

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 64 (2008) 4835-4851

www.elsevier.com/locate/tet

Confirmation of structure and synthesis of three new 11β -OH C₂₀ gibberellins from loquat fruit

Le Than Phuoc^a, Lewis N. Mander^{a,*}, Masaji Koshioka^b, Naomi Oyama-Okubo^c, Masayoshi Nakayama^c, Akiko Ito^d

^a Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra ACT 0200, Australia

^b Department of Plant Science and Resources, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan

^c National Institute of Floricultural Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan

^d National Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan

Received 26 September 2007; received in revised form 19 October 2007; accepted 19 October 2007 Available online 6 February 2008

Abstract

Three new 11 β -hydroxy C₂₀ gibberellins have been isolated from immature loquat fruit and their structures were established as 11 β -hydroxy-GA₁₂, 11 β -hydroxy-GA₁₅ and 11 β -hydroxy-GA₅₃, respectively, by direct GC–MS comparisons with authentic samples obtained from gibberellic acid by multistep syntheses. An advanced intermediate (**30**) was prepared in 20 steps from which 6 11 β -hydroxy C₂₀ gibberellins were prepared by parallel routes involving up to a further 5 steps for each sequence. The key steps involved a much improved synthesis of gibberellenic acid derivatives, a Lewis acid catalysed cyclisation of a diazoketone, a domino-hydroboration of a diene and oxidative cleavage of a ketone derived enolate. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The gibberellins ('GAs') form a large group of highly functionalised diterpenoid acids, which are distributed widely throughout the plant Kingdom where they play an important role in plant growth and development.¹⁻⁴ They are also produced by a number of microorganisms⁵ and gibberellic acid (1) is obtained commercially in tonne quantities by fermentation of the fungus Gibberella fujikuroi (now identified⁶ as Fusarium fujikuroi). Of the 132 hitherto known naturally occurring GAs, 107 have been found exclusively in higher plants (including angiosperms, gymnosperms and ferns), 11 in the fungus only and the rest from both sources. Rather than assigning trivial names to naturally occurring GAs, a number has been assigned to each variant and a registry coordinated, until recently, by MacMillan and Takahashi.⁷ Gibberellic acid (1), for example, is identified as GA₃. The database is now maintained by Hedden and Kamiya: http://www.plant-hormones.info/gibberellin nomenclature.htm. More than a third of known GAs are based on the C_{20} *ent*-gibberellane skeleton **2** with the variations of structure arising from different oxidation levels and hydroxylation patterns. The other GAs are based on the 20-nor-*ent*-gibberellane structure **3** and incorporate a 19,10- γ -lactone function as in GA₃.

Progress in gibberellin research in higher plants would have occurred very much more slowly without the original isolation in relatively large quantities of GAs from *F. fujikuroi*. Some of the richer plant sources afford milligram quantities, but concentrations in the order of ng kg⁻¹ are more usual and with these more modest quantities, it is only with the knowledge derived from chemical⁸ and metabolic⁹ studies on the fungal GAs and the availability of semi-synthetic GAs^{10,11} that structure determination becomes reasonably feasible. Even at the

^{*} Corresponding author. Tel.: +61 2 6125 3761; fax: +61 2 6125 8114. *E-mail address:* mander@rsc.anu.edu.au (L.N. Mander).

sub nanogram level, it is often possible to arrive at quite a good estimate of molecular structure from fragmentation patterns in the mass spectra of silvlated methyl ester ('Me-TMS') derivatives. Then, these tentative assignments may be confirmed by synthesis from one of the fungal GAs. When the assumptions are wrong, useful information is still gained and the deduction of the correct structure facilitated. Most importantly, comparisons may be made with the extensive database of GC-MS information held at Rothamsted Reseach, Harpenden, Herts., UK (http://www.rothamsted.ac.uk) a large part of which has been published in an atlas by Gaskin and MacMillan.¹²

It is within this context that we have undertaken further investigations of GAs isolated from loquat trees (Eribotrya japonica Lindl.), which are cultivated in the warm regions of Japan and other Asian countries. The fruits are edible and commercially important. Twelve gibberellins ('GAs'), four of which possess an 11-hydroxy substituent, namely GA35 (4), GA_{50} (5), GA_{80} (6) and GA_{84} (7) have been previously identified as endogenous gibberellins in immature seeds.^{13,14} Recently, we have isolated three further GAs from this source, one corresponding to a mono-hydroxy derivative of GA_{12} (8), another corresponding to a dihydroxy derivative of GA12, and one corresponding to a mono-hydroxy derivative of GA_{15} (10). Given their provenance and through the elimination of known GAs, it appeared likely that they were hydroxylated at the C-11 locus.

Of special interest was a prominent peak at m/z 295 in the mass spectrum of the Me-TMS derivative of the putative dihydroxy GA₁₂ that we believed would be consistent with a derivative of $GA_{53}(9)$ bearing a hydroxyl attached to either ring C or D. As with the Me-TMS derivatives of all 13-hydroxy GAs, the mass spectrum of GA53 displays a characteristic ion of m/z 207 attributed to a ring C+D fragment; an additional Me₃SiO group would add 88 mass units.¹² Given that the 12α , 12β and 15β isomers are known GAs, and hydroxylation at C-14 has yet to be observed for a native GA, it appeared most likely, therefore, that this last GA was an 11-hydroxy GA₅₃. To establish the identity of the new GAs, we embarked upon the synthesis of a series of 11-hydroxy C₂₀ GAs, and in anticipation of future discoveries, our approach encompassed a full set of both 11,13dihydroxy and 11-hydroxy derivatives. Thus, as outlined in Scheme 1, our initial target became the advanced intermediate 15 from which we could expect to prepare all of the desired GAs.

ćо HO CO₂H 4 5 Ĥ CO₂H CO2H ČO₂H 10 8 R = H

2. Results and discussion

Our synthetic plan for the preparation of 15 is outlined in Scheme 2, the critical conversion being the cyclisation of diazoketone 11 to afford 12,15 which, if successful, would combine the introduction of functionality into the C-ring with the incorporation of C(20). Hydroboration of the product 9(11),16diene¹⁶ would then be expected to provide diol **13** by means of a concerted two-stage process involving addition of diborane to the exo face of the 16-ene bond followed by intramolecular addition of the resulting endo borane function to the 9(11)-ene bond. An important aspect of this conversion would be the concomitant restoration of the correct 9B stereochemistry. Subsequent oxidative cleavage of the C(19)-C(20) bond¹⁷ should then afford 15.

As outlined in Scheme 3, the preparation of a suitable analogue of diazoketone 11 began with the 7-methyl ester (18) of gibberellenic acid (17). Gibberellenic acid is readily prepared from $GA_3(1)$ in 37% yield by heating with hydrazine hydrate.¹⁸ However, so that we could discriminate between the two carboxyl functions, we had previously treated GA₃ methyl ester (16) under equivalent conditions and had obtained the desired mono-ester **18** in only 23% yield.¹⁹ Fortunately, through the simple expedient of using hydrazine monohydrochloride in DMF, we were able to elevate the yield to 39% (56% net, based on recovered starting material). To remove the A-ring double bond, 18 was first protected as its MOM ester and oxidized to trienone 19 as before,¹⁹ but then treated with NaBH₄-CuCl,²⁰ which provided a superior yield (90%) of diene acid 20 as opposed to our previous routine¹⁹ using L-Selectride followed by Li(O^tBu)₃H (62% over two steps). The 3-hydroxyl was removed by using the Barton-McCombie protocol²¹ and then, following protection of the 13-hydroxyl through acetylation and selective hydrolysis of the MOM ester group, diazoketone 22 was prepared by treatment of the 19-acyl chloride with diazomethane.

The next stage of the synthesis is outlined in Scheme 4. Thus, cyclisation of diazoketone 22 was effected in essentially quantitative yield with $BF_3 \cdot Et_2O$ and the product ketone 23 was converted into the 19-MOM ether 24 in preparation for the hydroboration step, which, in due course, afforded a mixture of the desired diol 26 (65% yield) and alcohol 25 (26%). Reconstitution of the 16-ene function had previously been achieved on similar GA substrates through a rather convoluted six-step sequence,¹⁶ but fortunately a much more direct conversion to 28 could be achieved via the selenenyl ether 27 using the Grieco procedure.²² Finally, after conversion of the 19-MOM ether function back to the 19-one and replacement of the acetate protecting groups with MOM ethers to give 29, oxidative cleavage (KH, DMF; O₂) followed by methylation (CH_2N_2) furnished aldehyde **30**.

From here, we could envisage the straightforward preparation of 11-hydroxy and 11,13-dihydroxy C₂₀ GAs through simple functional group manipulations. Thus, as summarized in Scheme 5, the MOM protecting groups were removed from **30** to reveal 11 β -hydroxy GA₁₉ (**31**). Next, reduction $(NaBH_4)$ of **30** followed by deprotection afforded the GA_{44}

analogue **32**, while ester hydrolysis of **30** followed by Wolff– Kishner reduction, protecting group removal and re-methylation yielded the GA_{53} derivative **33**. This last product, after silylation, proved to have the same mass spectrum and GC retention time as the dimethyl ester of the dihydroxy GA_{12} gibberellin isolated from loquat and has been assigned as GA_{135} .

To prepare the 13-desoxy analogues (Scheme 6), the 11β -hydroxyl in each of **31**, **32** and **33** was selectively acetylated and

the 13-hydroxyl removed by treatment of the derived methyl oxalates with ^{*n*}Bu₃SnH.²³ Comparisons by GC–MS as for **33** showed that lactone **35** and diester **36** were identical with their naturally occurring counterparts and accordingly, the parent GAs were assigned as GA₁₃₄ and GA₁₃₃, respectively.

3. Conclusion

The methyl esters of six 11 β -hydroxy C₂₀ GAs have been prepared, three of which correspond to endogenous GAs from loquat fruit. Given earlier experience with the isolation of GAs, the remaining GAs are likely to be found also in this species. Flexible and reliable procedures have been developed for the preparation of these GAs and will have considerable utility for the preparation of further derivatives. Of particular note is the improved access to gibberellenate type GAs, the use of a high yielding cyclisation of a 19-diazomethyl ketone to bridge the divide between C₁₉ and C₂₀ derivatives, and the much improved 'recovery' of the 16-ene function from 11 β ,17-diol intermediates.²⁴

4. Experimental

4.1. GA isolation and purification

Seeds (49 g fresh weight) were collected from immature fruits of loquat (*E. japonica* Lindl.) harvested 90 days after full bloom and then extracted with 80% aqueous MeOH (3×100 mL). After filtration, MeOH was removed in vacuo at 45 °C. The aqueous residue was adjusted to pH 3.0 with 1 M HCl and partitioned against hexane (3×100 mL) followed by EtOAc (3×100 mL). The combined EtOAc phase was then partitioned aqueous phase was mixed with PVP (5 g) and then filtered. The aqueous phase was adjusted to pH 3.0 with 5 N HCl and partitioned against EtOAc (3×100 mL).

The combined EtOAc phase was dried over Na₂SO₄. After filtration, the EtOAc fraction was evaporated in vacuo and then dissolved in a small amount of MeOH. The solution was prepurified through a Bondesil DEA (5 g) column (packed with MeOH). After sample loading, the column was washed with MeOH (100 mL) and then with MeOH containing 1% HOAc (100 mL). GAs were eluted with MeOH containing 1% HOAc. The eluate was then reduced to dryness in vacuo and the residue dissolved in a small amount of 30% aqueous MeOH. The solution was chromatographed by HPLC on a Senshu-Pak ODS-4253-D column (25×1 cm ID), eluting with a linear gradient of H₂O (containing 1% HOAc)-MeOH. The linear gradient elution conditions were as follows: 30% MeOH for 2 min; followed for 30 min from 30 to 100% MeOH; and finally 18 min with 100% MeOH. The total elution time was 50 min, with a flow rate of 3 mL/min^{-1} , and 36 fractions (1 fraction/1 min) were collected. The fractions were dried in vacuo and bioassayed by a dwarf rice (cv. Tanginbozu) microdrop based procedure.²⁵ Fraction numbers 21-22, 22-26, 27-28 and 29-32 were, respectively, combined, and then further chromatographed by HPLC on Nucleosil N(CH₃)₂-4151-N columns (15×1 cm ID), eluted with MeOH containing 0.1% HOAc at a flow rate of 2 mL/min⁻¹, and 2 min fractions were collected, dried and bioassayed, as already described. After purification on ODS and/or Nucleosil N(CH₃)₂ columns, the fractions showing GA-like activity were dissolved in MeOH (20 µL) and methylated with ethereal CH_2N_2 (100 µL) at room temperature. They were then dried and trimethylsilylated in glass tubes with N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA, 20 µL) at 70 °C. The derivatives were analysed using a Hewlett-Packard 5989 mass spectrometer equipped with a HP 5890 GC. The samples (1 µL) were injected into a fused silica cross-linked 5% phenylmethylsilicone capillary column (30 m×0.25 mm ID, 0.25 µm film thickness, WCOT DB-1). The oven temperature program started at 60 °C and after 2 min was increased at $20 \,^{\circ}\text{C}\,\text{min}^{-1}$ to $210 \,^{\circ}\text{C}$, then increased at $2 \,^{\circ}\text{C}\,\text{min}^{-1}$ to 280 °C and finally kept at 280 °C for 20 min. The electron energy was 70 eV and the source temperature was 250 °C.

5. Preparation of synthetic gibberellins

5.1. General directions

Melting points (mp) were recorded on a Reichert hot-stage and are uncorrected. Microanalysis were conducted by the Australian National University Analytical Services Unit, Canberra. Low resolution EI mass (LRMS) spectra (70 eV) and high resolution accurate mass measurements (HRMS) were recorded on a Ficons VG autospec double focussing mass spectrometer. The molecular ion (M^+), if present, significant high mass ions and the more intense low mass ions are reported. Data are presented in the following order: m/z value; relative intensity as a percentage of the base peak. Infrared (IR) spectra (ν_{max}) were recorded on a Perkin–Elmer 1800 Fourier Transform Infrared spectrophotometer as a thin film deposited from a chloroform solution on NaCl disks, unless otherwise stated. ¹H NMR spectra were recorded on a Varian Gemini 300 spectrometer at 300 MHz; ¹³C NMR spectra were recorded at 75.5 MHz. For proton spectra recorded in deuterated chloroform, the residual peak of CHCl₃ was used as the internal reference (7.26 ppm) while the central peak of CDCl₃ (77.0 ppm) was used as the reference for carbon spectra. Data are recorded as follows: chemical shift, numbers of protons, multiplicity and coupling constants (Hz) Assignments were based on chemical shift and homodecoupling experiments. Distortionless enhancement by polarisation transfer (DEPT) and the attached proton test (APT) were used in the assignment of carbon spectra. Two dimensional NMR experiments were recorded on the following instruments: Varian Gemini 300 and Varian Inova 500 spectrometers. The pulse sequences used were homonuclear $({}^{1}H/{}^{1}H)$ correlation spectroscopy (COSY), heteronuclear $({}^{1}\text{H}/{}^{13}\text{C})$ correlation spectroscopy (HETCOR) and ${}^{1}\text{H}-{}^{13}\text{C}$ correlation via long-range couplings (HMQC and HMBC). Flash chromatography was conducted with Merck Kieselgel 60 silica gel as the adsorbent unless indicated otherwise. Ethanol-free ethereal diazomethane was prepared from Diazald® (Nmethyl-N-nitroso-p-toluenesulfonamide).

5.1.1. ent- 3α ,13-Dihydroxy-20-norgibberella-1,9,16-triene-7,19-dioic acid 7-methyl ester (**18**)

To a solution of 16 (30 g, 83.24 mmol) in DMF (250 mL) was added hydrazine monohydrochloride (70 g, 1.02 mmol). The suspension was then heated at 135 °C under a nitrogen atmosphere until it became homogeneous. The temperature was quickly reduced to 120 °C and the solution was stirred at this temperature for an additional 2 h, allowed to cool to room temperature and then cooled in an ice-bath. The mixture was poured into ice-water (600 mL), acidified to pH 3 with 6 M HCl and extracted with EtOAc (3×400 mL). The combined organic extracts were washed with $1 \text{ M HCl} (2 \times 400 \text{ mL})$ then concentrated to dryness in vacuo. The crude product was dissolved in EtOAc (200 mL) and partitioned in a solution of saturated NaHCO₃ and Na₂CO₃ (1:1, 2×150 mL). The combined aq phase was washed with EtOAc $(3 \times 200 \text{ mL})$, then acidified with concentrated HCl to pH 3 and extracted with EtOAc (3×300 mL). The combined organic phases were concentrated to give the desired triene acid 18 (11.83 g, 32.84 mmol, 39%) as an oil. The combined organic layers containing starting material and aromatic products were concentrated in vacuo and subjected to the above same reaction conditions to give an additional amount of 18 (5.074 g, 14.08 mmol, 17%). Spectroscopic data of 18 were fully consistent with those previously reported.¹⁹

5.1.2. ent-3*β*,13-Dihydroxy-20-norgibberella-9,16-diene-

7,19-dioic acid 19-methoxymethyl ester 7-methyl ester (20)

A suspension of trienone **19** (250 mg, 0.62 mmol) and CuCl (316 mg, 3.19 mmol) in MeOH (15 mL) at 0 $^{\circ}$ C was stirred for 2 h at which time sodium borohydride (254.2 mg, 6.2 mmol) was added portionwise. The mixture was stirred for 15 min at this temperature then warmed to room temperature and stirred for an additional 30 min. A black precipitate was removed by filtration, the filtrate was then acidified using 20%

NaH₂PO₄ solution (30 mL), concentrated to remove MeOH and the aqueous phase extracted with EtOAc (3×30 mL). The combined organic extracts were washed with brine (2×50 mL) and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 2:1) yielded the desired diol **20** (225.5 mg, 0.56 mmol, 90%) as a yellowish oil and its 3β-epimer (14 mg, 0.034 mmol, 6%). Spectroscopic data for **20** were consistent with those previously reported.¹⁹

5.1.3. ent-13-Hydroxy-3β-phenoxythionocarbonyloxy-20norgibberella-9,16-diene-7,19-dioic acid 19-methoxymethyl ester 7-methyl ester

A stirred solution of diol 20 (4.6 g, 11.317 mmol) in CH₂Cl₂ (230 mL) and pyridine (2.3 mL, 9.24 mmol), at 0 °C under nitrogen was treated dropwise with phenyl chlorothionocarbonate (5 g, 28.67 mmol), and the mixture stirred at this temperature for 1 h then allowed to warm to room temperature, with stirring overnight. The reaction mixture was worked-up by addition of CH₂Cl₂ (500 mL). The mixture was washed successively with water (500 mL), 0.1 M HCl (500 mL), water (500 mL), saturated aq NaHCO₃ solution (500 mL), water (500 mL) and brine (500 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:1.5) afforded the desired thionocarbonate (6.02 g, 11.09 mmol, 98%) as an oil. IR (Neat) $\nu_{\rm max}$ (cm⁻¹): 3498, 3075, 2938, 2849, 1733, 1661, 1590. ¹H NMR (300 MHz, CDCl₃) δ 1.28 (3H, s, H18), 1.36–2.61 (12H, m), 2.76 (1H, d, J=7.0 Hz, H6), 3.20 (1H, t, J=5.5 Hz, H5), 3.48 (3H, s, -OCH₂OCH₃), 3.72 (3H, s, -CO₂CH₃), 4.95 (1H, s, H17), 5.13 (1H, t, J=2.6 Hz, H'17), 5.21, 5.28 (2×1H, ABd, J=6.1 Hz, $-OCH_2OCH_3$), 5.37 (1H, q, $J_1=10.3$ Hz, $J_2=5.8$ Hz, H3), 7.06-7.43 (5H, m, C₆H₅). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.6 (C11), 21.5 (C18), 22.0 (C2), 25.1 (C1), 39.1 (C14 and C12), 50.7 (C6), 51.9 (C15 and -CO₂CH₃), 52.6 (C4), 55.5 (C8), 56.6 (C5), 57.7 (-OCH₂OCH₃), 79.2 (C13), 88.4 (C3), 90.8 (-OCH₂OCH₃), 105.7 (C17), 121.8 (2×C_{ortho}), 126.5 (C_{para}), 126.9 (C10), 129.5 (2×C_{meta}), 135.5 (C9), 153.2 (Cinso), 154.3 (C16), 171.2 (C7 and CS), 174.3 (C19). MS (EI) m/z 540 ([M⁺-2H], 10%), 509 (8), 496 (32), 481 (35), 465 (10), 449 (54), 417 (26), 388 (82), 357 (100), 339 (32), 311 (78), 297 (68), 283 (58), 267 (86), 251 (38), 239 (84), 221 (46), 211 (36), 195 (36), 179 (34), 169 (34), 157 (50), 142 (38), 129 (34), 115 (26), 94 (48), 77 (42), 65 (34). HRMS (EI) m/z calcd for [M⁺-2H], C₂₉H₃₂O₈S: 540.1818; found: 540.1827.

5.1.4. ent-13-Hydroxy-20-norgibberella-9,16-diene-7,19dioic acid 19-methoxymethyl ester 7-methyl ester (21)

To a solution of thionocarbonate prepared above (3.2 g, 5.9 mmol) in toluene (340 mL) at room temperature under nitrogen were added tributyltin hydride (3.64 mL, 14.24 mmol) and AIBN (1.28 g, 1.94 mmol). The mixture was degassed for 20 min under reduced pressure then filled with nitrogen and heated at 80 °C for 3 h, after which time TLC analysis indicated that the reaction was complete. The reaction mixture was concentrated under reduced pressure, providing a residue,

which was resolved by chromatography on silica gel (EtOAc/ hexanes, 1:3), yielding the desired product 21 (1.933 g, 4.95 mmol, 84%) as a white solid, which was recrystallised from EtOAc/hexanes to afford white crystals of the title compound, mp: 94–95 °C. IR (Neat) ν_{max} (cm⁻¹): 3499, 3074, 2934, 2869, 1732, 1660. ¹H NMR (300 MHz, CDCl₃) δ 1.16 (3H, s, H18), 1.20–2.30 (14H, m), 2.94 (1H, t, J=5.2 Hz, H5), 3.24 (1H, d, *J*=7.02 Hz, H6), 3.43 (3H, s, -OCH₂OCH₃), 3.69 (3H, s, -CO₂CH₃), 4.93 (1H, s, H17), 5.11 (1H, d, J=2.3 Hz, H'17), 5.18, 5.20 (2×1H, ABd, J=5.2 Hz, $-OCH_2OCH_3$). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.5 (C11), 21.9 (C2), 24.6 (C1), 25.0 (C18), 37.9 (C3), 39.2 (C12), 39.5 (C14), 47.4 (C15), 50.3 (C6), 51.5 (-CO₂CH₃), 52.1 (C4), 55.1 (C8), 57.1 (C5), 57.4 (-OCH₂OCH₃), 79.4 (C13), 89.9 (-OCH₂OCH₃), 105.2 (C17), 128.7 (C10), 133.6 (C9), 154.9 (C16), 174.5 (C7), 175.5 (C19). MS (EI) m/z 390 (M⁺, 35%), 372 (13), 358 (16), 345 (66), 330 (51), 313 (90), 300 (70), 285 (100), 267 (66), 241 (91), 223 (44), 197 (23), 184 (28), 171 (26), 157 (44), 143 (36), 129 (42), 115 (31), 91 (38), 69 (22). HRMS (EI) m/z calcd for M⁺, C₂₂H₃₀O₆: 390.2042; found: 390.2048. Anal. Calcd for C₂₂H₃₀O₆: C, 67.67; H, 7.74. Found: C, 67.40; H, 7.55.

5.1.5. ent-13-Acetoxy-20-norgibberella-9,16-diene-7,19dioic acid 19-methoxymethyl ester 7-methyl ester

A stirred solution of alcohol 21 (3.395 g, 8.69 mmol), triethylamine (12 mL, 86.95 mmol) and DMAP (430 mg, 3.48 mmol) in CH₂Cl₂ (100 mL) at 0 °C under nitrogen was treated dropwise with acetic anhydride (17 mL, 86.95 mmol). After being stirred for 1 h, the ice-bath was removed and the solution was left overnight to warm to room temperature, with stirring. The reaction mixture was re-cooled in an ice-bath and quenched by dropwise addition of water (50 mL). After extracting with CH_2Cl_2 (3×100 mL), the combined organic extracts were washed successively with saturated aq NaHCO3 solution (500 mL), water (500 mL) and brine (500 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:6) yielded the desired acetate (3.53 g, 8.15 mmol, 94%) as an oil. IR (Neat) v_{max} (cm⁻¹): 2935, 1738, 1661. ¹H NMR (300 MHz, CDCl₃) δ 1.13 (3H, s, H18), 1.20-2.52 (14H, m), 2.00 (3H, s, CH₃CO₂-), 2.91 (1H, t, J=5.5 Hz, H5), 3.19 (1H, d, J=7.0 Hz, H6), 3.41 (3H, s, -OCH₂OCH₃), 3.66 (3H, s, -CO₂CH₃), 4.96 (1H, br s, H17), 5.00 (1H, br s, H'17), 5.16, 5.22 (2×1H, ABd, J=6.0 Hz, $-OCH_2OCH_3$). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.5 (C11), 22.2 (C2), 22.3 (CH₃CO₂-), 24.8 (C1), 25.4 (C18), 37.1 (C3), 38.2 (C12), 39.5 (C14), 47.7 (C15), 47.9 (C4), 50.6 (C6), 51.9 (-CO₂CH₃), 56.2 (C8), 57.4 (C5), 57.8 (-OCH₂OCH₃), 86.5 (C13), 90.3 (-OCH₂OCH₃), 105.8 (C17), 129.5 (C10), 133.5 (C9), 151.2 (C16), 169.8 (CH₃CO₂-), 174.8 (C7), 175.7 (C19). MS (EI) *m*/*z* 432 (M⁺, 12%), 387 (23), 372 (100), 355 (31), 340 (86), 327 (47), 296 (31), 283 (50), 267 (37), 250 (25), 223 (50), 181 (27), 169 (21), 155 (21), 143 (22), 129 (23), 115 (19), 91 (22). HRMS (EI) *m/z* calcd for M⁺, C₂₄H₃₂O₇: 432.2148; found: 432.2149.

5.1.6. ent-13-Acetoxy-20-norgibberella-9,16-diene-7,19dioic acid 7-methyl ester

To a solution of acetate prepared above (1.94 g, 4.48 mmol) in Et₂O (150 mL) at room temperature under a nitrogen atmosphere was added MgBr₂ (4.23 g, 22.5 mmol), and the suspension stirred for 15 h. The reaction mixture was quenched by addition of saturated NH₄Cl solution (250 mL) and then extracted with EtOAc (3×250 mL). The combined organic layers were dried over MgSO4 and concentrated to furnish the desired 19-oic acid (1.733 g, 4.46 mmol, 99%) as a colourless oil. IR (Neat) ν_{max} (cm⁻¹): 2935, 2870, 1732, 1663. ¹H NMR (300 MHz, CDCl₃) δ 1.17 (3H, s, H18), 1.23-2.56 (14H, m), 2.04 (3H, s, CH₃CO₂-), 2.93 (1H, t, J=5.6 Hz, H5), 3.23 (1H, d, J=6.9 Hz, H6), 3.70 (3H, s, -CO₂CH₃), 4.97 (1H, br s, H17), 5.01 (1H, t, J=1.8 Hz, H'17), 9.70 (1H, br s, -CO₂H). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.3 (C11), 22.0 (C2), 22.1 (CH₃CO₂-), 24.6 (C1), 25.3 (C18), 36.9 (C3), 37.8 (C12), 39.2 (C14), 47.1 (C15), 47.9 (C4), 50.3 (C6), 51.7 (-CO₂CH₃), 56.0 (C8), 57.2 (C5), 86.4 (C13), 105.6 (C17), 129.4 (C10), 133.5 (C9), 150.9 (C16), 169.8 (CH₃CO₂-), 175.5 (C7), 179.1 (C19). MS (EI) m/z $390 ([M^++2H], 10\%), 388 (M^+, 7\%), 346 (42), 328 (100),$ 296 (64), 282 (24), 268 (29), 223 (45), 181 (22), 155 (21), 143 (24), 129 (26), 115 (22). HRMS (EI) m/z calcd for M⁺, C₂₂H₂₈O₆: 388.1886; found: 388.1884.

5.1.7. Methyl ent-19-diazomethyl-13-acetoxy-19-oxo-20norgibberella-9,16-dien-7-oate (22)

The previously prepared acid (875 mg, 2.25 mmol) in dry benzene (54 mL) and pyridine (923 µL, 13.99 mmol) were cannulated into a stirred solution of oxalyl chloride (1.68 mL, 18.66 mmol) in dry benzene (144 mL) at room temperature, under nitrogen. After stirring for 15 min, DMF was added $(180 \ \mu L)$ and the mixture was stirred for 30 min, more oxalyl chloride (0.84 mL, 9.39 mmol) was added and then stirred overnight. The reaction mixture was filtered through CeliteTM in a sintered funnel under nitrogen, the solid residue was washed thoroughly with dry benzene (5×50 mL), the combined organic layers were concentrated and the excess of oxalyl chloride and pyridine was removed by co-distillation with dry benzene (4×10 mL). The residue was then dissolved in dry benzene (50 mL) and slowly cannulated into a stirred solution of diazomethane in dry Et₂O (120 mL) (prepared from 10.7 g of Diazald[™]) at 0 °C, under nitrogen. The reaction mixture was stirred overnight then more CH_2N_2 in dry Et_2O (120 mL) was added to the reaction mixture, which was stirred for an additional 18 h, after which time TLC analysis show that the reaction was complete. The excess of CH_2N_2 was blown off by a stream of nitrogen and the residue was purified by chromatography on silica gel (EtOAc/hexanes, 1:4) to give the desired diazoketone 22 (893 mg, 2.17 mmol, 96% from acid) as an oil. IR (Neat) ν_{max} (cm⁻¹): 3100, 2932, 2866, 2103, 1773, 1735, 1661, 1637. ¹H NMR (300 MHz, CDCl₃) δ 1.07 (3H, s, H18), 0.84– 2.65 (14H, m), 2.03 (3H, s, CH₃CO₂-), 2.93 (1H, t, J=5.6 Hz, H5), 3.20 (1H, d, J=7.6 Hz, H6), 3.68 (3H, s, -CO₂CH₃), 4.96 (1H, br s, H17), 5.00 (1H, t, J=2.9 Hz, H'17), 5.40 (1H, s, -COCH=N₂). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.2 (C11), 21.2 (C2), 22.0 (CH₃CO₂-), 24.6 (C1), 25.5 (C18), 37.0 (C3), 38.3 (C12), 39.3 (C14), 47.4 (C15), 49.8 (C4), 50.2 (C6), 51.6 ($-CO_2CH_3$), 55.9 (C8), 57.3 (C5), 60.1 ($-COCH=N_2$), 86.2 (C13), 105.4 (C17), 129.7 (C10), 133.0 (C9), 150.9 (C16), 169.5 (CH₃CO₂-), 175.4 (C7), 198.4 (C19). MS (EI) *m/z* 413 ([M⁺+H], 5%), 384 (33), 346 (53), 324 (100), 296 (47), 268 (34), 237 (100), 223 (40), 195 (35), 181 (59), 167 (24), 141 (32), 115 (28), 95 (51), 59 (22). HRMS (EI) *m/z* calcd for [M⁺ $-N_2$], C₂₃H₂₈O₅: 384.1937; found: 384.1945.

5.1.8. Methyl ent-13-acetoxy-19-oxo-19,20-cyclogibberella-9(11),16-dien-7-oate (23)

A stirred solution of diazoketone 22 (1.30 g, 3.15 mmol) in dry CH₂Cl₂ (150 mL) at 0 °C under nitrogen was treated dropwise with boron trifluoride etherate (816 µL, 6.30 mmol). The reaction mixture was stirred for 2.5 h, after which time TLC analysis indicated that the reaction was complete. The mixture was diluted with CH₂Cl₂ (250 mL), then washed successively with saturated aq NaHCO₃ solution (250 mL) and brine (250 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:4) gave ketone 23 (1.159 g, 0.28 mmol, 96%) as a white solid, which was recrystallised from EtOAc/hexanes to afford white crystals of the title compound, mp 144–145 °C. IR (Neat) ν_{max} (cm⁻¹): 2932, 2254, 2103, 1732, 1663. ¹H NMR (300 MHz, CDCl₃) δ 0.93 (3H, s, H18), 1.23–2.44 (13H, m), 2.06 (3H, s, CH_3CO_2 -), 2.46, 2.53 (2×1H, ABd, J=10.8 Hz, -COCH₂-), 3.02 (1H, dd, J=16.2, 2.8 Hz, H12b), 3.70 (3H, s, -CO₂CH₃), 5.00 (1H, br s, H17), 5.15 (1H, br s, H'17), 5.34 (1H, t, J=3.0 Hz, H11). ¹³C NMR (75.5 MHz, CDCl₃) δ 16.8 (C18), 19.9 (C2), 22.0 (CH₃CO₂-), 35.0 (C1), 38.7 (C3), 40.9 (C12), 42.3 (C14), 43.5 (C10), 46.3 (C15), 49.0 (C20), 49.4 (C6), 51.9 (-CO₂CH₃), 52.6 (C4), 53.4 (C8), 58.8 (C5), 85.3 (C13), 107.6 (C17), 115.3 (C11), 152.0 (C9), 154.3 (C16), 169.8 (CH₃CO₂-), 172.5 (C7), 219.8 (C19). MS (EI) *m/z* 384 (M⁺, 22%), 353 (18), 342 (100), 324 (84), 292 (37), 281 (42), 264 (52), 237 (29), 223 (56), 181 (32), 155 (26), 129 (27), 91 (26). HRMS (EI) m/z calcd for M⁺, C₂₃H₂₈O₅: 384.1937; found: 384.1937. Anal. Calcd for C₂₃H₂₈O₅: C, 71.85; H, 7.34. Found: C, 71.55; H, 7.34.

5.1.9. Methyl ent-13-acetoxy-19-hydroxy-19,20cyclogibberella-9(11),16-dien-7-oate

A stirred solution of ketone **23** (1.16 mg, 3.01 mmol) in MeOH (170 mL) at 0 °C was treated portionwise with NaBH₄ (1.173 g, 30.15 mmol). The mixture was stirred for 1 h at this temperature, warmed to room temperature and then neutralised by 1 M HCl solution (20 mL). After removal of MeOH, the aqueous phase was extracted with EtOAc (3×200 mL). The combined organic extracts were washed with water (250 mL) and brine (2×250 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:4) yielded the desired 19-ol (1.1 g, 2.85 mmol, 94%) as a yellowish oil. IR (Neat) ν_{max} (cm⁻¹): 3524, 2930, 2254, 1735, 1663. ¹H NMR (300 MHz, CDCl₃) δ 1.25 (3H, s, H18), 0.83–2.47 (15H, m), 2.06 (3H, s, CH₃CO₂–), 2.65 (1H, d, *J*=12.3 Hz, H6), 3.00 (1H, dd, *J*=16.0, 2.7 Hz, H12b), 3.70

(3H, s, $-CO_2CH_3$), 4.07 (1H, dd, J=10.7, 4.6 Hz, H19), 4.96 (1H, br s, H17), 5.13 (1H, br s, H'17), 5.20 (1H, t, J=3.2 Hz, H11). ¹³C NMR (75.5 MHz, CDCl₃) δ 21.9 (CH₃CO₂-), 22.1 (C18), 29.6 (C2), 35.2 (C1), 36.6 (C3), 40.9 (C12), 42.0 (C14), 43.7 (C10), 45.9 (C15), 46.7 (C20), 48.6 (C6), 50.1 (C4), 51.6 ($-CO_2CH_3$), 53.2 (C8), 60.9 (C5), 78.1 (C19), 85.6 (C13), 107.1 (C17), 113.2 (C11), 152.3 (C9), 156.2 (C16), 169.7 (CH₃CO₂-), 173.0 (C7). MS (EI) *m/z* 386 (M⁺, 20%), 344 (85), 326 (88), 266 (37), 223 (34), 141 (21), 84 (100). HRMS (EI) *m/z* calcd for M⁺, C₂₃H₃₀O₅: 386.2093; found: 386.2090.

5.1.10. Methyl ent-13-acetoxy-19-methoxymethoxy-19,20cyclogibberella-9(11),16-dien-7-oate (24)

To a stirred solution of alcohol (215 mg, 0.56 mmol) prepared above, Hünig's base (0.5 mL, 2.78 mmol) and DMAP (20.4 mg, 0.167 mmol) in dry CH₂Cl₂ (20 mL) at 0 °C under nitrogen was added dropwise chloromethyl methyl ether (205 μ L, 2.78 mmol). After stirring for 1 h at this temperature, the reaction vessel was raised to room temperature and stirred for an additional 12 h. The reaction mixture was then diluted with CH₂Cl₂ (100 mL), washed with 2 N HCl solution (75 mL) followed by water (50 mL) and brine (50 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (DCM/EtOAc, 2:1) yielded the desired MOM ether 24 (236 mg, 0.55 mmol, 98%) as a colourless oil. IR (Neat) $\nu_{\rm max}$ (cm⁻¹): 2926, 2852, 1738, 1663. ¹H NMR (300 MHz, CDCl₃) δ 0.90 (3H, s, H18), 0.81–2.51 (13H, m), 2.04 (3H, s, CH₃CO₂-), 2.13 (1H, d, J=12.0 Hz, H5), 2.64 (1H, d, J=12.1 Hz, H6), 2.96 (1H, dd, J=15.9, 2.6 Hz, H12b), 3.33 (3H, s, -OCH₂OCH₃), 3.67 (3H, s, -CO₂CH₃), 3.86 (1H, m, H19), 4.55, 4.61 (2×1H, ABd, J=6.6 Hz, $-OCH_2OCH_3$), 4.94 (1H, br s, H17), 5.10 (1H, br s, H'17), 5.17 (1H, t, J=3.4 Hz, H11). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.1 (C2), 22.0 (CH₃CO₂- and C18), 35.7 (C1), 36.6 (C3), 41.0 (C12), 42.0 (C14), 43.6 (C10), 44.6 (C15), 45.8 (C20), 48.6 (C6), 50.3 (C4), 51.6 (-CO₂CH₃), 53.2 (C8), 55.3 (C5), 60.6 (-OCH₂OCH₃), 83.0 (C19), 85.6 (C13), 96.5 (-OCH₂OCH₃), 107.1 (C17), 113.2 (C11), 152.6 (C9), 156.6 (C16), 169.8 (CH₃CO₂-), 173.2 (C7). MS (EI) *m*/*z* 430 (M⁺, 28%), 388 (93), 370 (100), 281 (22), 265 (26), 223 (22), 84 (97). HRMS (EI) m/z calcd for M⁺, C₂₅H₃₄O₆: 430.2355; found: 430.2354.

5.1.11. Methyl ent-13-acetoxy-11α,17-dihydroxy-19-methoxymethoxy-19,20-cyclogibberell-an-7-oate (**26**) and methyl ent-13-acetoxy-17-hydroxy-19-methoxymethoxy-16-epi-19,20-cyclogibberell-9(11)-en-7-oate (**25**)

To a stirred solution of diene **24** (492 mg, 1.14 mmol) in dry THF (80 mL) at 0 °C under a nitrogen atmosphere was added dropwise a 2 N solution of diborane—dimethyl sulfide complex in THF (0.8 mL, 1.6 mmol). After 1 h, the reaction mixture was left to warm to room temperature and stirring continued for an additional 8 h. Analysis of the reaction mixture by TLC showed the absence of starting material. The reaction mixture was quenched with EtOH (16 mL), stirred for 10 min, 2 N NaOAc (16 mL) added, the mixture re-cooled to 0 °C and then 30% H_2O_2 (18 mL) added dropwise. After 30 min, the reaction mixture was again warmed to room temperature and then stirred overnight. The water (160 mL) was added to the mixture, stirred for 15 min and then solid NaCl added to form a saturated solution that was extracted with a solution of 10% 2-butanol/EtOAc (3×200 mL). The combined organic layers were washed with water (200 mL) and brine (200 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 2:1) yielded the by-product **25** (132.9 mg, 0.296 mmol, 26%) as a colourless oil and the desired diol **26** (344.6 mg, 0.74 mmol, 65%) as a colourless oil.

Diol **26**: IR (Neat) ν_{max} (cm⁻¹): 3442, 2927, 1733. ¹H NMR (300 MHz, CDCl₃) δ 0.86 (3H, s, H18), 0.82–2.51 (19H, m), 2.02 (3H, s, CH₃CO₂-), 2.55 (1H, d, J=12.3 Hz, H6), 3.36 (3H, s, -OCH₂OCH₃), 3.68 (4H, s, -CO₂CH₃ and H17), 3.86 (2H, m, H'17 and H19), 4.12 (1H, ddd, J=9.9, 9.3, 8.7 Hz, H11), 4.58, 4.60 (2×1H, ABd, J=6.6 Hz, $-OCH_2OCH_3$). ¹³C NMR (75.5 MHz, CDCl₃) δ 22.1 (CH₃CO₂-), 22.2 (C18), 29.7 (C2), 35.4 (C1), 36.2 (C3), 38.2 (C12), 39.2 (C14), 40.2 (C10), 43.9 (C15), 45.3 (C20), 48.3 (C6), 49.1 (C4), 51.5 (-CO₂CH₃), 51.6 (C16), 52.2 (C8), 55.3 (C5), 61.3 (-OCH₂OCH₃), 62.9 (C17), 64.3 (C9), 67.7 (C11), 83.0 (C19), 85.1 (C13), 96.5 (-OCH₂OCH₃), 170.9 (CH₃CO₂-), 173.9 (C7). MS (EI) m/z 466 (M⁺, 14%), 435 (17), 404 (30), 388 (98), 361 (80), 344 (61), 326 (100), 312 (38), 238 (41), 267 (46), 241 (33), 225 (27), 211 (32), 183 (27), 159 (30), 145 (49), 131 (41), 107 (54), 91 (56). HRMS (EI) m/z calcd for [M⁺–CH₃O], C₂₄H₃₅O₇: 435.2382; found: 435.2381.

17-ol **25**: ¹H NMR (300 MHz, CDCl₃) δ 0.91 (3H, s, H18), 0.82–2.37 (17H, m), 2.04 (3H, s, CH₃CO₂–), 2.63 (1H, d, *J*=12.2 Hz, H6), 3.35 (3H, s, $-\text{OCH}_2\text{OCH}_3$), 3.58 (2H, br s, H17 and H'17), 3.70 (3H, s, $-\text{CO}_2\text{CH}_3$), 3.87 (1H, m, H19), 4.56, 4.63 (2×1H, ABd, *J*=6.6 Hz, $-\text{OCH}_2\text{OCH}_3$), 5.21 (1H, t, *J*=3.7 Hz, H11). MS (EI) *m/z* 448 (M⁺, 7%), 406 (100), 388 (86), 346 (91), 287 (81), 257 (39), 199 (41), 171 (33), 157 (56), 129 (25), 91 (23). HRMS (EI) *m/z* calcd for [M⁺-CH₃OH], C₂₄H₃₂O₆: 406.2355; found: 406.2363.

5.1.12. Methyl ent-13-acetoxy-11α-hydroxy-19-methoxymethoxy-17-(2-nitrophenyl selenenyl)-19,20-cyclogibberellan-7-oate

A solution of diol 26 (44.4 mg, 0.095 mmol) in THF (2 mL) and 2-nitrophenyl selenocyanate (58 mg, 0.28 mmol) at 0 °C under nitrogen was treated dropwise with a solution of tri-*n*-butylphosphine (50 µL, 0.25 mmol). After 40 min, the mixture was allowed to warm to room temperature and stirred overnight. Analysis by TLC showed the absence of starting material. The mixture was concentrated under reduced pressure, dissolved in EtOAc (50 mL), and then filtered to remove tri-n-butylphosphine oxide. The oxide residue was rinsed with EtOAc $(3 \times 20 \text{ mL})$, then the combined organic layers were washed successively with saturated aq NaHCO₃ solution (20 mL), water (20 mL) and brine (20 mL), and dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:2) afforded the title compound (56 mg, 0.09 mmol, 90%) as a yellowish oil. IR (Neat) v_{max} (cm⁻¹): 3474, 3091, 2947, 1732. ¹H NMR (300 MHz,

CDCl₃) δ 0.86 (3H, s, H18), 1.21–2.52 (18H, m), 2.06 (3H, s, CH₃CO₂–), 2.61 (1H, d, J=12.3 Hz, H6), 2.84 (1H, t, J=10.5 Hz, H12b), 3.27 (1H, dd, J=10.5, 4.8 Hz, H17), 3.36 (3H, s, $-\text{OCH}_2\text{OCH}_3$), 3.69 (3H, s, $-\text{CO}_2\text{CH}_3$), 3.90 (1H, dd, J=10.2, 3.9 Hz, H19), 4.22 (1H, ddd, J=12.0, 9.9, 7.8 Hz, H11), 4.58, 4.66 (2×1H, ABd, J=6.7 Hz, $-\text{OCH}_2\text{OCH}_3$), 7.26 (1H, m, H4'), 7.53 (2H, m, H5' and H6'), 8.30 (1H, d, J=8.2 Hz, H3').

5.1.13. Methyl ent-11α,13-diacetoxy-19-methoxymethoxy-17-(2-nitrophenylselenenyl)-19,20-cyclogibberellan-7-oate (27)

A stirred solution of selenenyl ether prepared above (42 mg, 0.0645 mmol) and pyridine (45 µL, 0.68 mmol) in CH₂Cl₂ (10 mL) at 0 °C under nitrogen was treated dropwise with acetyl chloride (35 µL, 0.45 mmol). After 40 min, the mixture was allowed to warm to room temperature and stirred for an additional 2 h. Analysis by TLC showed the absence of starting material. The reaction mixture was guenched by dropwise addition of water (20 mL). After extracting with EtOAc $(3 \times 20 \text{ mL})$, the combined organic extracts were washed successively with saturated aq NH₄Cl solution (20 mL), water (20 mL) and brine (20 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/ hexanes, 1:2) furnished the desired diacetate 27 (31.7 mg, 0.05 mmol, 71%) as an oil. IR (Neat) $\nu_{\rm max}$ (cm⁻¹): 2950, 2852, 1738. ¹H NMR (300 MHz, CDCl₃) δ 0.86 (3H, s, H18), 1.19–2.66 (16H, m), 2.02 (3H, s, 13-CH₃CO₂-), 2.05 (3H, s, 11-CH₃CO₂-), 2.62 (1H, d, J=12.0 Hz, H6), 2.63 (1H, m, H17), 2.79 (1H, t, J=11.1 Hz, H12b), 3.35 (3H, s, $-OCH_2OCH_3$), 3.46 (1H, dd, J=10.8, 4.8 Hz, H'17), 3.69 $(3H, s, -CO_2CH_3)$, 3.92 (1H, dd, J=10.0, 3.8 Hz, H19), 4.56, 4.65 (2×1H, ABd, J=6.7 Hz, $-OCH_2OCH_3$), 5.21 (1H, ddd, J=10.8, 9.0, 8.7 Hz, H11), 7.32 (1H, m, H4'),7.48-7.57 (2H, m, H5' and H6'), 8.30 (1H, d, J=8.5 Hz, H3').

¹³C NMR (75.5 MHz, CDCl₃) δ 19.9 (C2), 21.3 (11-CH₃CO₂--), 21.8 (13-CH₃CO₂--), 22.1 (C18), 28.6 (C17), 34.7 (C1), 35.3 (C3), 36.4 (C12), 39.6 (C14), 43.2 (C10), 43.8 (C15), 44.8 (C6), 45.4 (C20), 49.4 (C4), 51.5 (-CO₂CH₃), 51.9 (C16), 52.0 (C8), 55.3 (C5), 61.3 (-OCH₂OCH₃), 61.5 (C9), 69.6 (C11), 83.0 (C19), 84.9 (C13), 92.6 (-OCH₂OCH₃), 125.4 (C3'), 126.5 (C4' and C6'), 129.0 (C5'), 133.3 (C1'), 133.5 (C2'), 169.9 (11-CH₃CO₂--), 170.1 (13-CH₃CO₂--), 173.5 (C7). MS (EI) *m*/*z* 693 (M⁺, 9%), 663 (9), 491 (100), 431 (19), 371 (71), 327 (82), 309 (38), 295 (34), 267 (60), 223 (30), 186 (22), 91 (20). HRMS (EI) *m*/*z* calcd for M⁺, C₃₃H₄₃O₁₀NSe: 693.2052; found: 693.2064.

5.1.14. Methyl ent-11 α ,13-diacetoxy-19-methoxymethoxy-19,20-cyclogibberell-16-en-7-oate (**28**) and methyl ent-11 α ,13-diacetoxy-19-hydroxy-19,20-cyclogibberell-16-en-7-oate

A solution of selenenyl ether **27** (31.7 mg, 0.046 mmol) in THF (4 mL) at 0 $^{\circ}$ C under nitrogen was treated dropwise with a solution of 30% H₂O₂ (2 mL). After 30 min, the mixture was allowed to warm to room temperature and stirred overnight.

Analysis by TLC showed the absence of starting material. The mixture was quenched by dropwise addition of water (30 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were washed successively with saturated aq NaHCO₃ solution (30 mL), water (30 mL) and brine (30 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:3) afforded the desired product **28** (18.6 mg, 0.038 mmol, 83%) as an oil and the corresponding 19-ol (3.4 mg, 0.008 mmol, 16%) as an oil.

Diacetate **28**: IR (Neat) ν_{max} (cm⁻¹): 3078, 2949, 2851, 2822, 1738, 1663. ¹H NMR (300 MHz, CDCl₃) δ 0.86 (3H, s, H18), 1.14-2.23 (15H, m), 1.96 (3H, s, 13-CH₃CO₂-), 1.99 (3H, s, 11-CH₃CO₂-), 2.64 (1H, d, J=12.0 Hz, H6), 2.93 (1H, dd, J=12.9, 9.0 Hz, H12b), 3.33 (3H, s, -OCH₂OCH₃), 3.66 (3H, s, -CO₂CH₃), 3.92 (1H, dd, J=10.2, 3.9 Hz, H19), 4.54, 4.63 (2×1H, ABd, J=6.7 Hz, -OCH₂OCH₃), 4.98 (1H, br s, H17), 5.12 (1H, ddd, J=10.8, 9.0, 8.7 Hz, H11 overlapped), 5.15 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.0 (C2), 21.2 (11-CH₃CO₂-), 22.0 (13-CH₃CO₂-), 22.2 (C18), 35.4 (C1), 36.7 (C3), 39.7 (C12), 41.2 (C14), 43.9 (C10), 44.1 (C15), 45.4 (C20), 48.8 (C4), 50.3 (C6), 51.7 (-CO₂CH₃), 51.8 (C8), 55.3 (C5), 58.4 (-OCH₂OCH₃), 61.5 (C9), 69.7 (C11), 82.2 (C19), 82.9 (C13), 96.1 (-OCH₂OCH₃), 108.0 (C17), 153.4 (C16), 169.5 (11-CH₃CO₂-), 169.7 (13-CH₃CO₂-), 173.4 (C7). MS (EI) m/z 490 (M⁺, 7%), 459 (17), 430 (95), 388 (100), 370 (88), 343 (38), 326 (74), 308 (53), 283 (47), 267 (43), 249 (34), 223 (43), 181 (24), 105 (27), 91 (31). HRMS (EI) m/z calcd for M⁺, C₂₇H₃₈O₈: 490.2567; found: 490.2567.

19-ol: IR (Neat) ν_{max} (cm⁻¹): 3523, 2928, 2851, 2853, 1738, 1663. ¹H NMR (300 MHz, CDCl₃) δ 0.88 (3H, s, H18), 1.20-2.28 (16H, m), 1.98 (3H, s, 13-CH₃CO₂-), 2.01 (3H, s, 11-CH₃CO₂-), 2.66 (1H, d, J=12.1 Hz, H6), 2.95 (1H, dd, J=12.8, 9.1 Hz, H12b), 3.69 (3H, s, $-CO_2CH_3$), 4.13 (1H, dd, J=10.9, 4.1 Hz, H19), 5.01 (1H, br s, H17), 5.16 (1H, ddd, J=11.1, 8.7, 8.4 Hz, H11 overlapped), 5.18 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.2 (C2), 21.3 (11-CH₃CO₂-), 22.0 (13-CH₃CO₂- and C18), 34.9 (C1), 39.2 (C3), 39.7 (C12), 41.2 (C14), 43.9 (C10), 44.1 (C15), 45.6 (C20), 48.9 (C4), 50.3 (C6), 51.7 (C8), 51.8 (-CO₂CH₃), 58.3 (C5), 61.9 (C9), 69.7 (C11), 78.1 (C19), 83.0 (C13), 108.2 (C17), 153.4 (C16), 169.6 (11-CH₃CO₂-), 169.8 (13-CH₃CO₂), 173.4 (C7). MS (EI) *m/z* 445 $([M^+-H], 4\%), 386 (27), 344 (100), 326 (67), 285 (34), 267$ (25), 241 (18), 223 (31), 167 (39), 105 (27), 149 (93), 71 (33). HRMS (EI) m/z calcd for $[M^+-OCH_3]$, $C_{24}H_{31}O_6$: 415.2120; found: 415.2117.

A stirred solution of **19-ol** (257.5 mg, 0.574 mmol) and pyridine (385 μ L, 5.74 mmol) in CH₂Cl₂ (15 mL) at 0 °C under nitrogen was treated dropwise with acetyl chloride (360 μ L, 4.59 mmol). After 30 min, the mixture was allowed to warm to room temperature and stirred for an additional 8 h. Analysis by TLC showed the absence of starting material. The reaction mixture was quenched by dropwise addition of water (100 mL). After extracting with EtOAc (3×75 mL), the combined organic extracts were washed successively with saturated aq NaHCO₃ solution (100 mL), water (100 mL) and brine (100 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:4) gave diacetate **28** (272 mg, 0.55 mmol, 97%) as a yellowish oil. Spectroscopic data were identical with those obtained previously.

5.1.15. *Methyl ent-11α,13-diacetoxy-19-oxo-19,20-cyclogibberell-16-en-7-oate* (**29**)

A solution of MOM ether 28 (792.2 mg, 1.4864 mmol) in propan-2-ol (40 mL), at room temperature under nitrogen, was treated with carbon tetrabromide (592 mg, 1.784 mmol), and then stirred at 80 °C for 5 h. The reaction mixture was concentrated in vacuo to remove the propan-2-ol and the residue was purified by chromatography on silica gel (EtOAc/CH₂Cl₂, $1:9 \rightarrow 1:6$) afforded the desired 19-ol (651 mg, 1.46 mmol, 98%) as an oil. To a solution of this product (93.2 mg, 0.21 mmol) in CH₂Cl₂ (6 mL) was added Dess-Martin periodinane (119 mg, 0.2713 mmol). The suspension was stirred for 2.5 h, at room temperature. The mixture was diluted with Et₂O (30 mL) and then poured into a solution (50 mL) of saturated aq NaHCO₃ containing $Na_2S_2O_3$ (5 g). The mixture was stirred for 30 min, at which point Et₂O (70 mL) was added and the layers were separated. The aqueous phase was extracted with Et_2O (2×50 mL). The combined organic extracts were washed with saturated aq NaHCO₃ solution (50 mL), H₂O (50 mL), followed by brine (50 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:4) yielded the desired 19-one (90 g, 0.2025 mmol, 97%) as a white solid, which was recrystallised from EtOAc/hexanes to afford white crystals: mp 174-175 °C. IR (Neat) ν_{max} (cm⁻¹): 2933, 1731, 1663. ¹H NMR (300 MHz, CDCl₃) δ 0.88 (3H, s, H18), 1.41-2.47 (16H, m), 1.99 (3H, s, 13-CH₃CO₂-), 2.00 (3H, s, 11-CH₃CO₂-), 2.95 (1H, dd, J=12.8, 8.9 Hz, H12b), 3.68 (3H, s, -CO₂CH₃), 5.03 (1H, br s, H17), 5.05 (1H, ddd, J=11.1, 8.7, 8.1 Hz, H11), 5.19 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 17.0 (11-CH₃CO₂-), 19.8 (C2), 21.1 (13-CH₃CO₂-), 21.9 (C18), 37.7 (C1), 37.9 (C3), 40.6 (C12), 43.3 (C14), 43.7 (C10), 44.0 (C15), 48.5 (C20), 48.6 (C4), 51.4 (C6), 52.0 (-CO₂CH₃), 53.4 (C8), 57.6 (C5), 59.4 (C9), 65.9 (C11), 82.7 (C13), 108.5 (C17), 153.0 (C16), 169.7 (11-CH₃CO₂-), 169.8 (13- CH_3CO_2), 172.8 (C7), 219.3 (C19). MS (EI) m/z 444 (M⁺, 3%), 384 (58), 342 (100), 324 (69), 283 (49), 255 (27), 239 (25), 211 (28), 105 (18), 91 (26). HRMS (EI) m/z calcd for M⁺, C₂₅H₃₂O₇: 444.2148; found: 444.2147. Anal. Calcd for C₂₃H₃₂O₇: C, 67.55; H, 7.26. Found: C, 66.96; H, 7.62.

5.1.16. Methyl ent-11a,13-dihydroxy-19-oxo-19,20-cyclogibberell-16-en-7-oate

A solution of diacetoxy ketone prepared above (73.2 mg, 0.16 mmol) in MeOH (6 mL) and 0.5 M K₂CO₃ (3 mL) at room temperature was stirred overnight. The mixture was concentrated to remove MeOH, the residue added to saturated aq NH₄Cl solution (20 mL) and H₂O (10 mL), and the mixture extracted with 20% 2-butanol/EtOAc (3×30 mL). The combined organic extracts were washed with brine (30 mL) and

then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:2) gave the desired diol (58.4 mg, 0.16 mmol, 98%) as a glassy white solid. IR (Neat) ν_{max} (cm⁻¹): 3436, 2932, 1732, 1661. ¹H NMR (300 MHz, CDCl₃) δ 0.89 (3H, s, H18), 1.44-2.42 (18H, m), 2.53 (1H, dd, J=12.9, 8.4 Hz, H12b), 3.68 (3H, s, $-CO_2CH_3$), 3.94 (1H, ddd, J=10.5, 9.3, 9.0 Hz, H11), 4.96 (1H, br s, H17), 5.28 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) § 17.2 (C18), 20.0 (C2), 38.0 (C1), 38.2 (C3), 43.1 (C12), 44.5 (C14), 44.9 (C10), 48.0 (C15), 48.7 (C20), 49.3 (C4), 51.9 (C6), 52.0 (-CO₂CH₃), 53.6 (C8), 59.6 (C5), 61.1 (C9), 68.1 (C11), 77.6 (C13), 107.3 (C17), 157.1 (C16), 173.0 (C7), 220.1 (C19). MS (EI) *m/z* 360 (M⁺, 37%), 342 (12), 328 (100), 300 (47), 257 (17), 180 (22), 91 (15). HRMS (EI) m/z calcd for M⁺, C₂₁H₂₈O₅: 360.1937; found: 360.1935.

5.1.17. Methyl ent-11α,13-bis(methoxymethoxy)-19-oxo-19,20-cyclogibberell-16-en-7-oate (**29**)

To a stirred solution of 19-one prepared above (100 mg, 0.28 mmol) in dry CH₂Cl₂ (50 mL) under nitrogen were added Hünig's base (586 µL, 3.33 mmol) and DMAP (20 mg, 0.162 mmol) and then cooled to 0 °C. The mixture was then treated dropwise with chloromethyl methyl ether (218 µL, 2.78 mmol). After 30 min, the reaction mixture was warmed to room temperature and stirred for 24 h. Analysis by TLC revealed that only 40% of the starting material had been converted to the desired product. The mixture was cooled to 0 °C then Hünig's base (600 mL, 0.1938 mmol) and chloromethyl methyl ether (200 µL, 2.27 mmol) were added dropwise. After 30 min, the reaction mixture was warmed to room temperature and stirred for an additional 3 days. The reaction mixture was diluted with CH₂Cl₂ (400 mL), washed with 1 M HCl (250 mL), water (250 mL), saturated aq NaHCO₃ solution (250 mL), followed by brine (250 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, $1:3 \rightarrow 1:2$) afforded the desired bis-MOM ether 29 (111.5 mg, 0.25 mmol, 90%) as a yellowish oil. IR (Neat) ν_{max} (cm⁻¹): 2931, 1736, 1661. ¹H NMR (300 MHz, CDCl₃) δ 0.89 (3H, s, H18), 1.02-2.47 (16H, m), 2.72 (1H, dd, J=12.9, 8.7 Hz, H12b), 3.35 (3H, s, 13-OCH₂OCH₃), 3.36 (3H, s, 11-OCH₂OCH₃), 3.68 (3H, s, -CO₂CH₃), 3.81 (1H, ddd, J=10.8, 9.0, 8.7 Hz, H11), 4.50, 4.53 (2×1H, ABd, J=2.4 Hz, 13-OCH₂OCH₃), 4.65, 4.72 $(2 \times 1H, ABd, J=6.9 Hz, 11-OCH_2OCH_3)$, 5.03 (1H, br s, H17), 5.17 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 17.2 (C18), 20.1 (C2), 38.1 (C1 and C3), 41.0 (C12), 43.5 (C14), 45.2 (C10), 46.3 (C15), 47.8 (C20), 48.7 (C4), 52.0 (C6), 53.6 (C8), 55.5 (-CO₂CH₃), 56.1 (C5), 59.2 (11-OCH₂OCH₃ and 13-OCH₂OCH₃), 59.8 (C9), 73.1 (C11), 82.6 (C13), 91.9 (13-OCH₂OCH₃), 95.3 (11-OCH₂OCH₃), 108.4 (C17), 153.1 (C16), 173.0 (C7), 219.9 (C19). MS (EI) m/z 448 (M⁺, 5%), 417 (26), 403 (88), 386 (100), 371 (56), 356 (27), 342 (97), 327 (30), 311 (38), 283 (56), 255 (20), 239 (28), 225 (21), 211 (24), 108 (68), 91 (36). HRMS (EI) m/z calcd for M⁺, C₂₅H₃₆O₇: 448.2461; found: 448.2464.

Anal. Calcd for C₂₁H₃₆O₇: C, 66.94; H, 8.09. Found: C, 67.00; H, 7.92.

5.1.18. Dimethyl ent-11 α ,13-bis(methoxymethoxy)-20-oxogibberell-16-ene-7,19-dioate (**30**)

A stirred solution of ketone 29 (120 mg, 0.27 mmol) in dry DMF (11 mL) was degassed for 20 min before adding THF (15 mL) and cooled to 0 °C under an atmosphere of nitrogen. To the reaction mixture an excess of dry (oil free) potassium hydride (washed with 3×40 mL hexanes) (approximately 120 mg, 0.3 mmol) was added and the suspension stirred at this temperature for 2 h. The reaction flask was then thoroughly flushed with nitrogen before a steady stream of dry oxygen gas was passed through the solution. After 40 min, TLC analysis indicated that the reaction was complete and the reaction flask was again thoroughly flushed with nitrogen before carefully quenching with methanol (3 mL). The mixture was diluted with a solution of 20% 2-butanol/EtOAc (120 mL), neutralised with a solution of saturated NaCl (75 mL) and saturated NaH₂PO₄ (125 mL), and then extracted with 20% 2-butanol/EtOAc (2×80 mL). The combined organic extracts were washed with brine (100 mL) and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/ hexanes, $1:3 \rightarrow 1:1$) yielded the desired aldehyde acid (isolated as a cyclic tautomer) (125 mg, 0.26 mmol, 97%) as a colourless oil. IR (Neat) ν_{max} (cm⁻¹): 3340, 2926, 2854, 1732. ¹H NMR (300 MHz, CDCl₃) δ 1.13 (3H, s, H18), 0.80–2.77 (14H, m), 2.00 (1H, d, J=12.6 Hz, H5), 3.37 (6H, s, 11- OCH_2OCH_3 and $13-OCH_2OCH_3$), 3.70 (3H, s, $-CO_2CH_3$), 4.00 (1H, m, H11), 4.61 (2H, d, J=6.6 Hz, 13-OCH₂OCH₃), 4.55, 4.72 (2×1H, ABd, J=7.2 Hz, 11-OCH₂OCH₃), 4.84 (1H, br s, H19), 4.99 (1H, br s, H17), 5.12 (1H, br s, H'17), 5.60 (1H, br s, -OH). ¹³C NMR (75.5 MHz, CDCl₃) δ 21.2 (C2), 23.3 (C18), 33.3 (C1), 40.0 (C3), 41.3 (C12), 42.6 (C14), 45.7 (C10), 46.3 (C15), 46.8 (C4), 47.4 (C8), 51.2 (C6), 52.1 (-CO₂CH₃), 53.9, 55.4 (11-OCH₂OCH₃ and 13-OCH₂OCH₃), 55.9 (C5), 61.2 (C9), 72.7 (C11), 82.5 (C13), 91.9 (13-OCH₂OCH₃), 96.9 (11-OCH₂OCH₃), 99.0 (C20), 107.3 (C17), 152.3 (C16), 172.9 (C7), 175.1 (C19). MS (EI) m/z 480 (M⁺, 33%), 418 (40), 373 (28), 358 (30), 345 (22), 328 (28), 313 (28), 300 (24), 269 (28), 241 (28), 211 (28), 179 (23), 149 (44), 135 (34), 119 (26), 111 (34), 91 (100), 83 (76), 69 (94). HRMS (EI) m/z calcd for M⁺, C₂₅H₃₆O₉: 480.2359; found: 480.2359.

To a stirred solution of aldehyde acid (17 mg, 0.0343 mmol) in dry Et₂O (5 mL) was added a solution of diazomethane in Et₂O (20 mL) at 0 °C under an atmosphere of nitrogen. After stirring for 2 h, TLC analysis indicated that the reaction was complete, the Et₂O and excess diazomethane were blown off under a stream of nitrogen to give a residue, which was purified by chromatography on silica gel (EtOAc/ hexanes, 1:4) to yield the desired aldehyde **30** (15.3 mg, 0.031 mmol, 90%) as a colourless oil. IR (Neat) ν_{max} (cm⁻¹): 2930, 1729. ¹H NMR (300 MHz, CDCl₃) δ 1.23 (3H, s, H18), 0.82–2.56 (12H, m), 2.03 (1H, d, *J*=12.6 Hz, H5), 3.31 (3H, s, 13-OCH₂OCH₃), 3.36 (3H, s, 11-OCH₂OCH₃), 3.38 (1H, m, H12b overlapped), 3.63 (3H, s, 19-CO₂CH₃), 3.73 (3H, s, 7-CO₂CH₃), 3.74 (1H, m, H11 overlapped), 3.91 (1H, d, J=12.9 Hz, H6), 4.52, 4.56 (2×1H, ABd, J=7.2 Hz, 13-OCH₂OCH₃), 4.45, 4.75 (2×1H, ABd, J=7.2 Hz, 11-OCH₂OCH₃), 4.99 (1H, br s, H17), 5.11 (1H, br s, H'17), 9.68 (1H, s, H20). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.8 (C2), 28.0 (C18), 34.6 (C1), 37.5 (C3), 41.2 (C12), 45.2 (C14), 45.3 (C15), 46.0 (C4), 46.3 (C8), 50.2 (C6), 51.7, 51.9 (7- and 19-CO₂CH₃), 55.5, 56.0 (11-OCH₂OCH₃ and 13-OCH₂OCH₃), 56.5 (C5), 59.4 (C10), 62.1 (C9), 71.0 (C11), 82.4 (C13), 91.8 (13-OCH₂OCH₃), 95.3 (11-OCH₂OCH₃), 107.5 (C17), 152.2 (C16), 174.4 (C7), 176.5 (C19), 205.7 (C20). MS (EI) m/z 494 (M⁺, 1%), 460 (25), 432 (48), 417 (23), 400 (17), 373 (39), 345 (38), 328 (86), 300 (100), 283 (36), 269 (34), 241 (45), 225 (27), 211 (41), 179 (24), 149 (20), 135 (41), 109 (27), 91 (26).

5.1.19. Dimethyl ent-11 α ,13-dihydroxy-20-oxogibberell-16ene-7,19-dioate (11 β -OH GA₁₉ dimethyl ester) (**31**)

Dowex resin (300 mg of wet resin, pretreated by washing with water, 1 M NaOH, water, 1 M HCl and then water until the water filtrate was neutral) was added to a stirred solution of aldehyde 30 (7.5 mg, 0.015 mmol) in methanol (4 mL) and water (1 mL). The reaction mixture was then heated under reflux for 48 h. The reaction mixture was cooled to room temperature, diluted with methanol (10 mL), filtered through a pad of CeliteTM and the solid residue was washed thoroughly with methanol (5×5 mL). The combined organic extracts were treated with saturated NaHCO₃ (four drops) and then concentrated in vacuo to remove MeOH and water. The residue was partitioned between a mixture of saturated NaCl (30 mL) and 20% 2-butanol/EtOAc (35 mL), and then extracted with 20% 2-butanol/EtOAc (3×30 mL). The combined organic extracts were washed with brine $(3 \times 30 \text{ mL})$, dried over MgSO₄ and concentrated in vacuo. Purification by chromatography on silica gel (EtOAc/hexanes, $1:3 \rightarrow 1:1$) yielded the desired dihydroxy aldehyde 31 (5.2 mg, 0.013 mmol, 84%) as a colourless oil. IR (Neat) ν_{max} (cm⁻¹): 3468, 2950, 1725. ¹H NMR (300 MHz, CDCl₃) δ 1.15 (3H, s, H18), 1.13-2.41 (12H, m), 2.27 (1H, d, J=12.9 Hz, H5), 2.63 (1H, d, J=12.9 Hz, H15a), 3.64 (3H, s, 19-CO₂CH₃), 3.74 (5H, s, 7-CO₂CH₃, H6 and H12b overlapped), 3.88 (1H, ddd, J=10.5, 8.4, 8.1 Hz, H11), 4.97 (1H, br s, H17), 5.25 (1H, br s, H'17), 9.71 (1H, s, H20). ¹³C NMR (75.5 MHz, CDCl₃) δ 21.0 (C2), 28.3 (C18), 34.8 (C1), 37.5 (C3), 44.8 (C12), 45.3 (C14), 45.5 (C15), 46.7 (C4), 48.6 (C8), 50.1 (C6), 51.8, 51.9 (7- and 19-CO₂CH₃), 56.3 (C5), 59.5 (C10), 63.9 (C9), 65.8 (C11), 77.3 (C13), 107.0 (C17), 156.1 (C16), 174.1 (C7), 176.3 (C19), 205.7 (C20). MS (EI) *m/z* 406 (M⁺, 7%), 404 (9), 388 (14), 374 (49), 356 (43), 328 (70), 314 (31), 300 (100), 286 (18), 269 (46), 257 (35), 241 (55), 225 (22), 197 (30), 171 (22), 157 (25), 135 (59), 117 (21), 105 (37), 91 (49), 77 (31), 59 (31). HRMS (EI) m/z calcd for M⁺, $C_{22}H_{30}O_7$: 406.1191; found: 406.1192; calcd for [M⁺-2H], C₂₂H₂₈O₇: 404.1835; found: 404.1833. GC-MS (bis-TMS ether methyl ester) 550 (M⁺, 5%), 519 (9), 432 (50), 405 (23), 372 (28), 313 (23), 295 (40), 269 (46), 237 (50), 208 (100), 167 (48), 117 (41).

5.1.20. ent-11 α ,13,20-Trihydroxygibberell-16-ene-7,19dioic acid 7-methyl ester 19,20-lactone (11 β -OH GA₄₄ methyl ester) (**32**)

To a stirred solution of aldehyde **30** (64.5 mg, 0.134 mmol) in dry THF (20 mL) was added MeOH (10 mL) and the mixture cooled to 0 °C under an atmosphere of nitrogen. NaBH₄ was then added portionwise (140 mg, 3.55 mmol) and the resulting mixture was stirred for 3 h before warming to room temperature. The mixture was then concentrated to remove MeOH and THF, and the residue was partitioned between EtOAc (80 mL) and a solution (60 mL) of saturated NaCl and saturated NaH₂PO₄ (60 mL). The aqueous phase was extracted with EtOAc (2×60 mL), the combined organic extracts were washed with brine $(2 \times 100 \text{ mL})$ and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, $1:3 \rightarrow 1:1.5$) yielded the desired lactone (50 mg, 0.11 mmol, 80%) as a colourless oil. IR (Neat) v_{max} (cm⁻¹): 2931, 1732. ¹H NMR (300 MHz, CDCl₃) δ 1.13 (3H, s, H18), 0.85–2.36 (12H, m), 2.22 (1H, d, J=12.9 Hz, H5), 2.71 (1H, dd, J=12.9, 8.4 Hz, H12β), 2.80 (1H, d, J=12.9 Hz, H6), 3.36 (3H, s, 13-OCH₂OCH₃), 3.38 (3H, s, 11-OCH₂OCH₃), 3.70 (4H, s, $-CO_2CH_3$ and H11 overlapped), 4.24 (1H, d, J_{gem}=12.0 Hz, 20-pro-S-H), 4.40 (1H, dd, J_{gem} =12.0 Hz, $J_{20,1\beta}$ =1.8 Hz, 20-pro-R-H), 4.51, 4.54 (2×1H, ABd, J=4.8 Hz, 13-OCH₂OCH₃), 4.66, 4.72 (2×1H, ABd, J=7.2 Hz, 11-OCH₂OCH₃), 5.01 (1H, br s, H17), 5.13 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 21.0 (C2), 23.3 (C18), 39.7 (C1), 39.9 (C3), 41.2 (C12), 41.6 (C14), 42.7 (C10), 45.7 (C15), 46.1 (C4), 46.5 (C8), 51.7 (C6), 52.1 (-CO₂CH₃), 53.1 (C5), 55.5 (13-OCH₂OCH₃), 56.3 (11-OCH₂OCH₃), 60.3 (C9), 70.2 (C11), 73.8 (C20), 82.5 (C13), 91.9 (13-OCH₂OCH₃), 95.2 (11-OCH₂OCH₃), 107.9 (C17), 152.3 (C16), 172.9 (C7), 174.8 (C19). MS (EI) m/z 464 (M⁺, 29%), 433 (35), 419 (84), 405 (51), 391 (100), 372 (28), 358 (35), 343 (20), 329 (29), 301 (53), 285 (38), 269 (57), 253 (41), 225 (35), 211 (41), 179 (40), 159 (27), 145 (32), 129 (28), 105 (44), 91 (57). HRMS (EI) m/z calcd for [M+1] ⁺, C₂₅H₃₇O₈: 465.2488; found: 465.2486.

Dowex resin (500 mg of wet resin, pretreated by washing with water, 1 M NaOH, water, 1 M HCl and then water until the water filtrate was neutral) was added to a stirred solution of lactone (50 mg, 0.11 mmol) in methanol (20 mL) and water (5 mL). The reaction mixture was then heated to 70 °C and stirred for 48 h. The reaction mixture was cooled to room temperature, diluted with methanol (10 mL), filtered through a pad of Celite[™] and washed with methanol (5×5 mL). The combined organic extracts were treated with saturated NaHCO₃ (30 drops) and then concentrated to remove MeOH and water. The residue was partitioned between a mixture of saturated NaCl (50 mL) and 20% 2-butanol/EtOAc (50 mL), and then extracted with 20% 2-butanol/EtOAc (2×40 mL). The combined organic extracts were washed with brine $(3 \times 30 \text{ mL})$, dried over MgSO₄ and concentrated in vacuo. The residue was washed with hexanes $(4 \times 15 \text{ mL})$ before purification by chromatography on silica gel (EtOAc/hexanes, $1:1 \rightarrow 1:1.5$) to yield the desired lactone-diol 32 (40.5 mg, 0.11 mmol, 100%) as a colourless oil. IR (Neat) ν_{max} (cm⁻¹): 3418,

2927, 1732. ¹H NMR (300 MHz, CDCl₃) δ 1.14 (3H, s, H18), 0.86–2.42 (14H, m), 2.24 (1H, d, J=12.9 Hz, H5), 2.53 (1H, dd, J=12.9, 5.7 Hz, H12 β), 2.80 (1H, d, J=12.9 Hz, H6), 3.70 (3H, s, -CO₂CH₃), 3.86 (1H, ddd, J=10.5, 9.3, 8.7 Hz, H11), 4.36 (1H, d, J_{gem}=12.3 Hz, 20pro-S-H), 4.40 (1H, dd, J_{gem}=12.3 Hz, J_{20.18}=2.1 Hz, 20pro-R-H), 4.94 (1H, br s, H17), 5.26 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 21.0 (C2), 23.4 (C18), 39.8 (C1), 39.9 (C3), 41.6 (C12), 42.7 (C14), 45.0 (C10), 45.1 (C15), 46.7 (C4), 49.2 (C8), 51.6 (C6), 52.1 (-CO₂CH₃), 53.0 (C5), 62.3 (C9), 65.2 (C11), 73.8 (C20), 77.5 (C13), 106.8 (C17), 156.4 (C16), 172.9 (C7), 175.0 (C19). MS (EI) m/z 376 (M⁺, 100%), 345 (24), 316 (54), 298 (32), 271 (37), 253 (82), 227 (41), 213 (23), 197 (22), 159 (33), 145 (27), 121 (21), 105 (31), 91 (46), 77 (28). HRMS (EI) m/z calcd for [M⁺+H], C₂₁H₂₉O₆: 377.1964; found: 377.1957. GC-MS (bis-TMS ether methyl ester) 520 (M⁺, 21%), 489 (4), 430 (11), 386 (5), 371 (11), 313 (5), 295 (100), 281 (18), 239 (44), 207 (14), 167 (15), 117 (19).

5.1.21. Dimethyl ent-11 α ,13-dihydroxygibberell-16-ene-7,19-dioate (11 β -OH GA₅₃ dimethyl ester) (**33**)

To a mixture of aldehyde 30 (19.5 mg, 0.041 mmol) in MeOH (1 mL) was added 2 N NaOH (3 mL) and the resulting mixture heated at 100 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with a solution of 20% 2-butanol/EtOAc (50 mL) and acidified with a solution of saturated NaCl (30 mL), saturated NaH₂PO₄ (120 mL) and 10% H₃PO₄ (10 mL) to pH \sim 4, before extracting with 20% 2-butanol/EtOAc (2×30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄ and concentration in vacuo. The obtained residue was washed with hexanes $(4 \times 15 \text{ mL})$ to give the diacid as a white solid (18.9 mg). This compound was dissolved in ethylene glycol (2.5 mL) and anhydrous hydrazine (0.1 mL) was added. The reaction mixture was heated at 115 °C for 2 h and then two pellets of NaOH $(\sim 200 \text{ mg})$ were added. The mixture was heated at 115 °C for 1 h before raising the temperature to 180 °C and stirring at this temperature overnight. The reaction mixture was cooled to room temperature, diluted with a solution of 20% 2-butanol/ EtOAc (60 mL) and then acidified with a solution of saturated NaCl (50 mL), saturated NaH₂PO₄ (100 mL) and 10% H₃PO₄ (2 mL) to pH \sim 4, before extracting with 20% 2-butanol/ EtOAc $(2 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (30 mL), dried over MgSO₄ and concentrated in vacuo. The obtained oil was washed with hexanes $(4 \times 15 \text{ mL})$ to give a mixture of diacid and ethylene glycol, which was co-evaporated with toluene (3×1 mL), then dissolved in MeOH (1 mL) and cooled to 0 °C in an ice-bath under an atmosphere of nitrogen. A solution of diazomethane in Et₂O (5 mL) was then added to the reaction mixture. After stirring overnight the Et₂O and excess diazomethane were blown off under a stream of nitrogen, and the residue concentrated in vacuo to remove MeOH and give the crude product. The resulting oil was washed with hexanes $(4 \times 15 \text{ mL})$ to dissolve the product and the combined organic extracts were concentrated to give the crude diacid free from ethylene glycol.

This material was chromatographed on silica gel (EtOAc/hexanes, 1:9) to give the desired product (11.7 mg, 0.024 mmol, three steps overall yield 60%) as a colourless oil. IR (Neat) $\nu_{\rm max}$ (cm⁻¹): 2948, 2822, 1731, 1661. ¹H NMR (300 MHz, CDCl₃) δ 0.73 (3H, s, H20), 1.08 (3H, s, H18), 0.97-2.40 (11H, m), 1.93 (1H, d, J=12.6 Hz, H5), 2.51 (1H, dd, J=13.2, 8.4 Hz, H12β), 3.34 (3H, s, 13-OCH₂OCH₃), 3.37 (4H, s, 11-OCH₂OCH₃ and H6 overlapped), 3.67 (3H, s, 19-CO₂CH₃), 3.70 (3H, s, 7-CO₂CH₃), 3.93 (1H, ddd, J=9.6, 7.8, 7.5 Hz, H11), 4.54, 4.64 (2×1H, ABd, J=6.9 Hz, 13- OCH_2OCH_3), 4.54, 4.75 (2×1H, ABd, J=7.5 Hz, 11-OCH₂OCH₃), 4.97 (1H, br s, H17), 5.08 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 15.1 (C20), 19.7 (C2), 29.0 (C18), 37.6 (C1), 40.4 (C3), 42.6 (C12), 43.8 (C14), 44.5 (C10), 45.4 (C15), 45.9 (C4 and C8), 51.1 (C6), 51.5, 51.6 (7- and 19-CO₂CH₃), 55.5 (C5), 56.0 (13-OCH₂OCH₃), 56.8 (11-OCH₂OCH₃), 62.6 (C9), 70.5 (C11), 82.6 (C13), 91.8 (13-OCH₂OCH₃), 94.8 (11-OCH₂OCH₃), 106.9 (C17), 152.4 (C16), 174.9 (C7), 177.4 (C19). GC-MS (EI) m/z 448 $([M^+-CH_3OH], 49\%), 418 (16), 407 (57), 358 (60), 388$ (53), 343 (67), 327 (37), 314 (100), 299 (67), 283 (80), 273 (46), 255 (44), 239 (41), 227 (33), 211 (34), 197 (23), 181 (81), 171 (27), 159 (33), 149 (43), 133 (26), 121 (39), 107 (47), 91 (42), 79 (28). HRMS (EI) m/z calcd for M⁺, C₂₆H₄₀O₈: 480.2723; found: 480.2719.

Dowex resin (500 mg of wet resin, pretreated by washing with water, 1 M NaOH, water, 1 M HCl and then water until the water filtrate was neutral) was added to a stirred solution of diester (33 mg, 0.069 mmol) in methanol (16 mL) and water (4 mL). The reaction mixture was then heated at 70 °C for 24 h, cooled to room temperature, diluted with methanol (10 mL), filtered through a pad of CeliteTM, which was washed with methanol (5×10 mL). The combined organic extracts were treated with saturated NaHCO₃ (1 mL) and then concentrated to remove MeOH and water. The residue was partitioned between a mixture of saturated NaCl (100 mL) and 20% 2-butanol/ EtOAc (100 mL), and then extracted with 20% 2-butanol/ EtOAc (2×80 mL). The combined organic extracts were washed with brine $(3 \times 30 \text{ mL})$, dried over MgSO₄ and concentrated in vacuo. The residue was chromatographed on silica gel (EtOAc/hexanes, $1:1.5 \rightarrow 1:1$) to give 33 (25 mg, 0.0637 mmol, 93%) as a colourless oil. IR (Neat) ν_{max} (cm⁻¹): 3434, 2930, 2854, 1727. ¹H NMR (300 MHz, CDCl₃) δ 0.75 (3H, s, H20), 1.09 (3H, s, H18), 0.78-2.38 (14H, m), 1.94 (1H, d, J=12.6 Hz, H5), 2.39 (1H, dd, J=13.2, 8.1 Hz, H12 β), 3.38 (1H, d, J=12.6 Hz, H6), 3.67 (3H, s, 19-CO₂CH₃), 3.70 (3H, s, 7-CO₂CH₃), 4.02 (1H, ddd, J=7.8, 7.2, 6.9 Hz, H11), 4.96 (1H, br s, H17), 5.23 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 14.8 (C20), 19.6 (C2), 28.9 (C18), 37.4 (C1), 40.5 (C3), 43.6 (C12), 44.3 (C14), 45.0 (C10), 46.3 (C15), 46.5 (C4), 49.2 (C8), 50.8 (C6), 51.5 (7- and 19-CO₂CH₃), 56.9 (C5), 65.0 (C9), 65.8 (C11), 77.4 (C13), 106.7 (C17), 156.9 (C16), 175.1 (C7), 177.5 (C19). GC-MS (EI) m/z 392 (M⁺, 2%), 360 (15), 332 (18), 314 (100), 299 (49), 286 (7), 272 (10), 255 (31), 239 (11), 229 (13), 213 (15), 199 (9), 185 (8), 173 (10), 159 (12), 145 (11), 133 (8), 121 (11), 107 (14), 91 (7), 79 (12). HRMS (EI) m/z calcd for $[M^++H]$, $C_{22}H_{33}O_6$: 393.2277; found: 393.2276. GC-MS (bis-TMS ether methyl ester), retention time 17.41 min; *m*/*z* 536 (M⁺, 25%), 521 (4), 463 (5), 446 (10), 419 (35), 387 (25), 372 (9), 346 (9), 295 (100), 251 (19), 239 (41), 207 (16), 181 (49), 147 (14), 117 (33); KRI 2632. Endogenous material: identical mass spectrum, KRI 2631.

5.1.22. Dimethyl ent-11 α -hydroxy-20-oxogibberell-16-ene-7,19-dioate (11 β -hydroxy-GA₂₄ methyl ester)

Acetic anhydride (18 µL, 0.092 mmol) was added dropwise to a stirred solution of diol **31** (34 mg, 0.083 mmol), triethylamine (17.6 µL, 0.125 mmol) and a catalytic amount of DMAP (10 mg) in CH₂Cl₂ (10 mL) at 0 °C, under nitrogen. The resulting mixture was stirred for 30 min at this temperature and then warmed to room temperature for 30 min. The reaction mixture was cooled in an ice-bath, quenched by dropwise addition of water (1 mL), stirred for 5 min and then added 1 M HCl (40 mL) and brine (20 mL). After extraction with EtOAc $(3 \times 30 \text{ mL})$, the combined organic extracts were washed with saturated aq NaHCO₃ solution (20 mL) and brine (3×20 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, $1:4 \rightarrow 2:1$) gave the 11-acetate (33 mg, 0.074 mmol, 88%) as a clear oil that solidified on standing. IR (Neat) ν_{max} (cm⁻¹): 3455, 2955, 2876, 1731. ¹H NMR (300 MHz, CDCl₃) δ 1.12 (3H, s, H18), 1.15-2.48 (15H, m), 1.96 (3H, s, CH₃CO₂-), 3.62 (3H, s, 19-CO₂CH₃), 3.73 (3H, s, 7-CO₂CH₃), 3.85 (1H, d, J=12.6 Hz, H6), 4.95 (1H, s, H17), 4.96 (1H, ddd, J=8.4, 8.1, 6.6 Hz, H11), 5.21 (1H, br s, H'17), 9.65 (1H, s, H20). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.7 (C2), 21.1 (CH₃CO₂-), 28.1 (C18), 34.2 (C1), 37.3 (C3), 44.4 (C12), 45.0 (C14), 45.4 (C15), 45.9 (C4), 46.8 (C8), 49.9 (C6), 51.7, 51.9 (7- and 19-CO₂CH₃), 56.4 (C5), 59.0 (C10 and C13), 60.7 (C9), 67.8 (C11), 107.0 (C17), 155.2 (C16), 169.7 (CH₃CO₂-), 174.4 (C7), 176.3 (C19), 204.8 (C20). MS (EI) *m*/*z* 448 (M⁺, 0.5%), 416 (7), 388 (41), 355 (12), 328 (56), 300 (100), 282 (13), 269 (21), 241 (54), 135 (28). HRMS (EI) m/z calcd for M⁺, C₂₄H₃₂O₈: 448.2097; found: 448.2094.

To a solution of this acetate (29.5 mg, 0.071 mmol) in CH₂Cl₂ (10 mL) under nitrogen were added triethylamine (50 µL, 0.38 mmol) and a catalytic amount of DMAP (10 mg), and cooled to 0 °C. The resulting mixture was treated dropwise with methyl oxalyl chloride (27 µL, 0.29 mmol) and stirred for 45 min, after which time TLC analysis indicated that reaction was complete. The reaction mixture was quenched by dropwise addition of a solution (40 mL) of saturated NaCl and saturated NaH₂PO₄ (1:1), stirred for 15 min and then extracted with CH_2Cl_2 (60 mL and 2×40 mL). The combined organic extracts were washed successively with saturated aq NaHCO₃ solution (50 mL), water (50 mL) and brine (50 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, $1:6 \rightarrow 2:1$) afforded the desired methyl oxalate (23.5 mg, 0.044 mmol, 67%) as an oil. IR (Neat) ν_{max} (cm⁻¹): 2956, 2876, 1771, 1733, 1665. ¹H NMR (300 MHz, CDCl₃) δ 1.12 (3H, s, H18), 1.14-2.42 (12H, m), 1.97 (3H, s, CH₃CO₂-), 2.24 (1H, d, J=12.9 Hz, H5), 2.88 (1H, dd, J=13.5, 8.7 Hz,

H12β), 3.61 (3H, s, 19-CO₂CH₃), 3.74 (3H, s, 7-CO₂CH₃), 3.86 (3H, s, $-O(CO)_2OCH_3$), 3.88 (1H, d, J=12.9 Hz, H6 overlapped), 4.98 (1H, ddd, J=8.7, 8.4, 6.6 Hz, H11), 5.01 (1H, br s, H17), 5.20 (1H, br s, H'17), 9.64 (1H, s, H20). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.9 (C2), 21.2 (CH₃CO₂-), 28.5 (C18), 34.6 (C1), 37.5 (C3), 40.5 (C12), 43.9 (C14), 44.5 (C15), 45.3 (C4), 47.7 (C8), 49.8 (C6), 52.0, 52.3 (7-and 19-CO₂CH₃), 53.7 ($-O(CO)_2OCH_3$), 56.6 (C5), 59.1 (C10), 60.4 (C9), 67.5 (C11), 86.0 (C13), 109.4 (C17), 150.2 (C16), 156.1, 158.3 ($-O(CO)_2OCH_3$), 169.7 (CH₃CO₂-), 174.3 (C7), 176.5 (C19), 204.9 (C20). MS (EI) *m/z* 534 (M⁺, 1.2%), 502 (9), 474 (59), 431 (17), 414 (49), 386 (100), 342 (38), 327 (30), 310 (70), 282 (72), 223 (66). HRMS (EI) *m/z* calcd for M⁺, C₂₇H₃₄O₁₁: 534.2101; found: 534.2102.

To a solution of this oxalate (57.8 mg, 0.11 mmol) in toluene (30 mL) at room temperature under nitrogen were added tributyltin hydride (66 µL, 0.14 mmol) and AIBN (18 mg, 0.107 mmol). The mixture was degassed for 15 min then blanketed with nitrogen and heated to 80 °C for 3 h, after which time TLC analysis indicated that reaction was complete. The reaction mixture was concentrated to remove solvent and the products were separated by chromatography on silica gel (EtOAc/hexanes, $1:15 \rightarrow 1:10$) to yield the deoxygenated gibberellin (21 mg, 0.049 mmol, 45%) as a glassy white solid. IR (Neat) ν_{max} (cm⁻¹): 2949, 2874, 1734, 1659. ¹H NMR (300 MHz, CDCl₃) δ 1.13 (3H, s, H18), 1.14-2.57 (13H, m), 1.97 (3H, s, CH₃CO₂-), 2.24 (1H, d, J=12.9 Hz, H5), 2.66 (1H, m, H12β), 3.61 (3H, s, 19-CO₂CH₃), 3.72 (3H, s, 7-CO₂CH₃), 3.92 (1H, d, J=12.9 Hz, H6), 4.73 (1H, ddd, J=9.6, 9.0, 8.1 Hz, H11), 4.86 (1H, br s, H17), 4.96 (1H, br s, H'17), 9.63 (1H, s, H20). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.8 (C2), 21.1 (CH₃CO₂-), 28.2 (C18), 34.4 (C1), 37.2 (C3), 37.4 (C12), 38.4 (C14), 38.5 (C13), 45.2 (C15), 46.2 (C4), 49.9 (C8), 50.2 (C6), 51.6, 51.8 (7- and 19-CO₂CH₃), 55.9 (C5), 59.4 (C10), 60.6 (C9), 68.2 (C11), 107.3 (C17), 154.9 (C16), 169.8 (CH₃CO₂-), 174.5 (C7), 176.4 (C19), 204.8 (C20). MS (EI) m/z 432 (M⁺, 0.6%), 400 (9), 372 (36), 340 (19), 312 (46), 284 (100), 269 (17), 253 (24), 225 (54), 197 (20), 183 (23), 155 (22), 105 (22), 91 (30). HRMS (EI) *m/z* calcd for M⁺, C₂₄H₃₂O₇: 432.2148; found: 432.2144.

To a stirred solution of acetate (14.5 mg, 0.033 mmol) in MeOH (4 mL) at 0 °C was added 0.5 M K₂CO₃ (2 mL). After 30 min, the reaction mixture was warmed to room temperature and stirred for 4.5 h, after which time TLC analysis showed the absence of starting material. The mixture was quenched with saturated aq NH₄Cl solution (4 mL) and then concentrated to remove MeOH and water. The residue was diluted with a solution of 20% 2-butanol/EtOAc (60 mL) and acidified with a 1:1 solution (10 mL) of brine and saturated NaH₂PO₄ to pH|4, and then extracted with 20% 2-butanol/EtOAc $(3 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (30 mL) and dried over MgSO₄. After concentration, the residue was co-evaporated with toluene $(3 \times 1 \text{ mL})$, dissolved in Et₂O (4 mL) and then cooled in an ice-bath at 0 °C under an atmosphere of nitrogen. This solution was added to a solution of diazomethane in Et₂O (10 mL). After stirring overnight the Et₂O and excess diazomethane were blown off by a stream of nitrogen to give the crude product. The obtained residue was chromatographed on silica gel (EtOAc/hexanes, $1:15 \rightarrow 1:5$) that furnished the desired product 34 (9 mg, 0.023 mmol, 69%) as an oil. IR (Neat) ν_{max} (cm^{-1}) : 3496, 3068, 2929, 2873, 2855, 2739, 1729, 1659. ¹H NMR (300 MHz, CDCl₃) δ 1.15 (3H, s, H18), 0.87–2.67 (15H, m), 2.26 (1H, d, J=12.9 Hz, H5), 3.64 (3H, s, 19-CO₂CH₃), 3.69 (1H, ddd, J=9.0, 8.4, 8.1 Hz, H11), 3.72 (3H, s, 7-CO₂CH₃), 3.90 (1H, d, J=12.9 Hz, H6), 4.87 (1H, br s, H17), 4.99 (1H, br s, H'17), 9.72 (3H, s, H20). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.9 (C2), 28.3 (C18), 34.9 (C1), 37.2 (C3), 37.5 (C12), 38.7 (C13), 41.8 (C14), 45.3 (C15), 46.3 (C4), 49.9 (C8), 50.3 (C6), 51.7 (7- and 19-CO₂CH₃), 55.8 (C5), 59.9 (C10), 64.1 (C9), 65.8 (C11), 107.4 (C17), 155.6 (C16), 174.6 (C7), 176.6 (C19), 206.3 (C20). MS (EI) m/z 390 (M⁺, 3%), 372 (11), 358 (13), 340 (28), 312 (55), 298 (23), 284 (100), 269 (17), 253 (42), 241 (18), 225 (57), 209 (17), 197 (29), 183 (20), 165 (29), 145 (24), 129 (29), 105 (40), 91 (63). HRMS (EI) m/z calcd for M⁺, C₂₂H₃₀O₆: 390.2042; found: 390.2048. GC–MS (TMS ether methyl ester), retention time 19.72 min; m/z 462 (M⁺, 7%), 430 (33), 402 (45), 387 (19), 372 (35), 343 (19), 312 (49), 284 (100), 270 (22), 253 (26), 225 (58), 209 (19), 197 (22), 155 (23), 129 (21), 91 (17); KRI 2814. Endogenous material: identical mass spectrum, KRI 2814.

5.1.23. ent-11 α ,20-Dihydroxygibberell-16-ene-7,19-dioic acid 7-methyl ester 19,20-lactone (11 β -OH GA₁₅ methyl ester) (**35**)

A stirred solution of alcohol 32 (31.3 mg, 0.083 mmol), triethylamine (18 µL, 0.125 mmol) and a catalytic amount of DMAP (10 mg) in CH₂Cl₂ (10 mL) at 0 °C under nitrogen was treated dropwise with acetic anhydride (22 µL, 0.104 mmol). The mixture was stirred for 30 min then raised to room temperature for an additional 30 min, after which time TLC analysis indicated that the reaction was complete. The reaction mixture was cooled in an ice-bath and quenched by dropwise addition of water (2 mL), stirred for 15 min and then acidified with 1 M HCl (10 mL). After extracting with EtOAc $(3 \times 50 \text{ mL})$, the combined organic extracts were washed successively with saturated aq NaHCO₃ solution (100 mL), water (100 mL) and brine (100 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/CH₂Cl₂, $1:6 \rightarrow 1:1$) yielded the desired acetate (33.1 mg, 0.079 mmol, 95%) as an oil. IR (Neat) ν_{max} (cm⁻¹): 3454, 2926, 1732. ¹H NMR (300 MHz, CDCl₃) δ 1.14 (3H, s, H18), 1.26-2.40 (13H, m), 2.04 (3H, s, CH_3CO_2 -), 2.24 (1H, d, J=12.6 Hz, H5), 2.66 (1H, dd, J=13.2, 9.3 Hz, H12β), 2.83 (1H, d, J=12.6 Hz, H6), 3.71 (3H, s, -CO₂CH₃), 4.20 (1H, d, J_{gem}=12.8 Hz, 20-pro-S-H), 4.39 (1H, dd, J_{gem}=12.0 Hz, J_{20.1β}=2.1 Hz, 20-pro-R-H), 4.96 (1H, ddd, J=10.5, 9.3, 8.7 Hz, H11 overlapped), 4.97 (1H, br s, H17), 5.27 (1H, dd, J=3.0, 1.8 Hz, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.9 (C2), 21.3 (CH₃CO₂-), 23.4 (C18), 39.2 (C1), 39.6 (C3), 41.5 (C12), 42.6 (C14), 45.1 (C10), 45.4 (C15), 45.5 (C4), 46.7 (C8), 51.5 (C6),

52.2 ($-CO_2CH_3$), 52.9 (C5), 59.1 (C9), 66.8 (C11), 73.6 (C20), 77.2 (C13), 107.2 (C17), 155.6 (C16), 169.8 (CH₃CO₂-), 172.7 (C7), 174.6 (C19). MS (FAB) *m/z* 419 ([M⁺+H], 100%), 390 (6), 375 (15), 242 (23), 155 (10), 147 (29), 145 (59), 130 (71), 101 (18). HRMS (EI) *m/z* calcd for M⁺, C₂₃H₃₀O₇: 418.1991; found: 418.1988.

A stirred solution of this acetate (33.5 mg, 0.08 mmol) in triethylamine (56 µL, 0.4 mmol) and a catalytic amount of DMAP (10 mg) in CH₂Cl₂ (10 mL) at 0 °C under nitrogen was treated dropwise with methyl oxalyl chloride (31 µL, 0.32 mmol). The mixture was stirred for 45 min, after which time TLC analysis indicated that the reaction was complete. The reaction mixture was quenched by dropwise addition of a 1:1 solution (20 mL) of saturated NaCl and saturated NaH₂PO₄, stirred for 15 min and then extracted with CH₂Cl₂ (50 mL and 2×30 mL). The combined organic extracts were washed successively with saturated aq NaHCO₃ solution (50 mL), water (50 mL) and brine (50 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:5) afforded the desired oxalate (38.8 mg, 0.077 mmol, 96%) as a clear oil that solidified on standing. IR (Neat) ν_{max} (cm⁻¹): 2943, 1735. ¹H NMR (300 MHz, CDCl₃) δ 1.14 (3H, s, H18), 1.42-2.41 (12H, m), 2.04 (3H, s, CH₃CO₂-), 2.25 (1H, d, J=12.9 Hz, H5), 2.83 (1H, d, J=12.6 Hz, H6), 3.03 (1H, dd, J=12.9, 9.3 Hz, H12 β), 3.71 (3H, s, $-CO_2CH_3$), 3.88 (3H, s, $-O(CO)_2OCH_3$), 4.20 (1H, d, J_{gem}=12.0 Hz, 20-pro-S-H), 4.38 (1H, dd, J_{gem}=12.3 Hz, J_{20.16}=1.8 Hz, 20-pro-R-H), 5.00 (1H, ddd, J=9.9, 9.3, 9.0 Hz, H11), 5.10 (1H, br s, H17), 5.27 (1H, d, J=1.8 Hz, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 20.7 (C2), 21.1 (CH₃CO₂-), 23.3 (C18), 39.2 (C1), 39.5 (C3), 40.3 (C12), 41.5 (C14), 42.5 (C10), 43.6 (C15), 44.5 (C4), 47.4 (C8), 51.5 (C6), 52.2 $(-CO_2CH_3)$, 52.7 $(-O(CO)_2OCH_3)$, 53.6 (C5), 58.7 (C9), 66.1 (C11), 73.4 (C20), 85.4 (C13), 109.6 (C17), 150.3 (C16), 156.0, 157.9 (-O(CO)₂OCH₃), 169.8 (CH₃CO₂-), 172.5 (C7), 174.5 (C19). MS (EI) m/z 504 (M⁺, 100%), 473 (11), 399 (18), 384 (20), 339 (19), 281 (28), 235 (47), 181 (19), 131 (18), 91 (14), 69 (24). HRMS (EI) m/z calcd for [M⁺+H], C₂₆H₃₃O₁₀: 505.2074; found: 505.2068.

To a solution of this oxalate (38 mg, 0.075 mmol) in toluene (20 mL) at room temperature under nitrogen were added tributyltin hydride (46 µL, 0.166 mmol) and AIBN (12 mg, 0.072 mmol). The mixture was degassed for 20 min then blanketed with nitrogen and heated to 80 °C for 3 h, after which time TLC analysis indicated that the reaction was complete. The solvent was removed in vacuo and the residue was purified by chromatography on silica gel (EtOAc/hexanes, $1:6 \rightarrow 1:4$) to yield the desired product (10 mg, 0.025 mmol, 33%) as an oil. IR (Neat) ν_{max} (cm⁻¹): 2941, 2873, 1735, 1658. ¹H NMR (300 MHz, CDCl₃) δ 1.14 (3H, s, H18), 0.90–2.32 (12H, m), 2.03 (3H, s, CH₃CO₂-), 2.23 (1H, d, J=12.6 Hz, H5), 2.66 $(1H, m, H12\beta)$, 2.96 (1H, br s, H13), 2.82 (1H, d, J=12.9 Hz, H6), 3.70 (3H, s, -CO₂CH₃), 4.17 (1H, d, J_{gem}=12.3 Hz, 20-pro-S-H), 4.40 (1H, dd, $J_{gem}=12.3$ Hz, $J_{20,1\beta}=1.8$ Hz, 20-pro-R-H), 4.78 (1H, ddd, J=10.5, 9.0, 8.4 Hz, H11), 4.88 (1H, br s, H17), 5.00 (1H, br s, H'17). ¹³C NMR (75.5 MHz,

CDCl₃) δ 21.0 (C2), 21.4 (CH₃CO₂-), 23.4 (C18), 37.4 (C1), 38.5 (C3), 38.6 (C13), 39.4 (C12), 39.7 (C14), 41.8 (C10), 42.7 (C15), 46.4 (C4), 50.1 (C8), 51.7 (C6), 52.0 (-CO₂CH₃), 52.6 (C5), 59.3 (C9), 67.1 (C11), 73.7 (C20), 106.7 (C17), 154.8 (C16), 170.0 (CH₃CO₂-), 173.1 (C7), 174.7 (C19). GC-MS (EI) retention time 17.11-17.37 min; *m*/*z* 402 (M⁺, 30%), 371 (8), 310 (48), 296 (22), 237 (100), 225 (17), 209 (15), 195 (17), 181 (14), 169 (12), 155 (14), 141 (13), 129 (14), 117 (9), 105 (12), 91 (19), 79 (11).

To a solution of this acetate (10 mg, 0.025 mmol) in MeOH (5 mL) at 0 °C was added 0.5 M K₂CO₃ (2.5 mL). After 30 min, the reaction mixture was warmed to room temperature and stirred for a further 4.5 h. The mixture was concentrated to remove MeOH and water. The residue was quenched with saturated aq NH₄Cl solution (40 mL) and EtOAc (50 mL), and then extracted with EtOAc (2×30 mL). The combined organic extracts were washed with brine (30 mL) and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, $1:5 \rightarrow 1:3$) afforded the desired product 35 (6.5 mg, 0.018 mmol, 72%) as an oil. IR (Neat) ν_{max} (cm⁻¹): 3453, 2937, 2870, 1733. ¹H NMR (300 MHz, CDCl₃) δ 1.15 (3H, s, H18), 1.19–2.71 (15H, m), 2.22 (1H, d, J=12.6 Hz, H5), 2.81 (1H, d, J=12.6 Hz, H6), 3.69 $(3H, s, -CO_2CH_3)$, 3.67 (1H, ddd, J=10.5, 9.6, 8.7 Hz, H11 overlapped), 4.35 (1H, d, J_{gem}=12.3 Hz, 20-pro-S-H), 4.42 (1H, dd, J_{gem}=12.0 Hz, J_{20.18}=2.1 Hz, 20-pro-R-H), 4.85 (1H, br s, H17), 4.99 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 21.0 (C2), 23.4 (C18), 37.0 (C1), 38.9 (C13), 39.9 (C3 and C12), 41.9 (C14), 42.7 (C10), 42.8 (C15), 46.5 (C4), 50.2 (C8), 51.8 (C6), 51.9 (-CO₂CH₃), 52.7 (C5), 62.8 (C9), 65.3 (C11), 73.9 (C20), 107.4 (C17), 155.5 (C16), 173.2 (C7), 175.1 (C19). MS (EI) m/z 360 (M⁺, 50%), 328 (18), 300 (32), 282 (27), 255 (32), 237 (70), 211 (32), 183 (15), 166 (29), 149 (64), 129 (29), 119 (22), 105 (37), 91 (58), 81 (50), 69 (78). HRMS (EI) m/z calcd for M⁺, C₂₁H₂₈O₅: 360.1937; found: 360.1940. GC-MS (EI) (TMS ether methyl ester) retention time 23.70 min; m/z 432 (M⁺, 13%), 372 (89), 357 (3), 327 (6), 310 (17), 296 (22), 282 (65), 237 (100), 225 (23), 209 (23), 195 (24), 181 (19), 155 (24), 129 (18), 117 (12), 91 (17); KRI.

5.1.24. Dimethyl ent-11 α -hydroxygibberell-16-ene-7,19dioate (11 β -OH GA₁₂ dimethyl ester) (**36**)

A stirred solution of alcohol **33** (35 mg, 0.089 mmol), triethylamine (19 μ L, 0.133 mmol) and a catalytic amount of DMAP (10 mg) in CH₂Cl₂ (10 mL) at 0 °C under nitrogen was treated dropwise with acetic anhydride (22 μ L, 0.107 mmol). The mixture was stirred for 25 min then warmed to room temperature for a further 30 min, after which time TLC analysis indicated that the reaction was complete. The reaction mixture was cooled in an ice-bath, quenched by dropwise addition of water (2 mL), stirred for 15 min and then added 1 M HCl (20 mL) and brine (20 mL). After extracting with EtOAc (3×50 mL), the combined organic extracts were washed with brine (2×20 mL) and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/CH₂Cl₂, $1:5 \rightarrow 1:3$) gave the desired acetate (32.5 mg, 0.075 mmol, 84%) as an oil. IR (Neat) ν_{max} (cm⁻¹): 3485, 2949, 1732. ¹H NMR (300 MHz, CDCl₃) δ 0.69 (3H, s, H20), 1.08 (3H, s, H18), 0.87-2.38 (13H, m), 1.93 (1H, d, J=12.6 Hz, H5), 1.96 (3H, s, CH_3CO_2-), 2.51 (1H, dd, J=13.5, 8.7 Hz, H12β), 3.37 (1H, d, J=12.9 Hz, H6), 3.36 (3H, s, 19-CO₂CH₃), 3.69 (3H, s, 7-CO₂CH₃), 4.91 (1H, br s, H17), 5.11 (1H, ddd, J=8.4, 8.1, 6.9 Hz, H11), 5.18 (1H, dd, J=3.3, 1.5 Hz, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 15.1 (C20), 19.7 (C2), 21.4 (C18), 29.1 (CH₃CO₂-), 37.4 (C1), 40.3 (C3), 43.7 (C12), 44.4 (C14), 48.9 (C10), 45.5 (C15), 46.1 (C4), 46.3 (C8), 50.8 (C6), 51.5, 51.6 (7- and 19-CO₂CH₃), 56.6 (C5), 61.1 (C9), 68.1 (C11), 77.3 (C13), 106.2 (C17), 155.9 (C16), 169.9 (CH₃CO₂-), 174.7 (C7), 177.2 (C19). MS (EI) *m*/*z* 436 ([M⁺+2H], 14%), 402 (86), 314 (100), 299 (29), 255 (33), 105 (27), 84 (48), 69 (27). HRMS (EI) *m*/*z* calcd for M⁺, C₂₄H₃₄O₇: 434.2304; found: 434.2303.

A stirred solution of this acetate (33 mg, 0.076 mmol), triethylamine (53 µL, 0.38 mmol) and DMAP catalyst (10 mg) in CH₂Cl₂ (10 mL) at 0 °C under nitrogen was treated dropwise with methyl oxalyl chloride (29 µL, 0.304 mmol). The mixture was stirred for 45 min, after which time TLC analysis indicated that the reaction was complete. The reaction mixture was quenched by dropwise addition of a 1:1 solution (20 mL) of saturated NaCl and saturated NaH₂PO₄, stirred for 15 min and then extracted with CH_2Cl_2 (60 mL and 2×40 mL). The combined organic extracts were washed successively with saturated aq NaHCO₃ solution (50 mL), water (50 mL) and brine (50 mL), and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:7) yielded the desired oxalate (32 mg, 0.062 mmol, 81%) as a clear oil that solidified on standing. IR (Neat) v_{max} (cm⁻¹): 2951, 2851, 1772, 1732, 1665. ¹H NMR (300 MHz, CDCl₃) δ 0.71 (3H, s, H20), 1.09 (3H, s, H18), 0.87-2.38 (12H, m), 1.93 (1H, d, J=12.9 Hz, H5), 1.97 (3H, s, CH₃CO₂-), 2.94 (1H, dd, J=12.9, 8.7 Hz, H_{12b}), 4.39 (1H, d, J=12.6 Hz, H6), 3.66 (3H, s, 19-CO₂CH₃), 3.70 (3H, s, 7-CO₂CH₃), 3.86 (3H, s, -O(CO)₂OCH₃), 5.04 (1H, br s, H17), 5.16 (1H, ddd, J=8.4, 8.1, 7.2 Hz, H11 overlapped), 5.19 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 15.2 (C20), 19.7 (C2), 21.3 (C18), 29.1 (CH₃CO₂-), 37.4 (C1), 40.4 (C3), 41.0 (C12), 43.5 (C14), 43.8 (C10), 44.4 (C15 and C4), 45.6 (C8), 50.5 (C6), 51.6, 51.8 (7- and 19-CO₂CH₃), 53.5 $(-O(CO)_2OCH_3)$, 56.4 (C5), 60.6 (C9), 67.5 (C11), 86.2 (C13), 108.5 (C17), 150.4 (C16), 150.8, 158.0 (-O(CO)₂OCH₃), 169.7 (CH₃CO₂-), 174.4 (C7), 177.1 (C19). MS (EI) m/z 520 (M⁺, 4%), 488 (6), 460 (8), 400 (100), 385 (25), 341 (17), 296 (17), 281 (9), 237 (22), 149 (11), 109 (12), 71 (22). HRMS (EI) m/z calcd for M⁺, C₂₇H₃₆O₁₀: 520.2308; found: 520.2309.

To a solution of the oxalate (32 mg, 0.0615 mmol) in toluene (18 mL) at room temperature under nitrogen were added tributyltin hydride (35.5 μ L, 0.135 mmol) and AIBN (10 mg, 0.0597 mmol). The mixture was degassed for 20 min and then heated to 80 °C for 3 h under nitrogen. The reaction mixture was concentrated to remove solvent and the residue was purified by chromatography on silica gel (EtOAc/hexanes, $1:7 \rightarrow 1:6$) to afford the desired product (9.5 mg, 0.0227 mmol, 37%) as an oil, which was used directly in the next reaction.

To a solution of this product (8.5 mg, 0.020 mmol) in MeOH (5 mL) cooled at 0 °C was added 0.5 M K₂CO₃ (2.5 mL). After 30 min, the reaction mixture was warmed to room temperature and stirred for an additional 48 h, then concentrated to remove MeOH and water. The residue was quenched with saturated aq NH₄Cl solution (40 mL) and EtOAc (50 mL), and extracted with EtOAc (2×30 mL). The combined organic extracts were washed with brine (30 mL) and then dried over MgSO₄. Concentration in vacuo and chromatography on silica gel (EtOAc/hexanes, 1:8) furnished the desired product 36 (3.5 mg, 0.009 mmol, 46%) as an oil. IR (Neat) v_{max} (cm⁻¹): 3489, 3067, 2928, 2854, 1730, 1658. ¹H NMR (300 MHz, CDCl₃) δ 0.76 (3H, s, H20), 1.11 (3H, s, H18), 0.68-2.42 (15H, m), 2.65 (1H, m, H5), 3.36 (1H, d, J=12.6 Hz, H6), 3.68 (3H, s, 19-CO₂CH₃), 3.69 (3H, s, 7-CO₂CH₃), 3.85 (1H, ddd, J=8.4, 8.1, 7.8 Hz, H11), 4.86 (1H, br s, H17), 4.98 (1H, br s, H'17). ¹³C NMR (75.5 MHz, CDCl₃) δ 14.9 (C20), 19.7 (C2), 29.2 (C18), 37.5 (C1), 38.1 (C3), 39.0 (C13), 40.9 (C12), 42.6 (C14), 44.0 (C10), 44.4 (C15), 46.5 (C4), 49.2 (C8), 51.1 (C6), 51.45, 51.48 (7- and 19-CO₂CH₃), 56.4 (C5), 65.3 (C9), 65.8 (C11), 106.7 (C17), 156.5 (C16), 175.3 (C7), 177.7 (C19). MS (EI) m/z 376 $(M^+, 15\%), 344$ (58), 316 (49), 298 (100), 283 (62), 257 (23), 239 (44), 197 (23), 159 (53), 119 (21), 105 (31), 91 (35). HRMS (EI) m/z calcd for M⁺, C₂₂H₃₂O₅: 376.2250; found: 376.2248. GC-MS (TMS ether methyl ester) 448 (M⁺, 2%), 416 (8), 388 (10), 373 (11), 345 (2), 341 (4), 326 (4), 299 (36), 298 (100), 283 (38), 267 (4), 239 (40), 223 (10), 207 (12), 197 (12), 183 (11), 167 (10), 157 (9), 143 (8), 129 (8), 105 (8), 91 (10); KRI 2549. Endogenous material: identical mass spectrum, KRI 2549.

References and notes

- Phytohormones and Related Compounds—A Comprehensive Treatise; Letham, D. S., Goodwin, P. B., Higgins, T. J. V., Eds.; Elsevier: Amsterdam, 1978; Vols. 1 and 2.
- 2. The Biochemistry and Physiology of Gibberellins; Crozier, A., Ed.; Praeger: New York, NY, 1983; Vols. 1 and 2.
- Plant Hormones and Their Role in Plant Growth and Development; Davies, P. J., Ed.; Martinus Nijhoff: Dordrecht, 1987.
- Beale, M. H.; Willis, C. L. *Methods in Plant Biochemistry*; Banthorpe, C., Charlewood, B. V., Eds.; Academic: London, 1991; Vol. 4, pp 289–330.
- 5. MacMillan, J. J. Plant Growth Regul. 2002, 20, 387.
- 6. O'Donnell, K.; Cigelnik, E.; Nirenberg, H. L. Mycologia 1998, 90, 465.
- 7. MacMillan, J.; Takahashi, N. Nature (London) 1968, 217, 170.
- 8. Hanson, J. R. Nat. Prod. Rep. 1990, 7, 41.
- 9. Hanson, J. R. Nat. Prod. Rep. 1992, 9, 139.
- 10. Mander, L. N. Nat. Prod. Rep. 2003, 20, 49.
- 11. Mander, L. N. Chem. Rev. 1992, 92, 573.
- Gaskin, P.; MacMillan, J. GC-MS of Gibberellins and Related Compounds: Methodology and a Library of Reference Spectra; Cantocks Enterprises: Bristol, 1991.
- Koshioka, M.; Pearce, D.; Pharis, R. P.; Murakami, Y. Agric. Biol. Chem. 1988, 52, 1353.

4851

- Yuda, E.; Nakagawa, S.; Murofushi, N.; Yokota, T.; Takahashi, N.; Koshioka, M.; Murakami, Y.; Pearce, D.; Pharis, R. P.; Patrick, G. L.; Mander, L. N.; Kraft-Klaunzer, P. *Biosci. Biotechnol. Biochem.* **1992**, *56*, 17.
- Cf. Mander, L. N.; Wynne, G. M.; Gotob, N.; Yamane, H.; Omori, T. *Tetrahedron Lett.* **1998**, *39*, 3877.
- 16. Cf. Mander, L. N.; Patrick, G. L. Tetrahedron Lett. 1990, 31, 423.
- 17. Dawe, R. D.; Mander, L. N.; Turner, J. V.; Xinfu, P. Tetrahedron Lett. 1985, 26, 5725.
- 18. Grove, J. F.; Mullholand, T. P. C. J. Chem. Soc. 1960, 3007.
- 19. Furber, M.; Mander, L. N. J. Am. Chem. Soc. 1987, 109, 6389.
- 20. Duri, Z. J.; Fraga, B. M.; Hanson, J. R. J. Chem. Soc., Perkin Trans. 1 1981, 161.

- 21. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
- 22. Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485.
- 23. Dolan, S. C.; MacMillan, J. J. Chem. Soc., Perkin Trans. 1 1985, 2741.
- 24. For the earlier synthesis of GA_{35} ,¹⁶ in order to prevent the formation of an 11β-17 ether from the 11β,17-diol intermediate, we had silylated (TBS) the 17-hydroxyl and then acetylated the 11β-hydroxyl. Removal of the silyl function, mesylation, iodide substitution and elimination had then afforded the 16-ene.
- 25. Nishijima, T.; Koshioka, M.; Yamazaki, H. Plant Growth Regul. 1993, 13, 241.