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Abstract: The novel deoxynbonucleoslde analogues la,b have been synthesized in a straightforward 
manner from 2-deoxy-D-ribose. These modified nucleosides have also been convettcd to the 
phosphoramidite derivatives 13a.b and 14a,b for potentml incorporation into oligodeoxyribonucleotides 
according to defined intemucleotidic motifs. 

a$-Oligodeoxyribonucleotides with alternating (3’13’). and (S-+5’)-intemucleotidic phosphodiester 
linkages @DNA) represent a unique class of synthetic oligonucleotide analogues achiral at phosphorus.la-c 
These modified oligonucleotides exhibit superior resistance to nucleases than native @oligodeoxy- 
ribonucleotides,ta-c,2 and possess the ability to form stable complexes with either complementary DNA or RNA 
sequences.ja-c In this context, &DNA-DNA duplexes am thermodynamically more stable than &DNA-RNA 
complexesla and, thus, demonstrate the higher affinity of &DNA for single-stranded DNA sequences than for 
RNA sequences. The reduced thermal stability of &DNA-RNA complexes may result from an inherent 
conformational incompatibility of &DNA within the A-type helical motif of the hybrids.ld 

A viable strategy at improving the affinity of &DNA for complementary RNA oligomers would entail the 
substitution of the cc-mononucleotides of &DNA for a-mononucleotides having a distinctive linker arm between 
the nucleobase and carbohydrate moieties. Additional nucleobase flexibility imparted to &DNA by the 
incorporation of, for example, la may facilitate the formation of Watson-Crick base-pairs with native RNA 
oligonucleotides through better alignments of complementary nucleobases. This approach is supported by 
modeling studies of either la or lb which indicate that the torsion angle x, (C1&&+VI) of energetically 
preferred conformers is ideal (180”) for optimal base-pairing. Thus, in order to evaluate the effectiveness of 
la,b as conformational indicators for &DNA oligonucleotides, we now report chemical syntheses of these 
novel nucleoside analogues and their corresponding phosphoramidite derivatives 13a,b and 14a,b. Scheme 1 
outlines the chemical transformations involved in these syntheses even though only those pertaining to a- 
epimers are shown as examples. 

la u-eplmer 
b BSeplmer 

la 



8954 

Scheme l@ 

OH 

TKI TfQ TIO 

OH - 
ii OH - CH&N iii + P-epimer 

4b 
hH ;H 

2 3 4a,b 4a 

TtO 

iv 
4a - 

5a R=H 
6a R =Ac 

vlic 7a R’=Tr; R”=TMS 
8a R’ = R” = H 

9a 

xii 
I 

OR’ 

ix E 
la R’=R’=H 

orx 9a R’ = DMTr, R’ = H 
ixGIOa R’=TBDMS, R’= H 

lla 
xi c 12a 

R’ = TBDMS, R’ = DMTr 
R’ = H, R” = DMTr 

12a 

I 
xii 

DMTrO 

0 H 

k.Y 1 “?r‘N NH 

oPOCE \ 0 
I v 

‘Pr2N Cf-43 

13a 

‘P+N ’ 
1 

OPOCE 
o H 

fY 1 b-N N,, 

DMTr6 
v 
\ 0 

CH3 

14a 

’ Conditions: (i) TrCVDMAPKsHsN, SO OC, 6 h; (ii) (Et0)2P(0)CH2CNMaH/THF, 5 OC. 6 h; (iii) silica 
gel chromatography; (iv) (CH&,S*BH$I’HF/reflux, 40 mitt; (v) TMS-Cl/EtsN/THF, 25 “C, 2 h; (vi) 
CH30CHC(CH~)CONCOIEt~N/C&, 25 OC, 3 h; (vii) 10% TFA/CH2C12, 25 OC, 2 h; (viii) cont. 
N&OH, 50 OC, 12 h; (ix) DMTrCVDMAPKsHsN, 25 OC; (x) TBDMSCl/Imidazole/DMF, 25 OC, 1 h; (xi) 
I.0 M n-BudNF/THF, 25 “C, 2 h; (xii) (‘PrZN)2POCH$H&N/cat. DIAT/CH2C12, 25 OC, 4 h. b Legend: 
Et, ethyl; Tr. triphenylmethyl; TMS, trimethylsilyl; TFA, trifluoroacetic acid; DMTr, dimethoxytrityl; 
DMAP, 4-dimethylaminopyridine; DIAT, NJ-diisopropylammonium tetrazolide; TBDMS, [err-butyl 
dimethylsilyl; CE, 2-cyanoethyl; ‘Pr, (1 -methyl)ethyl. 

The 5-O-trityl-2-deoxyribofuranoside 3 is prepared according to a modified literature procedure.3 
Typically, dry 2-deoxy-D-ribose (2) is reacted with triphenylmethyl chloride and catalytic amounts of N,N- 
dimethylaminopyridine in anhydrous pyridine at 50 oC to give 3 in 60% isolated yield. The acid-labile mt$ 
group has been selected for the preparation of 3 because of its lipophilicity, facile ultraviolet or visible detection, 
and stability to Wittig reaction and reducing conditions. Thus, the Wittig-Homer condensation of 3 with the 
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sodium salt of diethyl cyanomethylphosphonate (3 equiv) in dry THF at 5 oC produces the (2- 
deoxyribofuranosyl) acetonitrile derivatives 4a,b in almost quantitative yield, as a neat equimolar mixture of a- 
and P-epimers. The facile separation of 4a and 4b by silica gel chromatography enables the isolation of 
relatively large amounts (> 5 g) of pure epimers .4 The reduction of 4a or 4b to the corresponding amine is best 
achieved with ahtminum hydride in dry THF but large-scale preparations (> 5 g) of this reducing reagent, 
according to the method of Finholt et al.,6 can be hazardous. To alleviate this drawback, the use of commercial 
boranes as alternatives to aluminum hydride in the reduction of 4a,b, has been investigated. Specifically, the 
complex boranedimethylsulfide7 converts 4a, within 40 mitt in refluxing THF, to the desired (2- 
deoxyribofuranosyl)aminminoethane 5a in yields exceeding 95%. The aminoethylated glycoside 5a, which has 
been characterized as its diacetate derivative 6a,* is pure enough for transient protection of the 3-hydroxy 
function with chlorotrimethylsilane, and condensation with 3-methoxy-2-methylacryloyl isocyanate.9 Treatment 
of the crude reaction product 7a with 10% trifluoroacetic acid in CH,Clz for 2 h at 25 oC affords, after work-up 
and purification by silica gel chromatography, the acryloyhuea derivative 8a in 40% yield with respect to 5a.9 
Cyclization of 8a to la is effected in 90% yield upon heating at 50 oC in concentrated ammonium hydroxide.10 

Condensation of la with di-p-methoxytrityl chloride (DMTr-Cl) in dry pyridine generates the 5’-protected 
nucleoside 9a in 75% isolated yield. Alternatively, regioselective silylation of la at the 5’-hydroxy function 
with rert-butyldimethylchlorosilane gives the 5’-0-silylated nucleoside anaJogue 10a in 90% yield. This 
nucleoside is reacted with DMTr-Cl in pyridine to produce the fully protected nucleosides lla which, without 
further purification, is desilylated by treatment with tetra-n-butylammonium fluoride in THF. The 3’-protected 
nucleoside derivative 12a is isolated in 74% yield. 

Phosphitylation of 9a and 12a with 0-(2-cyanoethyl)-N,N,N:N’-tetraisopropylphosphordi~~te and 
catalytic amounts of N,Ndiisopropylammonium tetrazolide, according to the procedure of Barone et al.,* * 
affords the deoxyribonucleoside phosphorarnidite analogues 13a and 14a in yields greater than 80%.12 The 
application of 13a,b and 14a,b to the synthesis of oligonucleotide analogues, and the physicochemical 
properties of these oligomers will be reported elsewhere in due course. 
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