*S*,4'*R*,6*S*)-N¹-dodecyl-N³-(4-chlorophenyl)-5,6dihydro-(1',2'-*O*-isopropyledene-3'-*O*-benzyl-1',2',3',4'tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (46). This was obtained by refluxing a solution of **30** (0.80 g, 1.16 mmol), 4 Å MS (0.020 g), TBAB (0.012 g) and DBU (0.18 mL, 1.16 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 78%. [α]_D²⁵ -35.80 (*c* 0.16, CHCl₃), MS FAB *m*/*z* = 641(M+H)⁺; IR (neat): v_{max} cm⁻¹ 3404 (NH), 2930 (CH), 1723 (C=O), 1681 (*NC=O*). ¹H NMR (CDCl₃, 200 MHz) δ 7.39-7.30 (m, 7H, Ar-H); 7.11 (d, *J*=9 Hz, 2H, Ar-H); 5.93 (d, *J*=3.9 Hz, 1H, H-1'); 4.76 and 4.44 (each d, *J*=11.7 Hz, each 1H, OCH₂Ph); 4.66 (d, *J*=3.9 Hz, 1H, H-2'); 4.32 (dd, J = 10.8 and 3.3 Hz, 1H, H-4'); 3.99 (d, J = 3.3 Hz, 1H, H-3'); 3.84 (m, 1H, NCH_A); 3.76 (dd, J = 10.8 and 5.4 Hz, 1H, H-6); 3.25 (d, J = 17.0 Hz, 1H, H-5_A); 2.89 (dd, J = 17.0 and 6.6 Hz, 1H, H-5_B); 2.78 (m, 1H, NCH_B); 1.47 and 1.33 [each s, each 3H, C(CH₃)₂)]; 1.25 (m, 10H, CH₂/S); 0.88 (t, J = 6.0 Hz, 3H, CH₂CH₃). ¹³C NMR (CDCl₃): δ 168.8, 152.8 (C=O), 136.7, 124.0, 130.2, 129.1, 128.7, 128.3, 127.7 (Ar–C), 112.0 [C(CH₃)₂)], 105.0 (C-1'), 82.4 (C-2'), 81.5 (C-4'), 79.8 (C-3'), 71.7 (OCH₂Ph), 50.4 (C-6), 47.3 (NCH₂), 34.2 (C-5), 31.9, 29.6, 29.5, 29.3, 28.11,25.4, 22.6 (CH₂/S), 27.7 and 26.2 [C(CH₃)₂)], 14.1(CH₃). Anal. calcd for C₃₆H₄₉N₂O₆Cl: C, 67.3; H, 7.64; N, 4.36; Found: C, 67.35; H, 7.62; N, 4.4.40.

(1'R, 2'R, 3'S, 4'R, 6S)-N¹-oleyl-N³-benzyl-5,6-dihydro-(1', 2'-O-isopropyledene-3'-O-benzyl-1',2',3',4'-tetrahydrofuranos-4'-yl)-pyrimidin-2,4-dione (47). This was obtained by refluxing a solution of 32 (0.50 g, 0.66 mmol), 4 A MS (0.022 g), TBAB (0.010 g) and DBU (0.10 mL, 0.66 mmol) in anhydrous toluene (15 mL) as described above and isolated as colourless oil. Yield 70%. $[\alpha]_{D}^{25}$ -28 (c 0.15, CH₃OH), MS FAB m/z = 703 (M+H)⁺; IR (neat): v_{max} cm⁻¹ 3371 (NH), 2926 (CH), 1711 (C=O);1669 (NC=ON). ¹H NMR (CDCl₃, 200 MHz) δ 7.31 (m, 10H, Ar–H), 5.87 (d, J=3.7 Hz, 1H, H-1'), 5.34 (m, 2H, CH=CH), 4.95 (s, 2H, NCH₂Ph), 4.64 and 4.45 (each d, J = 11.6 Hz, each 1H, OCH₂Ph); 4.56 (d, J=3.7 Hz, 1H, H-2'), 4.25 (dd, J=9.2 Hz and 2.9 Hz, 1H, H-4'), 3.86 (d, J=3.1 Hz, H-3'); 3.78 (m, 1H, H-6); 3.48 (m, 1H, NCH_A), 3.33 (m, 2H, H-5), 3.20 (m, 1H, NCH_B), 2.01 (m, 4H, allylic CH_{2S}), 1.66 (m, 4H, CH_{2'S}), 1.48 [m, 26, C(CH₃)₂ and CH_{2S}], 0.87 (t, J = 7.0 Hz, 3H, CH_2CH_3). ¹³C NMR (CDCl₃): δ 168.5 (C=O), 152.6 (NC=ON), 138.2, 136.9, 130.3, 129.1, 128.8, 128.4, 127.5 (Ar–C), 112.3 [C(CH₃)₂)], 105.4 (C-1'), 81.8 (C-2'), 81.6 (C-4'), 81.1 (C-3'), 72.3 (OCH₂Ph), 59.5 (NCH₂Ph), 51.0 (C-6), 43.9 (C-5), 34.4, 30.0, 29.6, 28., 27.5, 27.2 (CH₂₈), 27.0, 26.5 [C(CH₃)₂)], 23.0, 20.1(CH₂CH₃), 14.5 (CH_3) .

Biology

Preparation of α -Glucosidase from rat intestinal mucosa. α -Glucosidase was prepared according to a slight modification of the procedure reported earlier.^{25,26} Intestine of male albino rats (CF strain average body weight 200 ± 20 g) were excised, opened and the mucosa was collected and pooled. A 10% homogenate was prepared in 150 mM KCl using Potter Elvejhem glass homogeniser fitted with Teflon pestle. The homogenate was centrifuged at 1000g for 15 min and the supernatant was decanted and stored at 4°C. The supernatant was dialyzed at 4°C against 50 mM Tris-HCl buffer pH 7.0 with two to three changes of buffer. The dialyzed supernatant was saturated with ammonium sulphate to a final concentration of 30%. The sample was kept at 4°C overnight and then centrifuged to collect the precipitate and the supernatant separately. The 30% ammonium sulphate saturated supernatant was further saturated to 60% with ammonium sulphate. Again the precipitate and supernatant were separated by centrifugation. Finally, the 60% ammonium sulphate

Table 2. α -Glucosidase activity

Source	Protein (mg/kg)	Specific activity	Fold purification
Crude extract	1.50 ± 0.03	288.94 ± 10.1	1.0
1000g supernatant 0–30% dialyzed	0.74 ± 0.09	483.81±89.7	1.68
precipitate 30–60% dialyzed	0.18 ± 0.02	552.69 ± 38.9	1.91
precipitate 60–100% dialyzed	0.31 ± 0.03	723.36±94.2	2.50
precipitate 100% saturated	0.60 ± 0.06	1370.91 ± 53.8	4.74
supernatant precipitate	$0.12\!\pm\!0.02$	Nil	

Maximum activity was observed in 60-100% saturated dialyzed precipitate.

saturated supernatant was further saturated to 100% with further addition of ammonium sulphate. The precipitate and supernatant was once again separated and all the samples were analysed for α -glucosidase activity using *p*-nitrophenyl- α -D-glucopyranoside as substrate. When it was observed that the enzyme activity is maximum in 60–100% ammonium sulphate precipitate (Table 2), it was stored at 4 °C and used as a source of enzyme for studying the effect of test compounds on α -glucosidase inhibition.

α-Glucosidase inhibitory activity determination. 50 µg of semi-purified α-glucosidase from rat intestinal mucosa and 100 µg of glutathione (1.0 mg/mL) was added to 0.67 mM phosphate buffer (pH 6.8). The reaction mixture was incubated at room temperature for 10 min before the addition of 0.1 mL *p*-nitrophenyl-α-D-glucopyranoside (PNPG) 0.01 M followed by change in optical density at 400 nm for a period of 20 min in the presence of 50 µg of desired test compound in the 1.0 mL assay system. Activity was expressed as nmol/min using molar extinction coefficient value as 9.6×10^3 .

Antitubercular activity determination. The activity of compounds was tested against bioluminescent M. aurum expressing firefly luciferase.²⁷ The cells were grown to an optical density of 0.03 at 600 nm. Two-fold dilutions of compounds were prepared and added to 100 µL culture $(A_{600}=0.03)$ in microtitre plate. The plate was incubated at 37 °C for 6 h and bioluminiscence was measured for each well. Two controls (with no drug) and two standard drugs (rifampicin and sparfloxacin) were also included. For measurement of bioluminescence, 100 µL of culture was mixed with 250 µL of sodium citrate buffer (0.1 M, pH 5.0) in the tube and was placed in the luminometer (Lumat LB 9507, EG & G Berthhold) 100 µL of 1 mM luciferase substrate was infected and luminescence was measured as relative light units (RLU) for 10 s.

References and Notes

1. (a) Kingh, H.; Aubert, R. E.; Herman, W. H. *Diabetes Care* **1998**, *21*, 1414. (b) Harris, M. I.; Flegal, K. M.; Cowie, C. C.; Eberherdt, M. S.; Goldstein, D. E.; Little, R. K.; Wiedmeyer, H. M.; Byrd-Holt, D. D. *Diabetes Care* **1998**, *21*, 518.

2. (a) Pablos, M. A.; Raviglione, M. C. L. N. Engl. J. Med.

1998, 338, 1641. (b) Zimmet, P. J. Intern. Med. 2000, 247, 301.
(c) Zimmet, P. Diabetologia 1999, 42, 499. (d) Groop, L. J. Intern. Med. 1997, 241, 95. (e) Huebner, R. E.; Castro, K. G. Ann. Rev. Med. 1995, 46, 47.

- 3. Lebovitz, H. E. Drugs 1992, 44 (Suppl. 3), 21.
- 4. Gale, E. A. M. Lancet 2001, 357, 1870.
- 5. Moller, D. E. Nature 2001, 414, 821.
- 6. Emst, E. Br. J. Med. 2000, 321, 395.

7. (a) Paulsen, H.; Todt, K. Adv. Cabohydr. Chem. **1968**, 23, 115. (b) Fellows, L. E. Chem. Br. **1987**, 23, 842. (c) Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D.; Wingender, W. Angew. Chem., Int. Ed. Engl. **1981**, 20, 744. (d) Inouge, S.; Tsuruoka, T; Ito, A.; Niida, T. Tetrahedron **1968**, 24, 2125. (e) Muller, L. In Biotechnology; Rehn, H. J., Reed, G., Eds., VCH: Weinheim, 1985; Vol. 4, Chapter 18.

- 8. Bayer, A. G.; Kinast, G.; Schuller, M.; Schroder, T.; Ger Offen, D. R.; Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King, C. H. R.; Liu, P. S. *J. Org. Chem.* **1989**, *54*, 2539. Yoshikuni, Y.; Ezure, Y.; Aoyagi, Y.; Enomoto, H. *J. Pharmacobiol. Dyn.* **1988**, *111*, 356.
- 9. (a) Karpus, A.; Fleet, G. W. J.; Dwek, R. A.; Petursson, S.; Namgoong, S. K.; Ramsden, N. G.; Jacob, G. S.; Rademacher, T. W. J. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 9229.
 (b) Walker, B. D.; Kowalski, M.; Goh, W. C.; Kozarsky, K.; Krieger, M.; Rosen, C.; Rohrschneider, L.; Haseltine, W. A.; Sodroski, ?. J. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 8120. (c) Winkler, D. A.; Holan, G. J. Med. Chem. 1989, 32, 2084.

10. Evans, S. V.; Fellows, L. E.; Shing, K. T. M.; Flee, G.WJ. *Phytochemistry* **1985**, *24*, 1953.

- 11. Humphries, M. J.; Matsumoto, K.; White, S. L.; Olden, K. Cancer Res. 1986, 46, 5215.
- 12. Bischoff, H. Eur. J. Clin. Invest. 1994, 24, 3.
- 13. Toeller, M. Eur. J. Clin. Invest. 1994, 24, 31.
- 14. Porus, J. R. Drugs Future 1986, 11, 729.
- 15. Bayer, A. G. Drugs Future 1986, 11, 1039.

16. Kajimoto, T.; Liu, K. K. C.; Pederson, R. L.; Zhong, Z.; Ichikawa, Y.; John, A.; Porco; Wong, C. H., Jr. J. Am. Chem. Soc. **1991**, 113, 6187, and references cited therein.

17. Frank, S. Angew. Chem., Int. Ed. 2002, 41, 230.

18. Scozzafava, A.; Mastrolorenzo, A.; Suparan, C. T. J. Enzyme Inhib. 2001, 16, 425.

19. Fischer, J. F.; Harrison, A. W.; Bundy, G. L.; Wilkinson, K. F.; Rush, B. D.; Ruwart, M. J. *J. Med. Chem.* **1991**, *34*, 3140.

20. Negre, J.; Chance, M. L.; Hanboula, S. Y.; Monsigny, M.; Roche, A. C.; Mayer, R. M.; Hommel, M. *Antimicrob. Agents Chemother.* **1992**, *36*, 2228.

 (a) Tiwari, V. K.; Tripathi, R. P. Indian J. Chem. 2002, 41B, 1681. (b) Tripathi, R. P.; Tripathi, R.; Tiwari, V. K.; Bala, L.; Sinha, S.; Srivastava, A.; Srivastava, R.; Srivastava, B. S. Eu. J. Med. Chem. 2002, 37, 773. (c) Khan, A. R.; Tripathi, R. P.; Tiwari, V. K.; Mishra, R. C.; Reddy, V. J. M. J.K.Saxena J. Carbohyd, Chem. 2002, 21, 587. (d) Mishra, R. C.; Tewari, N.; Arora, K.; Ahmad, R.; Tripathi, R. P.; Tiwari, V. K.; Walter, R. D.; Srivatava, A. K. Comb. Chem. Highthroughtput Screen. 2003, 6, 37. (e) Tewari, N.; Mishra, R. C.; Tiwari, V. K.; Tripathi, R. P. Synlett 2002, 11, 1779.

22. Patil, N. T.; Tilekar, J. N.; Dhavale, D. D. J. Org. Chem. 2001, 66, 1065.

23. Hirama, M.; Shigemoto, T.; Yamazaki, Y.; Ito, S. J. Am. Chem. Soc. 1985, 107, 1797.

24. Hanson, R. L.; Ho, R. S.; Wiseberg, J. J.; Simpson, R.;

- Younathan, E. S.; Blair, J. B. J. Biol. Chem. **1984**, 259, 218. 25. Cogoli, A.; Mosimann, H.; Vock, C.; Balthazar, A. K. V.;
- Semenza, G. *Eur. J. Biochem.* **1972**, *30*, 7.
- 26. Matsui, T.; Yoshimoto, S.; Osajima, K.; Oki, T.; Osajima, Y. *Biosci. Biotech. Biochem.* **1996**, *60*, 2019.
- 1. Diosci. Biolech. Diochem. **1990**, 00, 2019.
- 27. Deb, DK.; Srivastava, K. K.; Srivastava, R.; Srivastava, B. S. Biochem. Biophys. Res. Commun. 2000, 279, 457.