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ABSTRACT: Herein we describe a catalyst-free regioselective [3
+ 3] annulation/oxidation reaction of cyclic amidines such as DBU
(1,8-diazabicyclo(5.4.0)undec-7-ene) and DBN (1,5-
diazabicyclo(4.3.0)non-5-ene) with activated olefins, i.e., 2-
arylidenemalononitriles and 2-cyano-3-aryl acrylates, to afford
tricyclic 2-pyridones and pyridin-2(1H)-imines, respectively. The
mechanism has been proposed based on DFT calculations. In the
reaction, the cyclic amidines serve as C,N-bisnucleophiles for the cyclization, while the olefins play a dual role by acting as both
reactants and oxidants.

2-Pyridones are embedded as important core units in various
biologically active compounds1 and functional organic
materials.2 They are also used as versatile intermediates in
organic synthesis that can be converted into pyridines,
piperidines, quinolizidines, indolizidines, etc.3 In this regard,
a type of tricyclic 2-pyridone derivatives has recently gained
significant attention4 due to their intriguing optical properties.5

However, a survey of the literature showed that the
construction of this tricyclic system is tedious, often requiring
complex substrates and multiple steps of synthesis.6 Thus,
developing efficient and simple approaches to access tricyclic
2-pyridone structures is desirable.
Cyclic amidines such as DBU (1,8-diazabicyclo(5.4.0)-

undec-7-ene) and DBN (1,5-diazabicyclo(4.3.0)non-5-ene)
are commercially available substances, which are commonly
used as strong bases.7 However, the use of DBU and DBN as
nucleophiles acting as catalysts or reagents has also been well
documented.8 In particular, it has been reported that DBU and
DBN can be used as C,N-bisnucleophiles for cyclization
reactions to build multicyclic structues.9 Notably, Gryko and
co-workers9b,c have reported a cyclocondensation of DBU with
2,3-dichloroquinoxalines to form pentacyclic structures pos-
sessing strong fluorescence (Scheme 1a). The AlCl3-promoted
[3 + 3] annulation of alkynones and DBU to deliver tricyclic 2-
aminopyridinium salts bearing intensive blue luminescence was
disclosed by the Müller group9f (Scheme 1b). Dolphin and
Ma9g have developed a [3 + 2] annulation of DBU with
dimethyl acetylenedicarboxylate, which has a high regio- and
stereoselectivity (Scheme 1c). Tang5b and Gryko5c have
demonstrated the annulation of alkyl coumarins with DBU
or DBN for the construction of pentacyclic blue emitters
(Scheme 1d). Wu et al.9h have also described a palladium-
catalyzed carbonylative annulation of 1-bromo-2-fluoroben-
zenes with DBU to form multicyclic systems (Scheme 1e).
Herein, as part of our interest in Lewis base-promoted

reactions,10 we report the use of DBU and DBN as C,N-
bisnucleophiles for a regioselective [3 + 3] annulation/
oxidation tandem reaction with activated alkenes, i.e., 2-
arylidenemalononitriles and 2-cyano-3-aryl acrylates, for an
efficient synthesis of tricyclic 2-pyridones and pyridin-2(1H)-
imines, respectively (Scheme 1f). In the reaction, the substrate
olefin plays a dual role as both a reactant for the annulation
and an oxidant for an intermolecular hydrogen transfer (vide
inf ra).
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Scheme 1. DBU and DBN Used As C,N-Bisnucleophiles for
Cyclization Reactions
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Upon employing DBN as a Lewis base to promote
consecutive transformations, we serendipitously found an
interesting cyclization between benzylidenemalononitrile 1a
and DBN. Under the optimized conditions (for details, see the
Supporting Information), the reaction of 2.0 equiv of 1a (1.0
mmol) and DBN (2a, 0.5 mmol) in THF at room temperature
for 6 h afforded a tricyclic pyridin-2(1H)-imine product 3a as a
precipitate in a 78% yield together with a hydrogenated
product 1a′, which was isolated in a 48% yield (Scheme 2).

Structure analysis revealed that 3a was resulted from a [3 + 3]
annulation of 1a and DBN, followed by oxidation by another
molecule of 1a through intermolecular hydrogen transfer. Of
note, a similar reactivity between alkyl coumarins with DBU or
DBN has been disclosed previously,5b,c yet the reaction scope
and the mechanism have not been thoroughly investigated.
The substrate scope of the [3 + 3] annulation/oxidation of

DBN with 2-arylidenemalononitriles 1 was then briefly
examined (Scheme 3). 2-Arylidenemalononitriles 1 bearing
-Me, -OMe, -NMe2, -F, -Cl, and -Br on the phenyl ring were all
compatible, delivering the corresponding products 3a−j in
32−90% yields. As seen from the results, substitutions at the
para-, meta-, and ortho- positions of the benzene ring were all

tolerated. 2-Naphthylidenemalononitrile also reacted with
DBN to produce product 3k in a 47% yield. Of note, all the
products 3 were collected by precipitation with THF as the
solvent. Our attempt to isolate products 3 by column
chromatography failed, probably because the imino (NH)
group of the products is sensitive toward the stationary phase
(silica gel and aluminum oxide). The yields of some products
were relatively low, which is mainly due to the precipitation
being insufficient. For example, while the products 3e, 3g, and
3h precipitated in low yields, using NMR methods for the yield
determination showed the good conversion of the reaction
(Scheme 3).
Similar to DBN, DBU was also reactive toward the reaction

with arylidenemalononitriles. However, the precipitation of the
products was less efficient, presumably due to the more flexible
backbone of DBU moiety that is detrimental to precipitation.
Accordingly, for the reaction of DBU and benzylidenemalo-
nonitrile 1a, product 4a was collected in only a 30% yield by
precipitation (Scheme 3).
Based on the [3 + 3] annulation/oxidation of DBN or DBU

with 2-arylidenemalononitriles 1, we reasoned that 2-cyano-3-
aryl acrylates 5 might also be feasible C3-units in the reaction,
with the ester participating in the annulation. However, it was
found that substrates 5 were less reactive, and their annulations
were accomplished at a higher temperature. At 120 °C with
CH3CN as a solvent (for the conditions survey, see the
Supporting Information), the [3 + 3] annulation/oxidation of
DBN with 5 proceeded smoothly, delivering tricyclic 2-
pyridone products 6a−h in 53−89% yields with a good
functionality tolerance (Scheme 4, top). Notably, an alkyl-
substituted alkene, 2-cyano-3-cyclohexyl acrylate, was also
reactive for the reaction, generating the corresponding product

Scheme 2. An Unexpected Cyclization of DBN with 1a

Scheme 3. [3 + 3] Annulation/Oxidation of DBN or DBU
with 2-Arylidenemalononitrilesa

aReaction conditions are as follows: 1 (1.0 mmol) and 2 (0.5 mmol)
were stirred in THF (2.0 mL) at room temperature under a N2
atmosphere for 6 h; products were collected from precipitation. bYield
in parentheses was measured by 1H NMR using dibromomethane as
an internal standard. cDisplacement ellipsoids are drawn at the 50%
probability level.

Scheme 4. [3 + 3] Annulation/Oxidation of DBN or DBU
with 2-Cyano-3-arylacrylatesa

aReaction conditions are as follows: 5 (0.4 mmol) and 2 (0.2 mmol)
were stirred in CH3CN (1.0 mL) at 120 °C under a N2 atmosphere
for 4 h; products, except 6a and 7a, were isolated by column
chromatography. bProducts were collected by precipitation. cYield in
parentheses is from a 20 mmol scale reaction.
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6i in a 68% yield. As shown, DBU also exhibited a comparable
reactivity in the annulation with 5, providing products 7a−i in
73−87% yields (Scheme 4, bottom). Of note, products 6 and 7
could be isolated by column chromatography due to the better
stabilities compared to those of 3 and 4. To demonstrate the
practicality, a scaled-up synthesis of compound 6b was carried
out (20 mmol), which afforded 6b in 2.54 g and an 88% yield
(Scheme 4).
The structures of all the products11 3, 4, 6, and 7 have been

well established by 1H and 13C NMR, IR, HRMS, and X-ray
crystallographic analysis (for 3b, CCDC 2021247). It is
noteworthy that the reaction shows an excellent regioselectiv-
ity; all products were obtained as single regioisomers. Although
DBN and DBU are used as C,N-bisnucleophiles in the
reaction, their C-nucleophile selectively attacks at the alkene,
while the N-nucleophile only adds to the carbonyl or nitrile.
To demonstrate the application of the products, Suzuki

cross-couplings of the product 6f with arylboronic acids under
the catalysis of Pd(PPh3)4 were conducted, which afforded the
biphenyl products 8 in good yields (Scheme 5).

A possible mechanism for the formation of 3a is proposed in
Scheme 6. First, the tautomerization of DBN gives an enamine

intermediate 2a′, which adds to the olefin 1a via a Michael
reaction to furnish intermediate Int-1.12 A proton transfer
occurs to deliver adduct Int-2, which cyclizes to form species
Int-3 by the intramolecular attack of the sp2 N on a cyano
group. Another hydrogen transfer then gives Int-4, which
undergoes the final oxidation13 by another molecule of 1a to
afford the product 3a. A DFT calculation was performed to
inspect the mechanism (Figure 1, see details in the Supporting
Information). It shows that the tautomerization of DBN to 2a′
is endothermic (+14.1 kcal mol−1), while the attack of 2a′ at
1a to form the zwitterion Int-1 is fast (activation barrier of 7.6
kcal mol−1) and exothermic (−25.0 kcal mol−1). The
formation of Int-3 for the cyclization was found to be
endergonic (Int-1 ⇌ Int-2 ⇌ Int-3, +16.0 kcal mol−1),
whereas the hydrogen shift from Int-3 to Int-4 is energy-
releasing (−10.8 kcal mol−1). For the oxidation of Int-4 by
another molecule of 1a, it was computed that a stepwise

process (TS-4 and TS-5) may be responsible. The first step is
associated with a direct hydride transfer,13,14 forming an ion-
pair intermediate Int-5. A charge population analysis of Int-5
confirms the 0.97 electron transfer from the dehydrogenated
form of Int-4 to the hydrogenated form of 1a. The second step
is a fast proton transfer within the ion pair, which is driven by
aromatization, to finally afford products 3a and 1a′. The
oxidation is reminiscent of the biomimetic hydrogenation of
active olefins by the Hantzsch 1,4-dihydropyridine ester
through self-catalysis by decreasing the HOMO−LUMO
energy gap.14f,g The overall tandem reaction is exergonic and
releases 34.7 kcal mol−1 of energy.
In summary, we have reported the use of DBU and DBN as

C,N-bisnucleophiles for a highly regioselective [3 + 3]
annulation/oxidation tandem reaction with activated olefins
such as 2-arylidenemalononitriles and 2-cyano-3-arylacrylates.
The reaction provides an easy access to tricyclic 2-pyridones
and tricyclic pyridin-2(1H)-imines in good yields under
catalyst-free conditions. Interestingly, the substrate olefin
plays a dual role in the reaction, serving as both a reactant
for the annulation and an oxidant for an intermolecular
hydrogen transfer. A DFT calculation was performed to clarify
the mechanism. Given the importance of the tricyclic 2-
pyridone structure in materials, we anticipate that this method
will be useful to the chemistry community. Future efforts will
focus on the application of the current method for the
synthesis of functional organic materials.

■ EXPERIMENTAL SECTION
Unless otherwise stated, all reactions were performed in oven-dried or
flame-dried glassware under a nitrogen atmosphere. All solvents were
purified prior to use according to standard procedures. 2-
Arylidenemalononitriles 115 and 2-cyano-3-arylacrylates 516 were
prepared according to reported methods. All other reagents were
purchased from commercial sources and used without further
purification. For reactions that require heating, an oil bath was used
as the heating source. All reactions were monitored by thin layer
chromatography (TLC) and visualized by UV irradiation. 1H and 13C
NMR spectra were recorded on a Bruker AV400 spectrometer.
Chemical shifts (δ values) were reported in parts per million (ppm)
with TMS (1H NMR) and CDCl3 (

13C NMR) as internal standards,
respectively. Peak multiplicities are reported as follows: s = singlet, t =

Scheme 5. Elaboration of the Product

Scheme 6. Proposed Mechanism for the Cyclization

Figure 1. Relative Gibbs free-energy profile computed for the
annulation of 1a and DBN.
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triplet, dd = doublet of doublets, dt = doublet of triplets, m =
multiplet. High-resolution ESI mass spectra were determined on a
WATERS I-Class VION IMS Q TOF LC/MS system. X-ray
crystallographic analysis was performed on a Bruker D8 Quest
system. IR data were measured on a Nicolet iS10 FT-IR spectrometer.
Melting points were measured on a WRX-4 apparatus and are
uncorrected.
General Procedure for the Synthesis of Compounds 3 and

4. 2-Arylidenemalononitriles 1 (1.0 mmol) were placed in a Schlenk
tube (10 mL), and the vessel was evacuated and refilled with nitrogen
three times. THF (2.0 mL) was subsequently was added, followed by
either DBN 2a (0.5 mmol) or DBU 2b (0.5 mmol) to get a yellow
suspension. The mixture was stirred vigorously at room temperature
for 6 h. The reaction was monitored by TLC (ethyl acetate/
petroleum ether = 1:20). After the complete consumption of the
starting material, the mixture was filtered to afford crude products 3 or
4. Pure products of 3 or 4 were obtained via recrystallization from
ethanol or a mixed solvent of CHCl3 and hexane. The filtrate was
concentrated, and the residue was purified by preparative TLC (ethyl
acetate/petroleum ether = 1:20) to afford the hydrogenated product
1′.
General Procedure for the Synthesis of Compounds 6 and

7. Ethyl (E)-2-cyano-3-arylacrylates 5 (0.4 mmol) was placed in a
Schlenk tube (10 mL), and the vessel was evacuated and refilled with
nitrogen three times. CH3CN (1.0 mL) was subsequently added,
followed by either DBN 2a (0.2 mmol) or DBU 2b (0.2 mmol). The
mixture was stirred vigorously at 120 °C under a nitrogen atmosphere
for 4 h. After the completion of the reaction (as monitored by TLC),
all volatiles were evaporated in vacuo. The residue was then purified
by column chromatography (ethyl acetate/petroleum ether = 1:10,
then ethyl acetate/methanol = 5:1) to obtain the hydrogenated
product 5′ and products 6 or 7. Products 6a and 7a could also be
isolated by precipitation due to their poor solubility in the solvent
CH3CN.
3a. Starting from 2-benzylidenemalononitrile 1a (154.2 mg, 1.0

mmol) and DBN 2a (62.1 mg, 0.5 mmol), product 3a was obtained
via recrystallization (CHCl3/hexane = 1:4) in a 108.0 mg (78%) yield
as a yellow solid. 2-Benzylmalononitrile 1a′, which is a known
compound,17 was obtained by preparative TLC (ethyl acetate/
petroleum ether = 1:20) in a 37.5 mg (48%) yield. Analytical data for
3a: mp 272−273 °C. IR (ATR): ν ̃ 2940, 2860, 2167, 1615, 1578,
1490, 1440, 1408, 1371, 1308, 1275, 1245, 1193, 1132, 1078, 1027,
945, 748, 713 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.45−7.35 (m,
5H), 4.08−3.89 (m, 2H), 3.66 (t, J = 8.0 Hz, 2H), 3.33 (t, J = 8.6 Hz,
2H), 2.77 (t, J = 8.1 Hz, 2H), 2.25−2.10 (m, 2H). 13C{1H} NMR
(100 MHz, CDCl3): δ 158.4, 154.0, 151.1, 136.3, 129.1, 128.5, 127.8,
120.8, 97.2, 79.6, 52.0, 42.1, 39.4, 24.3, 20.3. HRMS (ESI): m/z calcd
for C17H17N4

+ [M + H]+ 277.1448. Found: 277.1437.
3b. Starting from 2-(4-methylbenzylidene)malononitrile 1b (168.2

mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product 3b was
obtained via recrystallization from ethanol in a 112.2 mg (77%) yield
as a yellow solid. 2-(4-Methylbenzyl)malononitrile 1b′, which is a
known compound,17 was obtained by preparative TLC (ethyl acetate/
petroleum ether = 1:20) in a 59.8 mg (70%) yield. Analytical data for
3b: mp 235−236 °C. IR (ATR): ν ̃ 3312, 2860, 2170, 1616, 1572,
1513, 1445, 1417, 1378, 1334, 1305, 1277, 1254, 1200, 1175, 1147,
1112, 1040, 1018, 978, 958, 922, 891, 824, 742, 651 cm−1. 1H NMR
(400 MHz, CDCl3): δ 7.30 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.7 Hz,
2H), 3.97 (t, J = 5.8 Hz, 2H), 3.65 (t, J = 8.3 Hz, 2H), 3.31 (t, J = 5.5
Hz, 2H), 2.78 (t, J = 8.3 Hz, 2H), 2.38 (s, 3H), 2.23−2.12 (m, 2H).
13C{1H} NMR (100 MHz, CDCl3): δ 158.5, 153.9, 151.2, 139.1,
133.3, 129.2, 127.8, 121.0, 97.0, 79.6, 52.0, 42.1, 39.3, 24.4, 21.4, 20.3.
HRMS (ESI): m/z calcd forC18H19N4

+ [M + H]+ 291.1604. Found:
291.1596.
3c. Starting from 2-(4-methoxybenzylidene)malononitrile 1c

(184.2 mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product
3c was obtained via recrystallization from ethanol in a 119.4 mg
(78%) yield as a yellow solid. 2-(4-Methoxybenzyl)malononitrile 1c′,
which is a known compound,17 was obtained by preparative TLC
(ethyl acetate/petroleum ether = 1:20) in a 65.3 mg (70%) yield.

Analytical data for 3c: mp 209−211 °C. IR (ATR): ν ̃ 3296, 2942,
2861, 2173, 1609, 1579, 1558, 1509, 1442, 1422, 1376, 1294, 1276,
1247, 1174, 1148, 1115, 1026, 922, 890, 844, 820, 751, 654 cm−1. 1H
NMR (400 MHz, CDCl3): δ 7.37 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8
Hz, 2H), 4.00−3.92 (m, 2H), 3.83 (s, 3H), 3.65 (t, J = 8.4 Hz, 2H),
3.31 (t, J = 5.8 Hz, 2H), 2.79 (t, J = 8.4 Hz, 2H), 2.21−2.12 (m, 2H).
13C{1H} NMR (100 MHz, CDCl3): δ 160.1, 158.6, 153.9, 150.7,
129.4, 128.4, 121.3, 113.9, 97.2, 79.2, 55.3, 51.9, 42.1, 39.3, 24.4, 20.3.
HRMS (ESI): m/z calcd for C18H19N4O

+ [M + H]+ 307.1546.
Found: 307.1543.

3d. Starting from 2-(4-(dimethylamino)benzylidene)malononitrile
1d (197.2 mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product
3d was obtained via recrystallization (CHCl3/hexane = 1:4) in a
113.0 mg (71%) yield as a yellow solid. 2-(4-(Dimethylamino)-
benzyl)malononitrile 1d′, which is a known compound,18 was
obtained by preparative TLC (ethyl acetate/petroleum ether = 1:3)
in a 75.2 mg (76%) yield. Analytical data for 3d: mp 248−250 °C. IR
(ATR): ν ̃ 3538, 3214, 2866, 2171, 1607, 1579, 1516, 1446, 1365,
1333, 1310, 1268, 1199, 1170, 1064, 1038, 961, 944, 921, 821, 746,
734, 651 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.37 (d, J = 8.9 Hz,
2H), 6.74 (d, J = 8.8 Hz, 2H), 4.02−3.94 (m, 2H), 3.65 (t, J = 8.4 Hz,
2H), 3.31 (t, J = 5.7 Hz, 2H), 3.00 (s, 6H), 2.86 (t, J = 8.3 Hz, 2H),
2.23−2.13 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 158.8,
153.8, 151.3, 150.8, 129.2, 123.3, 121.6, 111.6, 96.9, 79.3, 52.0, 42.2,
40.2, 39.4, 24.8, 20.4. HRMS (ESI): m/z calcd for C19H22N5

+ [M +
H]+ 320.1870. Found: 320.1865.

3e. Starting from 2-(4-fluorobenzylidene)malononitrile 1e (172.2
mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product 3e was
obtained via recrystallization from ethanol in a 53.4 mg (36%) yield.
2-(4-Fluorobenzyl)malononitrile 1e′, which is a known compound,17

was obtained by preparative TLC (ethyl acetate/petroleum ether =
1:20) in a less than 5% yield. Analytical data for 3e: mp 225−226 °C.
IR (ATR): ν ̃ 3304, 2945, 2861, 2167, 1616, 1579, 1505, 1417, 1373,
1333, 1305, 1274, 1251, 1226, 1159, 1138, 1100, 1033, 1014, 974,
956, 918, 891, 834, 787, 753, 739, 706, 665 cm−1. 1H NMR (400
MHz, CDCl3): δ 7.44−7.35 (m, 2H), 7.13 (t, J = 8.7 Hz, 2H), 4.10−
4.00 (m, 2H), 3.70 (t, J = 8.4 Hz, 2H), 3.35 (t, J = 5.7 Hz, 2H), 2.79
(t, J = 8.4 Hz, 2H), 2.27−2.17 (m, 2H). 13C{1H} NMR (100 MHz,
CDCl3): δ 163.1 (d, JF−C = 249.2 Hz), 157.9, 154.0, 149.9, 131.9 (d,
JF−C = 3.4 Hz), 129.9 (d, JF−C = 8.4 Hz), 120.2, 115.8 (d, JF−C = 21.8
Hz), 98.5, 79.5, 52.0, 42.1, 39.9, 24.2, 20.2. HRMS (ESI): m/z calcd
for C17H16FN4

+ [M + H]+ 295.1353. Found: 295.1346.
3f. Starting from 2-(4-chlorobenzylidene)malononitrile 1f (188.6

mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product 3f was
obtained via recrystallization (CHCl3/hexane = 1:4) in a 84.1 mg
(54%) yield as a yellow solid. 2-(4-Chlorobenzyl)malononitrile 1f′,
which is a known compound,17 was obtained by preparative TLC
(ethyl acetate/petroleum ether = 1:20) in a 45.4 mg (48%) yield.
Analytical data for 3f: mp 232−224 °C. IR (ATR): ν ̃ 3305, 2863,
2175, 1616, 1583, 1554, 1519, 1488, 1419, 1377, 1333, 1310, 1280,
1256, 1200, 1181, 1147, 1106, 1088, 1041, 1010, 976, 959, 922, 893,
831, 756, 709, 661 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.42 (d, J =
8.6 Hz, 2H), 7.36 (d, J = 8.6 Hz, 2H), 4.07−3.94 (m, 2H), 3.76−3.63
(m, 2H), 3.35 (t, J = 5.8 Hz, 2H), 2.83−2.70 (m, 2H), 2.27−2.15 (m,
2H). 13C{1H} NMR (100 MHz, CDCl3): δ 158.2, 154.1, 149.7, 135.1,
134.7, 129.3, 128.9, 120.7, 97.0, 79.3, 51.9, 42.1, 39.3, 24.2, 20.3.
HRMS (ESI): m/z calcd for C17H16ClN4

+ [M + H]+ 311.1058.
Found: 311.1053.

3g. Starting from 2-(4-bromobenzylidene)malononitrile 1g (232.1
mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product 3g was
obtained via recrystallization (CHCl3/hexane = 1:4) in a 57.0 mg
(32%) yield as a yellow solid. 2-(4-Bromobenzyl)malononitrile 1g′,
which is a known compound,19 was obtained by preparative TLC
(ethyl acetate/petroleum ether = 1:20) in a 71.8 mg (61%) yield.
Analytical data for 3g: mp 209−210 °C. IR (ATR): ν ̃ 3304, 2862,
2175, 1615, 1582, 1550, 1519, 1485, 1417, 1377, 1333, 1310, 1277,
1254, 1199, 1145, 1105, 1072, 1038, 1006, 974, 957, 920, 892, 842,
829, 755, 739, 656 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.55 (d, J =
8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 4.04−3.92 (m, 2H), 3.68 (t, J =
8.3 Hz, 2H), 3.33 (t, J = 5.7 Hz, 2H), 2.75 (t, J = 8.3 Hz, 2H), 2.25−
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2.13 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 158.2, 154.1,
149.6, 135.2, 131.8, 129.6, 123.3, 120.8, 97.0, 79.1, 51.9, 42.1, 39.3,
24.2, 20.2. HRMS (ESI): m/z calcd for C17H16BrN4

+ [M + H]+

355.0553. Found: 355.0553.
3h. Starting from 2-(3-methoxybenzylidene)malononitrile 1h

(184.2 mg, 1.0 mmol) and DBN 3a (62.1 mg, 0.5 mmol), product
3h was obtained via recrystallization (CHCl3/hexane = 1:4) in a 38.2
mg (25%) yield as a yellow solid. 2-(3-Methoxybenzyl)malononitrile
1h′ which is a known compound,20 was obtained by preparative TLC
(ethyl acetate/petroleum ether = 1:20) in a 57.1 mg (61%) yield,.
Analytical data for 3h: mp 184−186 °C. IR (ATR): ν ̃ 3292, 2951,
2852, 2169, 1617, 1585, 1554, 1523, 1489, 1461, 1422, 1377, 1336,
1304, 1273, 1245, 1162, 1142, 1081, 1052, 1031, 995, 952, 910, 894,
856, 821, 764, 749, 734, 664 cm−1. 1H NMR (400 MHz, CDCl3): δ
7.34 (dd, J = 9.0, 7.6 Hz, 1H), 7.04−6.90 (m, 3H), 4.05−3.92 (m,
2H), 3.82 (s, 3H), 3.66 (t, J = 8.4 Hz, 2H), 3.32 (t, J = 5.8 Hz, 2H),
2.78 (t, J = 8.4 Hz, 2H), 2.27−2.11 (m, 2H). 13C{1H} NMR (100
MHz, CDCl3): δ 159.5, 158.4, 154.0, 150.8, 137.6, 129.7, 120.9,
120.2, 114.7, 113.4, 97.2, 79.3, 55.4, 51.9, 42.0, 39.3, 24.3, 20.3.
HRMS (ESI): m/z calcd for C18H18KN4O

+ [M + K]+ 345.1120.
Found: 345.1121.
3i. Starting from 2-(2-methoxybenzylidene)malononitrile 1i (184.2

mg, 1.0 mmol) and DBN 3a (62.1 mg, 0.5 mmol), product 3i was
obtained via recrystallization (CHCl3/hexane = 1:4) in a 137.9 mg
(90%) yield as a yellow solid. 2-(2-Methoxybenzyl)malononitrile 1i′,
which is a known compound,20 was obtained by preparative TLC
(ethyl acetate/petroleum ether = 1:20) in a 63.0 mg (68%) yield.
Analytical data for 3i: mp 242−243 °C. IR (ATR): ν ̃ 3301, 2927,
2867, 2173, 1616, 1591, 1548, 1520, 1487, 1455, 1432, 1408, 1373,
1335, 1307, 1281, 1196, 1156, 1050, 1024, 957, 918, 793, 743, 714,
667 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.41−7.32 (m, 1H), 7.23
(dd, J = 7.5, 1.6 Hz, 1H), 7.02 (d, J = 7.5 Hz, 1H), 7.00−6.96 (m,
1H), 3.96 (td, J = 5.8, 1.8 Hz, 2H), 3.85 (s, 3H), 3.70−3.58 (m, 2H),
3.31 (t, J = 5.8 Hz, 2H), 2.77−2.53 (m, 2H), 2.24−2.11 (m, 2H).
13C{1H} NMR (100 MHz, CDCl3): δ 158.4, 155.9, 153.7, 148.4,
130.4, 129.6, 125.0, 120.8, 120.8, 111.4, 98.7, 80.4, 55.7, 51.9, 42.0,
39.2, 24.1, 20.3. HRMS (ESI): m/z calcd for C18H19N4O

+ [M + H]+

307.1553. Found: 307.1545.
3j. Starting from 2-(3,4-dimethylbenzylidene)malononitrile 1j

(182.2 mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product
3j was obtained via recrystallization (CHCl3/hexane = 1:4) in a 96.4
mg (63%) yield as a yellow solid. 2-(3,4-Dimethylbenzyl)-
malononitrile 1j′, which is a known compound,21 was obtained by
preparative TLC (ethyl acetate/petroleum ether = 1:20) in a 44.1 mg
(48%) yield. Analytical data for 3j: mp 210−211 °C. IR (ATR): ν ̃
3322, 2868, 2169, 1622, 1574, 1554, 1531, 1503, 1452, 1419, 1378,
1311, 1279, 1249, 1209, 1159, 1137, 1124, 1105, 1003, 974, 958, 932,
906, 879, 828, 763, 663 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.20−
7.13 (m, 3H), 4.01−3.94 (m, 2H), 3.65 (t, J = 8.4 Hz, 2H), 3.32 (t, J
= 5.7 Hz, 2H), 2.79 (t, J = 8.4 Hz, 2H), 2.29 (s, 6H), 2.23−2.14 (m,
2H). 13C{1H} NMR (100 MHz, CDCl3): δ 158.6, 153.9, 151.2, 137.7,
136.7, 133.8, 129.7, 128.9, 125.3, 121.1, 97.0, 79.5, 51.9, 42.1, 39.3,
24.4, 20.3, 19.9, 19.7. HRMS (ESI): m/z calcd for C19H21N4

+ [M +
H]+ 305.1761. Found: 305.1756.
3k. Starting from 2-(naphthalen-2-ylmethylene)malononitrile 1k

(204.2 mg, 1.0 mmol) and DBN 2a (62.1 mg, 0.5 mmol), product 3k
was obtained via recrystallization (CHCl3/hexane = 1:4) in a 76.0 mg
(47%) yield as a yellow solid. 2-(Naphthalen-2-ylmethyl)-
malononitrile 1k′, which is a known compound,19 was obtained by
preparative TLC (ethyl acetate/petroleum ether = 1:20) in a 68.8 mg
(67%) yield. Analytical data for 3k: mp 220−221 °C. IR (ATR): ν ̃
2925, 2171, 1609, 1581, 1548, 1527, 1467, 1409, 1378, 1303, 1274,
1251, 1199, 1143, 1032, 959, 890, 855, 813, 772, 758, 746, 669 cm−1.
1H NMR (400 MHz, CDCl3): δ 7.93−7.83 (m, 4H), 7.57−7.45 (m,
3H), 4.06−3.98 (m, 2H), 3.67 (t, J = 8.4 Hz, 2H), 3.34 (t, J = 5.8 Hz,
2H), 2.81 (t, J = 8.3 Hz, 2H), 2.25−2.16 (m, 2H). 13C{1H} NMR
(100 MHz, CDCl3): δ 158.4, 154.0, 151.0, 133.7, 133.4, 133.0, 128.4,
127.8, 127.4, 126.8, 126.5, 125.3, 120.8, 100.0, 97.6, 79.8, 52.0, 42.1,
39.5, 24.4, 20.3. HRMS (ESI) calcd for C21H22N5

+ [M + NH4]
+

344.1870. Found: 344.1873.

4a. Starting from 2-benzylidenemalononitrile 1a (154.2 mg, 1.0
mmol) and DBU 2b (76.1 mg, 0.5 mmol), product 4a was obtained
via recrystallization (CHCl3/hexane = 1:4) in a 45.6 mg (30%) yield
as a green solid. The hydrogenated compound 2-benzylmalononitrile
1a′ was not isolated. Analytical data for 4a: mp 250−251 °C. IR
(ATR): ν ̃ 2929, 2846, 2183, 1582, 1540, 1482, 1379, 1335, 1313,
1278, 1238, 1196, 1154, 1132, 1084, 1025, 993, 962, 938, 926, 909,
790, 756, 715, 699, 659 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.48−
7.36 (m, 3H), 7.25 (dd, J = 7.8, 1.6 Hz, 2H), 4.21−4.13 (m, 2H),
3.58−3.51 (m, 2H), 3.37 (t, J = 6.4 Hz, 2H), 2.25−2.17 (m, 2H),
2.15−2.07 (m, 2H), 1.95−1.84 (m, 2H), 1.68−1.57 (m, 2H).
13C{1H} NMR (100 MHz, CDCl3): δ 157.7, 157.6, 153.5, 137.7,
128.7, 128.6, 128.0, 119.2, 99.4, 86.3, 52.8, 49.3, 41.4, 27.5, 24.4 (2C),
22.3. HRMS (ESI) calcd for C19H20LiN4

+ [M + Li]+ 311.1843.
Found:311.1849.

6a. Starting from ethyl (E)-2-cyano-3-phenylacrylate 5a (80.5 mg,
0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product 6a was
obtained by precipitation from the reaction) in a 42.5 mg (77%) yield
as a yellow solid. Ethyl 2-cyano-3-phenylpropanoate 5a′, which is a
known compound,17 was obtained by preparative TLC (ethyl acetate/
petroleum ether = 1:10) in a 28.8 mg (71%) yield. Analytical data for
6a: mp > 290 °C. IR (ATR): ν ̃ 3675, 2973, 2794, 1700, 1614, 1557,
1538, 1495, 1440, 1392, 1366, 1308, 1273, 1209, 1180, 1081, 889,
788, 764, 740, 708, 670 cm−1. 1H NMR (400 MHz, DMSO-d6): δ
7.54−7.39 (m, 5H), 3.83−3.75 (m, 2H), 3.72 (t, J = 8.3 Hz, 2H),
3.32−3.29 (t, 2H), 2.76 (t, J = 8.2 Hz, 2H), 2.11−1.98 (m, 2H).
13C{1H} NMR (100 MHz, DMSO-d6): δ 161.2, 154.9, 150.2, 136.4,
129.4, 129.0, 128.3, 120.4, 102.4, 78.4, 51.8, 41.9, 38.1, 24.1, 19.6.
HRMS (ESI): m/z calcd for C17H16N3O

+ [M + H]+ 278.1288.
Found: 278.1284.

6b. Starting from ethyl (E)-2-cyano-3-(p-tolyl)acrylate 5b (86.0
mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product 6b was
obtained by column chromatography (ethyl acetate/methanol = 5:1)
in a 51.4 mg (89%) yield as a yellow solid. Ethyl 2-cyano-3-(p-
tolyl)propanoate 5b′, which is a known compound,17 was obtained by
column chromatography (ethyl acetate/petroleum ether = 1:10) in a
28.9 mg (67%) yield. Analytical data for 6b: mp 212−214 °C. IR
(ATR): ν ̃ 3526, 2970, 2902, 2249, 2190, 1734, 1700, 1650, 1615,
1554, 1536, 1512, 1454, 1393, 1374, 1259, 1185, 1049, 890, 832, 800,
769, 753, 666 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.31 (d, J = 8.1
Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 4.00−3.92 (m, 2H), 3.73 (t, J = 8.4
Hz, 2H), 3.34 (t, J = 5.8 Hz, 2H), 2.88 (t, J = 8.4 Hz, 2H), 2.38 (s,
3H), 2.15 (dt, J = 11.7, 5.9 Hz, 2H). 13C{1H} NMR (100 MHz,
CDCl3): δ 161.5, 154.1, 152.4, 139.3, 132.7, 129.2, 127.9, 119.4,
101.1, 81.6, 52.0, 42.2, 37.9, 24.6, 21.4, 19.9. HRMS (ESI): m/z calcd
for C18H21N4O

+ [M + NH4]
+ 309.1710. Found: 309.1730.

6c. Starting from ethyl (E)-2-cyano-3-(4-methoxyphenyl)acrylate
5c (92.4 mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product
6c was obtained by column chromatography (ethyl acetate/methanol
= 5:1) in a 54.4 mg (89%) yield as a yellow solid. Ethyl 2-cyano-3-(4-
methoxyphenyl)propanoate 5c′, which is a known compound,17 was
obtained by column chromatography (ethyl acetate/petroleum ether
= 1:10) in a 38.1 mg (82%) yield. Analytical data for 6c: mp 224−225
°C. IR (ATR): ν ̃ 3547, 2913, 2190, 1711, 1614, 1535, 1510, 1459,
1418, 1392, 1372, 1307, 1278, 1252, 1175, 1117, 1025, 973, 891, 842,
771, 755, 725, 700, 655 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.38
(d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 3.95−3.89 (m, 2H),
3.83 (s, 3H), 3.73 (t, J = 8.4 Hz, 2H), 3.33 (t, J = 5.8 Hz, 2H), 2.89 (t,
J = 8.4 Hz, 2H), 2.16−2.07 (m, 2H). 13C{1H} NMR (100 MHz,
CDCl3): δ 161.5, 160.2, 154.2, 151.6, 129.6, 127.9, 119.8, 113.9,
101.3, 81.0, 55.3, 51.9, 42.1, 37.9, 24.7, 19.8. HRMS (ESI): m/z calcd
for C18H18N3O2

+ [M + H]+ 308.1394. Found: 308.1389.
6d. Starting from ethyl (E)-2-cyano-3-(4-(dimethylamino)phenyl)-

acrylate 5d (97.5 mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol),
product 6d was obtained by column chromatography (ethyl acetate/
methanol = 5:1) in a 44.5 mg (69%) yield as a green solid. Ethyl 2-
cyano-3-(4-(dimethylamino)phenyl)propanoate 5d′, which is a
known compound,22 was obtained by column chromatography
(ethyl acetate/petroleum ether = 1:5) in a 27.7 mg (56%) yield.
Analytical data for 6d: mp 287−289 °C. IR (ATR): ν ̃ 2883, 2189,
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1631, 1604, 1519, 1444, 1394, 1355, 1303, 1272, 1212, 1193, 1163,
1126, 1100, 1043, 942, 825, 762, 654 cm−1. 1H NMR (400 MHz,
CDCl3): δ 7.37 (d, J = 8.9 Hz, 2H), 6.74 (d, J = 8.7 Hz, 2H), 3.95−
3.89 (m, 2H), 3.71 (t, J = 8.4 Hz, 2H), 3.31 (t, J = 5.8 Hz, 2H), 3.00
(s, 6H), 2.93 (t, J = 8.4 Hz, 2H), 2.14−2.07 (m, 2H). 13C{1H} NMR
(100 MHz, CDCl3): δ 161.8, 154.0, 152.4, 150.8, 129.5(2C), 120.1,
111.7, 100.7, 81.2, 52.0, 42.3, 40.3, 37.9, 25.0, 20.0. HRMS (ESI): m/
z calcd for C19H20LiN4O

+ [M + Li]+ 327.1792. Found: 327.1776.
6e. Starting from ethyl (E)-3-(4-chlorophenyl)-2-cyanoacrylate 5f

(94.0 mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product 6e
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 35.0 mg (56%) yield as a yellow solid. Ethyl 3-(4-
chlorophenyl)-2-cyanopropanoate 5f′, which is a known compound,17

was obtained by column chromatography (ethyl acetate/petroleum
ether = 1:10) in a 33.2 mg (70%) yield. Analytical data for 6e: mp
237−238 °C. IR (ATR): ν ̃ 3545, 2912, 2194, 1617, 1554, 1534, 1488,
1406, 1371, 1307, 1279, 1187, 1151, 1108, 1089, 1043, 1009, 977,
891, 833, 768, 754, 700, 651 cm−1. 1H NMR (400 MHz, CDCl3): δ
7.42−7.32 (m, 4H), 3.97−3.89 (m, 2H), 3.75 (t, J = 8.4 Hz, 2H),
3.35 (t, J = 5.8 Hz, 2H), 2.86 (t, J = 8.4 Hz, 2H), 2.19−2.08 (m, 2H).
13C{1H} NMR (100 MHz, CDCl3): δ 161.2, 154.3, 150.7, 135.3,
134.1, 129.5, 128.8, 119.3, 101.4, 80.8, 51.9, 42.1, 37.9, 24.3, 19.8.
HRMS (ESI): m/z calcd for C17H15ClN3O

+ [M + H]+ 312.0898.
Found: 312.0885.
6f. Starting from ethyl (E)-3-(4-bromophenyl)-2-cyanoacrylate 5g

(111.6 mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product 6f
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 37.6 mg (53%) yield as a yellow solid. Ethyl 3-(4-
bromophenyl)-2-cyanopropanoate 5g′, which is a known com-
pound,17 was obtained by column chromatography (ethyl acetate/
petroleum ether = 1:10) in a 30.7 mg (55%) yield. Analytical data for
6f: mp 270−272 °C. IR (ATR): ν ̃ 2972, 2189, 1636, 1611, 1550,
1486, 1401, 1369, 1309, 1275, 1182, 1153, 1104, 1073, 1046, 1007,
904, 835, 764, 698, 653 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.56
(d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.00−3.92 (m, 2H),
3.75 (t, J = 8.4 Hz, 2H), 3.35 (t, J = 5.8 Hz, 2H), 2.86 (t, J = 8.4 Hz,
2H), 2.22−2.11 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ
161.2, 154.3, 151.0, 134.5, 131.9, 129.7, 123.6, 119.1, 101.0, 81.3,
51.9, 42.2, 37.9, 24.4, 19.9. HRMS (ESI): m/z calcd for
C17H15BrN3O

+ [M + H]+ 356.0393. Found: 356.0374.
6g. Starting from ethyl (E)-2-cyano-3-(3, 4-dimethylphenyl)-

acrylate 5h (91.6 mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2
mmol), product 6g was obtained by column chromatography (ethyl
acetate/methanol = 5:1) in a 48.3 mg (79%) yield as a yellow solid.
Ethyl 2-cyano-3-(3,4-dimethylphenyl)propanoate 5h′, which is a
known compound,21 was obtained by column chromatography (ethyl
acetate/petroleum ether = 1:10) in a 32.3 mg (70%) yield. Analytical
data for 6g: mp 229−231 °C. IR (ATR): ν ̃ 2910, 2188, 1620, 1582,
1539, 1503, 1451, 1411, 1366, 1309, 1276, 1242, 1210, 1196, 1173,
1151, 1125, 1106, 1049, 1027, 1001, 923, 836, 791, 753, 662 cm−1. 1H
NMR (400 MHz, CDCl3): δ 7.19−7.11 (m, 3H), 3.97−3.90 (m, 2H),
3.77−3.69 (m, 2H), 3.34 (t, J = 5.8 Hz, 2H), 2.87 (t, J = 8.4 Hz, 2H),
2.27 (s, 3H), 2.26 (s, 3H), 2.18−2.09 (m, 2H). 13C{1H} NMR (100
MHz, CDCl3): δ 161.5, 154.2, 152.3, 137.8, 136.7, 133.2, 129.7,
129.1, 125.5, 119.6, 101.2, 81.2, 51.9, 42.1, 37.9, 24.6, 19.9, 19.8, 19.7.
HRMS (ESI): m/z calcd for C19H20N3O

+ [M + H]+ 306.1601.
Found: 306.1602.
6h. Starting from ethyl (E)-2-cyano-3-(naphthalen-2-yl)acrylate 5i

(100.4 mg, 0.4 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product 6h
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 51.6 mg (79%) yield as a yellow solid. Ethyl 2-cyano-3-
(naphthalen-2-yl)propanoate 5i′, which is a known compound,17 was
obtained by column chromatography (ethyl acetate/petroleum ether
= 1:5) in a 38.1 mg (75%) yield. Analytical data for 6h: mp 224−225
°C. IR (ATR): ν ̃ 2867, 2190, 1717, 1611, 1559, 1536, 1470, 1398,
1367, 1307, 1272, 1175, 1144, 1043, 956, 920, 865, 825, 750, 663
cm−1. 1H NMR (400 MHz, CDCl3): δ 7.91−7.78 (m, 4H), 7.55−7.44
(m, 3H), 3.99−3.91 (m, 2H), 3.73 (t, J = 8.4 Hz, 2H), 3.33 (t, J = 5.8
Hz, 2H), 2.89 (t, J = 8.4 Hz, 2H), 2.15−2.07 (m, 2H). 13C{1H} NMR
(100 MHz, CDCl3): δ 161.4, 154.3, 152.0, 133.4, 133.1, 132.9, 128.4,

128.3, 127.7(2C), 126.9, 126.5, 125.5, 119.5, 101.6, 81.4, 51.6, 42.2,
38.0, 24.6, 19.8. HRMS (ESI): m/z calcd for C21H18N3O

+ [M + H]+

328.1444. Found: 328.1438.
6i. Starting from ethyl (E)-2-cyano-3-cyclohexylacrylate 5j (82.9

mg, 0.2 mmol) and DBN 2a (24.8 mg, 0.2 mmol), product 6i was
obtained by column chromatography (ethyl acetate/methanol = 5:1)
in a 38.4 mg (68%) yield as a yellow solid. Ethyl 2-cyano-3-
cyclohexylpropanoate 5j′, which is a known compound,22 was
obtained by column chromatography (ethyl acetate/petroleum ether
= 1:20) in a 28.3 mg (68%) yield. Analytical data for 6i: mp 243−244
°C. IR (ATR): ν ̃ 3413, 2924, 2851, 2190, 1609, 1537, 1474, 1373,
1271, 1239, 1169, 1085, 1040, 976, 909, 890, 764, 706, 680, 640
cm−1. 1H NMR (400 MHz, CDCl3) δ 3.89 (t, J = 5.4 Hz, 2H), 3.72
(t, J = 8.4 Hz, 2H), 3.31 (t, J = 5.7 Hz, 2H), 3.01 (t, J = 8.4 Hz, 2H),
2.18−2.07 (m, 2H), 1.91−1.56 (m, 7H), 1.42−1.29 (m, 2H), 1.25
(m, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 161.6, 158.5, 154.4,
119.5, 100.1, 100.0, 52.0, 43.9, 42.3, 37.9, 30.1, 26.5, 25.9, 25.1, 20.0.
HRMS (ESI): m/z calcd for C17H22N3O

+ [M + H]+ 284.1757.
Found: 284.1749.

7a. Starting from ethyl (E)-2-cyano-3-phenylacrylate 5a (80.5 mg,
0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product 7a was
obtained by precipitation from the reaction in a 52.0 mg (85%) yield
as a yellow solid. Ethyl 2-cyano-3-phenylpropanoate 5a′, which is a
known compound,17 was obtained by preparative TLC (ethyl acetate/
petroleum ether = 1:10) in a 28.7 mg (71%) yield. Analytical data for
7a: mp > 290 °C. IR (ATR): ν ̃ 2932, 2200, 1630, 1543, 1476, 1453,
1402, 1375, 1310, 1283, 1257, 1216, 1187, 1156, 1131, 1104, 1079,
1042, 1023, 991, 959, 934, 802, 774, 755, 727, 667 cm−1. 1H NMR
(400 MHz, DMSO-d6): δ 7.53−7.40 (m, 3H), 7.32−7.24 (m, 2H),
3.98−3.90 (m, 2H), 3.64−3.56 (m, 2H), 3.38 (d, J = 6.3 Hz, 2H),
2.25−2.17 (m, 2H), 2.06−1.97 (m, 2H), 1.91−1.81 (m, 2H), 1.62−
1.53 (m, 2H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 159.1,
157.51, 157.49, 153.7, 137.3, 128.5, 128.4, 127.8, 118.5, 102.2, 84.1,
51.7, 49.0, 27.0, 23.7, 23.5, 21.1. HRMS (ESI): m/z calcd for
C19H19N3NaO

+ [M + Na]+ 328.1420. Found: 328.1400.
7b. Starting from ethyl (E)-2-cyano-3-(p-tolyl)acrylate 5b (86.0

mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product 7b was
obtained by column chromatography (ethyl acetate/methanol = 5:1)
in a 50.0 mg (78%) yield as a light yellow solid. Ethyl 2-cyano-3-(p-
tolyl)propanoate 5b′, which is a known compound,17 was obtained by
column chromatography (ethyl acetate/petroleum ether = 1:10) in a
13.0 mg (30%) yield. Analytical data for 7b: mp 231−233 °C. IR
(ATR): ν ̃ 2930, 2200, 1740, 1634, 1543, 1479, 1403, 1378, 1314,
1285, 1257, 1219, 1175, 1156, 1108, 1083, 1041, 993, 959, 939, 908,
878, 827, 786, 768, 669 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.24
(d, J = 7.9 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 4.16−4.08 (m, 2H),
3.64−3.55 (m, 2H), 3.38 (t, J = 6.5 Hz, 2H), 2.37 (s, 3H), 2.32 (dd, J
= 11.8, 5.6 Hz, 2H), 2.14−2.05 (m, 2H), 1.99−1.87 (m, 2H), 1.67
(dt, J = 12.8, 6.6 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ
159.9, 159.8, 153.3, 138.8, 134.2, 129.3, 128.0, 118.1, 102.9, 88.1,
52.6, 49.6, 39.8, 27.7, 24.4, 24.3, 22.4, 21.4. HRMS (ESI): m/z calcd
for C20H21N3NaO

+ [M + Na]+ 342.1577. Found: 342.1559.
7c. Starting from ethyl (E)-2-cyano-3-(4-methoxyphenyl)acrylate

5c (92.4 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product
7c was obtained by column chromatography (ethyl acetate/methanol
= 5:1) in a 56.1 mg (84%) yield as a light yellow solid. Ethyl 2-cyano-
3-(4-methoxyphenyl)propanoate 5c′, which is a known compound,17

was obtained by column chromatography (ethyl acetate/petroleum
ether = 1:10) in a 29.3 mg (63%) yield. Analytical data for 7c: mp
217−218 °C. IR (ATR): ν ̃ 3526, 2970, 2902, 2249, 2190, 1734, 1700,
1650, 1615, 1554, 1536, 1512, 1454, 1393, 1374, 1259, 1185, 1049,
890, 832, 800, 769, 753, 666 cm−1. 1H NMR (400 MHz, CDCl3): δ
7.21 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 4.16−4.05 (m,
2H), 3.83 (s, 3H), 3.66−3.54 (m, 2H), 3.38 (t, J = 6.5 Hz, 2H),
2.40−2.28 (m, 2H), 2.16−2.02 (m, 2H), 2.00−1.87 (m, 2H), 1.67
(dt, J = 12.8, 6.6 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ
160.0 (2C), 159.4, 153.4, 129.7, 129.4, 118.4, 113.9, 103.1, 87.8, 55.3,
52.5, 49.5, 39.8, 27.8, 24.5, 24.3, 22.3. HRMS (ESI): m/z calcd for
C20H21KN3O2

+ [M + K]+ 374.1265. Found: 374.1280.
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7d. Starting from ethyl (E)-2-cyano-3-(4-(dimethylamino)phenyl)-
acrylate 5d (97.4 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol),
product 7d was obtained by column chromatography (ethyl acetate/
methanol = 5:1) in a 54.5 mg (79%) yield as an orange solid. Ethyl 2-
cyano-3-(4-(dimethylamino)phenyl)propanoate 5d′, which is a
known compound,22 was obtained by column chromatography
(ethyl acetate/petroleum ether = 1:5) in a 27.5 mg (56%) yield.
Analytical data for 7d: mp 277−278 °C. IR (ATR): ν ̃ 2922, 2196,
1632, 1608, 1553, 1528, 1490, 1442, 1409, 1381, 1346, 1312, 1282,
1224, 1189, 1165, 1149, 1079, 1059, 980, 945, 913, 885, 832, 797,
770, 725, 696, 671 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.17 (d, J =
8.8 Hz, 2H), 6.74 (d, J = 8.6 Hz, 2H), 4.15−4.05 (m, 2H), 3.58 (dd, J
= 6.7, 4.7 Hz, 2H), 3.37 (t, J = 6.5 Hz, 2H), 2.99 (s, 6H), 2.45−2.36
(m, 2H), 2.13−2.02 (m, 2H), 1.97−1.88 (m, 2H), 1.69 (dt, J = 12.8,
6.6 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 160.3, 160.2,
153.3, 150.7, 129.6(2C), 118.6, 111.7, 103.0, 88.0, 52.5, 49.4, 40.3,
39.7, 28.11, 24.6, 24.4, 22.4. HRMS (ESI): m/z calcd for C21H25N4O

+

[M + H]+ 349.2023. Found: 349.2023.
7e. Starting from ethyl (E)-2-cyano-3-(4-fluorophenyl)acrylate 5e

(87.6 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product 7e
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 56.0 mg (87%) yield as a white solid. Ethyl 2-cyano-3-(4-
fluorophenyl)propanoate 5e′, which is a known compound,17 was
obtained by column chromatography (ethyl acetate/petroleum ether
= 1:10) in a 17.5 mg (40%) yield. Analytical data for 7e: mp 237−239
°C. IR (ATR): ν ̃ 3838, 3588, 2987, 2902, 2291, 2201, 2162, 2026,
1985, 1701, 1639, 1553, 1483, 1403, 1381, 1294, 1254, 1153, 1066,
939, 879, 790, 750, 703, 671 cm−1. 1H NMR (400 MHz, CDCl3): δ
7.29−7.25 (m, 2H), 7.13 (t, J = 8.6 Hz, 2H), 4.18−4.03 (m, 2H),
3.65−3.55 (m, 2H), 3.39 (dd, J = 14.8, 8.6 Hz, 2H), 2.34−2.26 (m,
2H), 2.14−2.06 (m, 2H), 1.98−1.90 (m, 2H), 1.68 (dd, J = 12.1, 6.1
Hz, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 162.9 (d, JF−C = 248.4
Hz), 159.8, 158.4, 153.6, 133.1 (d, JF−C = 3.4 Hz), 130.1 (d, JF−C =
8.3 Hz), 118.0, 115.7 (d, JF−C = 21.8 Hz), 103.0, 87.7, 52.6, 49.6, 39.9,
27.6, 24.4, 24.2, 22.2. HRMS (ESI): m/z calcd for C19H19FN3O

+ [M
+ H]+ 324.1507. Found: 324.1508.
7f. Starting from ethyl (E)-3-(4-chlorophenyl)-2-cyanoacrylate 5f

(94.0 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product 7f
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 49.5 mg (73%) yield as a light yellow solid. Ethyl 3-(4-
chlorophenyl)-2-cyanopropanoate 5f′, which is a known compound,17

was obtained by column chromatography (ethyl acetate/petroleum
ether = 1:10) in a 27.5 mg (58%) yield. Analytical data for 7f: mp
248−250 °C. IR (ATR): ν ̃ 2940, 2195, 1627, 1542, 1503, 1477, 1407,
1376, 1317, 1285, 1258, 1221, 1190, 1175, 1158, 1103, 1088, 111,
964, 941, 909, 883, 848, 827, 800, 774, 762, 731, 687, 663 cm−1. 1H
NMR (400 MHz, CDCl3): δ 7.41 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4
Hz, 2H), 4.14−4.05 (m, 2H), 3.65−3.56 (m, 2H), 3.40 (t, J = 6.4 Hz,
2H), 2.35−2.25 (m, 2H), 2.15−2.04 (m, 2H), 1.99−1.90 (m, 2H),
1.72−1.61 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ 159.8,
158.1, 153.7 135.6, 134.9, 129.6, 128.9, 118.0, 102.8, 87.3, 52.6, 49.7,
39.9, 27.6, 24.4, 24.2, 22.2. HRMS (ESI): m/z calcd for
C19H19ClN3O

+ [M + H]+ 340.1211. Found: 340.1208.
7g. Starting from ethyl (E)-3-(4-bromophenyl)-2-cyanoacrylate 5g

(111.6 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product 7g
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 59.7 mg (78%) yield as a light yellow solid. Ethyl 3-(4-
bromophenyl)-2-cyanopropanoate 5g′, which is a known com-
pound,17 was obtained by column chromatography (ethyl acetate/
petroleum ether = 1:10) in 76.3 mg (>99%) yield. Analytical data for
7g: mp 258−260 °C. IR (ATR): ν ̃ 2936, 2860, 2202, 1628, 1551,
1504, 1476, 1450, 1407, 1379, 1363, 1337, 1311, 1213, 1173, 1148,
1100, 1069, 1028, 1007, 972, 910, 882, 844, 826, 793, 768, 754, 728,
671 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.61−7.51 (m, 2H), 7.21−
7.10 (m, 2H), 4.17−4.03 (m, 2H), 3.65−3.55 (m, 2H), 3.39 (t, J =
6.4 Hz, 2H), 2.36−2.24 (m, 2H), 2.13−2.04 (m, 2H), 1.99−1.90 (m,
2H), 1.66 (dt, J = 12.9, 6.6 Hz, 2H). 13C{1H} NMR (100 MHz,
CDCl3): δ 159.8, 158.0, 153.7, 136.1, 131.8, 129.9, 123.2, 118.0,
102.8, 87.1, 52.6, 49.7, 39.9, 27.6, 24.3, 24.2, 22.2. HRMS (ESI): m/z
calcd for C19H18BrLiN3O

+ [M + Li]+ 390.0788. Found: 390.0768.

7h. Starting from ethyl (E)-2-cyano-3-(3, 4-dimethylphenyl)-
acrylate 5h (91.6 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2
mmol), product 7h was obtained by column chromatography (ethyl
acetate/methanol = 5:1) in a 52.9 mg (79%) yield as a light yellow
solid. Ethyl 2-cyano-3-(3,4-dimethylphenyl)propanoate 5h′, which is
a known compound,21 was obtained by column chromatography
(ethyl acetate/petroleum ether = 1:10) in a 19.3 mg (42%) yield.
Analytical data for 7h: mp 213−215 °C. IR (ATR): ν ̃ 2942, 2200,
1740, 1627, 1541, 1482, 1410, 1378, 1336, 1313, 1227, 1173, 1146,
1123, 1076, 1035, 960, 910, 892, 856, 838, 788, 770, 759, 734, 722,
665 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.18 (d, J = 7.5 Hz, 1H),
7.03−6.96 (m, 2H), 4.18−4.02 (m, 2H), 3.64−3.54 (m, 2H), 3.38 (t,
J = 6.4 Hz, 2H), 2.38−2.36 (t, 2H) 2.36−2.18 (s, 6H), 2.13−2.03 (m,
2H), 1.97−1.88 (m, 2H), 1.66 (dt, J = 12.9, 6.6 Hz, 2H). 13C{1H}
NMR (100 MHz, CDCl3): δ 159.96, 159.91, 153.3, 137.3, 136.7,
134.7, 129.7, 129.1, 125.5, 118.2, 103.0, 87.9, 52.5, 49.5, 39.8, 27.7,
24.4, 24.3, 22.3, 19.9, 19.7. HRMS (ESI): m/z calcd for C21H24N3O

+

[M + H]+ 334.1914. Found: 334.1927.
7i. Starting from ethyl (E)-2-cyano-3-(naphthalen-2-yl)acrylate 5i

(100.4 mg, 0.4 mmol) and DBU 2b (30.4 mg, 0.2 mmol), product 7i
was obtained by column chromatography (ethyl acetate/methanol =
5:1) in a 60.0 mg (84%) yield as a light yellow solid. Ethyl 2-cyano-3-
(naphthalen-2-yl)propanoate 5i′, which is a known compound,17 was
obtained by column chromatography (ethyl acetate/petroleum ether
= 1:5) in a 62.6 mg (>99%) yield. Analytical data for 7i: mp 254−256
°C. IR (ATR): ν ̃ 2930, 2197, 1625, 1543, 1492, 1465, 1407, 1378,
1313, 1284, 1227, 1175, 1077, 963, 935, 903, 860, 831, 791, 762, 743,
674 cm−1. 1H NMR (400 MHz, CDCl3): δ 7.90 (d, J = 8.5 Hz, 1H),
7.86 (d, J = 6.8 Hz, 2H), 7.76 (s, 1H), 7.55−7.48 (m, 2H), 7.36 (dd, J
= 8.4, 1.5 Hz, 1H), 4.21−4.05 (m, 2H), 3.64−3.55 (m, 2H), 3.37 (t, J
= 6.4 Hz, 2H), 2.36−2.27 (m, 2H), 2.09 (dd, J = 11.7, 6.0 Hz, 2H),
1.99−1.88 (m, 2H), 1.71−1.58 (m, 2H).13C{1H} NMR (100 MHz,
CDCl3): δ 159.9, 159.4, 153.5, 134.7, 133.2, 133.0, 128.40, 128.38,
127.8, 127.5, 126.7, 126.5, 125.8, 118.1, 103.1, 87.9, 52.6, 49.6, 39.9,
27.7, 24.4, 24.3, 22.3. HRMS (ESI): m/z calcd for C23H22N3O

+ [M +
H]+ 356.1757. Found: 356.1754.

A Scaled-Up Synthesis of 6b. Ethyl (E)-2-cyano-3-(p-tolyl)-
acrylate 5b (20 mmol) was placed in a Schlenk tube (100 mL), and
the vessel was evacuated and refilled with nitrogen three times.
CH3CN (20.0 mL) was subsequently added, followed by DBN 2a (10
mmol). The mixture was stirred vigorously at 120 °C under a nitrogen
atmosphere for 4 h. It was observed that a small amount of the
product 6b was precipitated from the reaction. After the completion
of the reaction as monitored by TLC, the mixture was filtered to
afford one part of product 6b. Then, the filtrate was collected,
concentrated, and purified by column chromatography (ethyl acetate/
methanol = 5:1) to afford another part of the product 6b. The pure
product 6b was obtained in a total of 2.54 g in an 88% yield.

Synthesis of Compounds 8. A mixture of 8-(4-bromophenyl)-6-
oxo-1,2,4,5-tetrahydro-3H,6H-2a,5a-diazaacenaphthylene-7-carboni-
trile 6f (71.0 mg, 0.2 mmol), arylboronic acid (0.28 mmol), sodium
carbonate (63.6 mg, 0.6 mmol), and Pd(PPh3)4 (23.1 mg, 0.02
mmol) was evacuated and refilled with nitrogen three times. N,N-
Dimethylformamide (1.0 mL) and water (5 drops) were subsequently
added. The mixture was stirred vigorously at 120 °C under a nitrogen
atmosphere for 24 h, diluted with dichloromethane, and then washed
with water and brine. The organic phase was dried over sodium
sulfate, filtered, and concentrated to get a dark residue. The crude was
purified by column chromatography to obtain compounds 8.

8a. Starting from 6f (71.0 mg, 0.2 mmol) and phenylboronic acid
(34.1 mg, 0.28 mmol), product 8a was obtained by column
chromatography (ethyl acetate/methanol = 5:1) in a 50.4 mg
(71%) yield as a yellow solid: mp > 250 °C. IR (ATR): ν ̃ 3752, 3655,
2956, 2918, 2850, 2375, 2353, 2317, 2189, 1615, 1597, 1541, 1483,
1468, 1407, 1371, 1312, 1299, 1276, 1195, 1178, 1120, 1045, 977,
923, 892, 849, 753, 701, 655, 627 cm−1. 1H NMR (400 MHz, DMSO-
d6) δ 7.79 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.54−7.48
(m, 4H), 7.41 (t, J = 7.3 Hz, 1H), 3.84−3.77 (t, J = 5.8 Hz, 2H), 3.73
(t, J = 8.2 Hz, 2H), 3.33 (t, J = 5.2 Hz, 2H), 2.83 (t, J = 8.2 Hz, 2H),
2.07 (t, J = 5.3 Hz, 2H). 13C{1H} NMR (100 MHz, DMSO-d6) δ
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161.2, 154.9, 149.7, 141.1, 139.8, 135.4, 129.5, 129.1, 128.3, 127.23,
127.18, 120.5, 102.5, 78.2, 51.9, 41.9, 38.1, 24.2, 19.6. HRMS (ESI):
m/z calcd for C23H20N3O

+ [M + H]+ 354.1601. Found: 354.1584.
8b. Starting from 6f (71.0 mg, 0.2 mmol) and (4-methoxyphenyl)

boronic acid (42.5 mg, 0.28 mmol), product 8b was obtained by
column chromatography (ethyl acetate/methanol = 5:1) in a 55.2 mg
(72%) yield as a yellow solid: mp 243−244 °C. IR (ATR): 3751,
3657, 3359, 3199, 2920, 2851, 2375, 2194, 1634, 1615, 1550, 1502,
1471, 1403, 1374, 1327, 1278, 1168, 1120, 1071, 829, 762, 745, 702,
667, 603, 526, 443 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 7.72−
7.67 (m, 2H), 7.67−7.62 (m, 2H), 7.49−7.42 (m, 2H), 7.04−6.99
(m, 2H), 3.77 (s, 3H), 3.76−3.72 (t, J = 5.8 Hz, 2H), 3.69 (t, J = 8.2
Hz, 2H), 3.29 (t, J = 5.7 Hz, 2H), 2.78 (t, J = 8.2 Hz, 2H), 2.07−1.97
(m, 2H). 13C{1H} NMR (100 MHz, DMSO-d6) δ 161.3, 159.7,
154.9, 149.8, 148.3, 140.8, 134.6, 132.1, 129.1, 128.4, 126.6, 120.6,
115.0, 102.5, 78.3, 55.7, 51.9, 38.1, 24.3, 19.6. HRMS (ESI): m/z
calcd for C24H22N3O2

+ [M + H]+ 384.1707. Found: 384.1706.
8c. Starting from 6f (71.0 mg, 0.2 mmol) and p-tolylboronic acid

(38.1 mg, 0.28 mmol), product 8c was obtained by column
chromatography (ethyl acetate/methanol = 5:1) in a 50.9 mg
(69%) yield as a yellow solid: mp > 250 °C. IR (ATR): 3824, 3751,
3715, 3656, 3613, 3360, 3201, 2959, 2919, 2851, 2375, 2309, 2195,
1873, 1633, 1617, 1548, 1488, 1470, 1405, 1376, 1313, 1277, 1188,
1052, 892, 824, 757, 701, 668, 586, 491, 455 cm−1. 1H NMR (400
MHz, DMSO-d6) δ 7.72 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H),
7.47 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.77−3.72 (t, J =
5.8 Hz, 2H), 3.69 (t, J = 8.2 Hz, 2H), 3.29 (t, J = 5.6 Hz, 2H), 2.78 (t,
J = 8.2 Hz, 2H), 2.32 (s, 3H), 2.07−1.98 (m, 2H). 13C{1H} NMR
(100 MHz, DMSO-d6) δ 161.3 154.9, 149.8, 141.1, 137.8, 137.0,
135.1, 130.2, 129.1, 127.1, 126.9, 120.6, 102.6, 78.3, 51.9, 42.0, 38.1,
24.3, 21.3, 19.6. HRMS (ESI): m/z calcd for C24H22N3O

+ [M + H]+

368.1757. Found: 368.1763.
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