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Abstract: w-Sulfonyl aldehydes derived from the esterification of
(benzothiazol-2-ylsulfonyl)acetic acid with either w-alkenols or
a,w-diols, followed by ozonolysis or Dess–Martin oxidation as ap-
propriate, underwent intramolecular Julia–Kocienski olefination
when treated with DBU. Macrocyclic a,b-unsaturated lactones of
between 12- and 19-membered ring sizes were formed successfully
using this tactic (24–44% yield, Z/E ≥ 3.5:1); however, diolides
were selectively produced from precursors intended to target seven-
to nine-membered-ring lactones (13–70% yield, ZZ/ZE ≥ 2:1).
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It was recently reported that a,b-unsaturated esters are
conveniently generated from aldehydes by treatment with
ethyl (benzothiazol-2-ylsulfonyl)acetate (4) under mild
conditions (DBU, CH2Cl2, ≤20 °C).1 Enoate formation
presumably occurs via the commonly accepted mecha-
nism for the Julia–Kocienski olefination,2 and Z-config-
ured products are obtained selectively from unbranched
aliphatic aldehydes (Z/E up to 92:8 at –78 °C). Zajc and
Lequeux later independently disclosed that a-fluorinated
analogues of 4 yield valuable a-fluoroacrylate derivatives
in excellent yield,3 further highlighting the good utility of
benzothiazol-2-yl (BT) sulfone based alternatives to the
HWE reaction.4,5 Given a preponderance of a,b-unsatur-
ated lactones among biologically active secondary metab-
olites,6 and the ease of alkene formation from BT-sulfonyl
acetates, realization of an effective intramolecular variant
of this new type of enoate synthesis would constitute a
worthwhile advance. To date, surprisingly little attention
has been directed toward study of the intramolecular
Julia–Kocienski olefination. Of note, Leahy and co-work-
ers reported a failed attempt to conclude their synthesis of
rhizoxin D using such a tactic.7 More recently, Aïssa suc-
cessfully demonstrated the formation of unsaturated car-
bocycles by heating 1-tert-butyl-1H-tetrazol-5-yl
sulfones8 with tethered aldehyde functionality in the pres-
ence of Cs2CO3 as base in THF–DMF solvent (at 65 °C).9

Herein, we report our own findings relating to the nascent
intramolecular Julia–Kocienski olefination and describe
the first examples of a,b-unsaturated lactone synthesis via
base-mediated cyclization of w-sulfonyl aldehydes 1
(Scheme 1).10
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Scheme 1 Focus of study: formation of a,b-unsaturated lactones 2
via intramolecular Julia–Kocienski olefination from w-sulfonyl alde-
hydes 1

The w-sulfonyl aldehydes of interest were targeted via
ozonolysis of the corresponding terminal olefin or else via

BT =

S

NBTSO2
O

O

O n

O

O

n

base

1 2

– BTO–

– SO2



LETTER Z-Configured a,b-Unsaturated Macrocyclic Lactones and Diolides 375

Synlett 2010, No. 3, 374–378 © Thieme Stuttgart · New York

oxidation of the primary alcohol (vide infra). Access to
the necessary aldehyde precursors was sought by esterifi-
cation of (benzothiazol-2-ylsulfonyl)acetic acid (7) with
an appropriate w-alkenol or a,w-diol. Few reports of acid
7 exist in the literature and attempts to synthesize this ma-
terial by saponification of sulfonyl ester 41 in methanol
led to ipso attack upon the heterocyclic sulfone and the
generation of BTOMe (5, Scheme 2).11 By contrast, hy-
drolysis of sulfanyl ester 3 under otherwise identical con-
ditions gave the expected free acid 6 in excellent yield.
Sulfoxidation of thioether 6 to sulfone 7 has been previ-
ously reported on a small scale with KHSO5,

12 but we ob-
tained superior results using a Mo(VI)-catalyzed H2O2-
mediated oxidation.13 Samples of acid 7 prepared in this
manner are invariably associated with trace quantities of
decarboxylation adduct 8; however, this innocuous con-
taminant does not interfere with subsequent steps. It was
established that sulfonyl acid 7 is shelf-stable for pro-
longed periods (several months) in the solid state, but that
this material spontaneously decarboxylates in solution.
The rate of CO2 loss was found to be sensitive to solvent
polarity. Thus, in DMSO solution (at 0.05 M) complete
decarboxylation of acid 7 occurred in 1.1 hours at room
temperature, while the same process in acetone solution
(at 0.05 M) required 22 hours at room temperature to at-
tain full conversion.

Scheme 2 Synthesis of (benzothiazol-2-ylsulfonyl)acetic acid (7)

With a convenient method to access acid 7 secured, the
synthesis of its alkenyl ester derivatives was investigated
(Scheme 3). Carbodiimide coupling of 7 with w-alkenols
9 proceeded uneventfully to give the expected alkenyl es-
ters in generally excellent yield.14 Interestingly, attempts
to similarly esterify sulfanyl acid 6 using DCC failed and
resulted in the formation of a purple pigment tentatively
attributed to be a thiazo[2,3-b]benzothiazolium species.15

To concisely access a selection of carbinol-based sulfonyl
aldehyde precursors, acid 7 was directly coupled to unpro-
tected straight-chain a,w-diols 11 using DCC as before
(Scheme 4).16 To limit the amount of anticipated diester
side-product generated in these reactions, a modest excess
of diol (3–6 equiv) was employed; if desired, the unreact-

ed glycol could be recovered during purification of the re-
action mixture.

Scheme 3 Synthesis of alkene-based aldehyde precursors

Scheme 4 Synthesis of carbinol-based aldehyde precursors

For our initial evaluation of the Julia–Kocienski process,
w-sulfonyl aldehydes 1 were generated from alkenyl BT-
sulfones 10 by ozonolysis with dimethylsulfide workup.
In general, the aldehydes exhibited limited stability and
best results were obtained by avoiding chromatographic
purification prior to their immediate deployment in base-
induced cyclization. To minimize undesired intermolecu-
lar couplings, olefination was conducted using modestly
high dilution with a syringe-pump addition of the freshly
prepared aldehyde to a solution of DBU base in CH2Cl2 at
–78 °C.17 Under these conditions (method A, Table 1),
only aldehyde precursor 10-19, targeting a 19-membered
lactone, led to the desired enoate product (entry 10). The
yield of intramolecular olefination was acceptable when
considering the large ring size generated and the absence
of cyclization inducing substituents,18 and a good prefer-
ence for the (Z)-enoate was noted.19 Precursors 10-7 and
10-12 afforded diolides 13 rich in the Z,Z-stereoisomer in-
stead of simple lactone products (entries 2 and 6),20 while
the aldehyde derived from 10-6 experienced facile b-elim-
ination upon exposure to DBU and did not give a lactone
nor a diolide product (entry 1).

In the second phase of the investigation, w-sulfonyl alde-
hydes 1 were generated from hydroxy BT-sulfones 12 by
treatment with the Dess–Martin periodinane (DMP).21

Clean and essentially complete conversion was typically
achieved in less than 1 hour at room temperature, and fol-
lowing a simple workup procedure, the aldehyde sub-
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strates were directly added via syringe pump to a DBU
solution. To increase the rate of intramolecular reaction
and thus suppress the formation of diolides and higher oli-
gomeric products, the cyclization was now conducted at
ambient temperature (method B).22 In again targeting the
formation of 2-12, this change had the desired effect, and
the lactone was now favored over the diolide (entry 7 vs.
6). Using the same procedure, other large ring-sized Z-
configured a,b-unsaturated lactones were also formed
(entries 8 and 9); however, attempts to generate seven- to
nine-membered lactones gave (Z,Z)-diolides selectively
with no trace of the simple lactone products (entries 3–5).
It is speculated that only larger ring sizes can readily ac-
commodate the bond-rotation events necessary for alkene

formation via the usual Julia–Kocienski pathway.2d,e Be-
sides being difficult to form because of transannular
strain, seven- to nine-membered cyclic b-alkoxysulfone
intermediates 14 are likely to experience retroaddition
(then intermolecular addition) rather than follow the usual
Smiles rearrangement–anti-b-elimination pathway (14 →
15 → 16 → 2) that characterizes this type of olefination
(Figure 1).

Figure 1

In conclusion, it has been demonstrated that intramolecu-
lar Julia–Kocienski olefination is a viable synthetic tactic
for the elaboration of large-ring-sized a,b-unsaturated lac-
tones. By contrast, the same process leads selectively to
diolides when medium-ring-sized enoates are targeted.
The method is of comparable efficiency to analogous Wit-
tig-based protocols for macrocycle synthesis,10 while of-
fering stereocomplementary access to Z- rather than E-
configured products. A distinguishing feature of the
chemistry reported herein is the ease with which the req-
uisite w-sulfonyl aldehyde substrates are synthesized. The
shelf-stable sulfonyl acid 7 engages in high yielding ester-
ification with alcohols using a carbodiimide reagent and
an aldehyde function may be expressed in the resulting es-
ter product by standard methods (e.g., ozonolysis or
Dess–Martin oxidation). Thus, sulfonyl acid 7 may be re-
garded as a convenient lynch pin capable of conjoining
[about a (Z)-enoate linkage] the termini of suitably func-
tionalized seco precursors via a short sequence of trans-
formations. It is conceivable that the cyclization process
described herein could be successfully employed in more
complex scenarios.
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CH2Cl2 (2 × 5 mL) and the combined organic phases washed 
with brine (10 mL), dried (Na2SO4), and concentrated in 
vacuo. Purification of the residue was effected by column 
chromatography (SiO2, eluting with 10–15% EtOAc in 
hexanes).

(18) (a) Jung, M. E.; Piizi, G. Chem. Rev. 2005, 105, 1735. 
(b) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 
1915, 107, 1080.

(19) Data for (Z)-Lactones 2 (Table 1)
(Z)-2-12 (n = 7): colorless oil. IR (neat): 2920, 2850, 1734, 
1717, 1700, 1457 cm–1. 1H NMR (300 MHz, CDCl3): d = 
6.32 (1 H, dt, J = 11.7, 8.9 Hz), 5.76 (1 H, dt, J = 11.7, 0.9 
Hz), 4.23–4.19 (2 H, m), 2.47 (2 H, q, J = 7.9 Hz), 1.89–1.80 
(2 H, m), 1.51–1.30 (10 H, m) ppm. 13C NMR (75 MHz, 
CDCl3): d = 167.6, 147.7, 121.8, 66.4, 26.7, 26.3, 25.7, 25.5, 
24.8, 24.7, 22.3 ppm. HRMS (EI+): m/z calcd for C11H18O2: 
182.1307; found: 182.1298.
(Z)-2-13 (n = 8): colorless oil. IR (neat): 2926, 2855, 1716, 
1653, 1458, 1153 cm–1. 1H NMR (400 MHz, CDCl3): d = 
6.15 (1 H, dt, J = 11.7, 8.5 Hz), 5.78 (1 H, dm, J = 11.8 Hz), 
4.27–4.22 (2 H, m), 2.53 (2 H, qm, J = 7.6 Hz), 1.73–1.65 (2 
H, m), 1.55–1.32 (12 H, m) ppm. 13C (100 MHz, CDCl3): 
d = 167.7, 147.0, 121.7, 65.4, 28.0, 27.3, 27.2 (2 C), 26.5, 
26.3, 25.0, 24.8 ppm. HRMS (CI+): m/z calcd for C12H21O2: 
197.1542; found: 197.1536.
(Z)-2-15 (n = 10): colorless oil. IR (neat): 2928, 2857, 1720, 
1643, 1459, 1173 cm–1. 1H NMR (300 MHz, CDCl3): d = 
6.13 (1 H, dt, J = 11.7, 8.0 Hz), 5.78 (1 H, dt, J = 11.7, 1.4 
Hz), 4.26–4.21 (2 H, m), 2.58 (2 H, qd, J = 7.9, 1.4 Hz), 
1.73–1.61 (2 H, m), 1.60–1.20 (18 H, m) ppm. 13C NMR (75 
MHz, CDCl3): d = 167.5, 148.2, 121.1, 64.6, 28.6, 28.4, 
27.6, 27.0, 26.8, 26.63, 26.57, 26.2, 26.1, 25.2 ppm. HRMS 
(EI+): m/z calcd for C14H24O2: 224.1776; found: 224.1769.
(Z)-2-19 (‘n = 14’): colorless oil/waxy solid. IR (neat): 
2927, 2851, 1702, 1655, 1473, 1108 cm–1. 1H NMR (300 
MHz, CDCl3): d = 6.14 (1 H, dt, J = 11.6, 7.9 Hz), 5.77 (1 H, 
dm, J = 11.6 Hz), 4.17 (2 H, t, J = 5.9 Hz), 3.48–3.36 (4 H, 
m), 2.54 (2 H, qm, J = 7.4 Hz), 1.75–1.62 (2 H, m), 1.55–
1.15 (18 H, m) ppm. 13C NMR (75 MHz, CDCl3): d = 167.1, 
149.0, 120.6, 70.0, 69.8, 64.0, 29.7–28.0 (8 C), 25.7 (2 C), 
25.5 ppm. HRMS (EI+): m/z calcd for C17H30O3: 282.2195; 
found: 282.2183. Minor E-lactones revealed by: dH = ca. 
6.94 (1 H, dt, J = 15.6, 7.9 Hz) ppm. 1H NMR data for (Z)-
2-15 are in agreement with those previously reported: 
Hayashikoshi, T.; Abe, M.; Kurata T. Sekiyu Gakkaishi 
1996, 39, 74.

(20) Data for (Z,Z)-diolides 13 (Table 1)
(Z,Z)-13-14 (n = 2): waxy solid. IR (neat): 2923, 1705, 1628, 

1299 cm–1. 1H NMR (400 MHz, CDCl3): d = 6.24 (2 H, dt, 
J = 11.7, 8.7 Hz), 5.81 (2 H, dm, J = 11.7 Hz), 4.20 (4 H, t, 
J = 5.1 Hz), 2.77 (4 H, q, J = 8.2 Hz), 1.87–1.79 (4 H, m) 
ppm. 13C NMR (100 MHz, CDCl3): d = 167.0, 145.5, 122.5, 
63.8, 28.2, 27.1 ppm. HRMS (CI+): m/z calcd for C12H17O4: 
225.1127; found: 225.1128.
(Z,Z)-13-16 (n = 3): colorless oil. IR (neat): 2925, 1716, 
1653, 1458, 1288 cm–1. 1H NMR (400 MHz, CDCl3): d = 
6.26 (2 H, dt, J = 11.7, 8.6 Hz), 5.75 (2 H, dm, J = 11.6 Hz), 
4.20 (4 H, t, J = 5.6 Hz), 2.67 (4 H, qm, J = 7.5 Hz), 1.78–
1.70 (4 H, m), 1.65–1.50 (4 H, m) ppm. 13C NMR (100 MHz, 
CDCl3): d = 167.2, 146.3, 121.7, 64.3, 29.8, 29.2, 26.5 ppm. 
HRMS (EI+): m/z calcd for C14H20O4: 252.1362; found: 
252.1370.
(Z,Z)-13-18 (n = 4): colorless oil. IR (neat): 2923, 2853, 
1698, 1458 cm–1. 1H NMR (400 MHz, CDCl3): d = 6.18 (2 
H, dt, J = 11.6, 8.3 Hz), 5.75 (2 H, dm, J = 11.6 Hz), 4.19 (4 
H, t, J = 5.8 Hz), 2.61 (4 H, q, J = 7.3 Hz), 1.70–1.40 (12 H, 
m) ppm. 13C NMR (100 MHz, CDCl3): d = 167.2, 147.7, 
121.2, 64.3, 29.7, 28.9, 28.7, 26.5 ppm. HRMS (EI+): m/z 
calcd for C16H25O4: 281.1753; found: 281.1754.
(Z,Z)-13-24 (n = 7): colorless solid; mp 58–60 °C. IR (KBr): 
2917, 2850, 1719, 1700, 1465 cm–1. 1H NMR (300 MHz, 
CDCl3): d = 6.19 (2 H, dt, J = 11.7, 8.0 Hz), 5.74 (2 H, dm, 
J = 11.7 Hz), 4.17 (4 H, t, J = 6.0 Hz), 2.54 (4 H, q, J = 7.2 
Hz), 1.75–1.60 (6 H, m), 1.50–1.20 (18 H, m) ppm. 13C 
NMR (75 MHz, CDCl3): d = 167.3, 148.6, 120.9, 64.4, 29.5, 
29.33, 29.26, 29.1, 29.0, 26.4 ppm. HRMS (EI+): m/z calcd 
for C22H36O4: 364.2614; found: 364.2617. Data for (E,Z)-
diolides 13-14, 13-16, and 13-18, can be found in ref. 10b.

(21) (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 
7277. (b) Boeckman, R. K. Jr.; Shao, P.; Mullins, J. J. Org. 
Synth. 2000, 77, 141.

(22) General Procedure: Dess–Martin Oxidation and 
Intramolecular Olefination (Table 1, Method B)
A solution of 12 (250 mmol) in anhyd CH2Cl2 (2 mL) was 
treated with DMP21 (160 mg, 375 mmol) and stirred for 45 
min at r.t. Mixture diluted with CH2Cl2 (10 mL) and washed 
successively with 10 wt% aq NaHCO3 (10 mL) and brine (10 
mL), dried (Na2SO4), and then concentrated in vacuo. The 
residual crude aldehyde was taken up in CH2Cl2 (12.5 mL) 
and this solution (≤0.02 M) added via syringe pump during 
14–18 h to a stirred 0.04 M solution of DBU (266 mg, 1.75 
mmol, 7.0 equiv) in CH2Cl2 (45 mL) at r.t. After this time, 
the reaction mixture was quenched with sat. aq NH4Cl (10 
mL) and worked up and purified as indicated above for 
method A (ref. 17).
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